红外夜视仪的介绍及用途
红外线成像仪有啥用途

红外线成像仪有啥用途红外线成像仪是一种能够感测和捕捉红外线辐射的设备,它可以将红外线辐射转化为可见图像或视频,用于检测和观察人眼无法直接看到的红外线辐射情况。
红外线成像仪在很多领域中都有广泛的应用,下面将详细介绍其具体用途。
1. 军事军备领域:红外线成像仪广泛应用于军事领域,用于夜视、目标探测、监测和导航等方面。
红外线成像仪在军事侦查中发挥了重要作用,可实现对敌方目标进行远程探测和监测,有助于提前发现潜在威胁。
同时,红外线成像仪还用于飞机及导弹的导航系统,提高了其在夜间及恶劣天气条件下的作战能力。
2. 安全监控领域:红外线成像仪在安防监控领域中有着重要的地位。
它可以透过烟雾、灰尘或黑暗等环境,实时捕捉人体的红外线辐射,用于监测人员活动、警戒和预防犯罪。
红外线成像仪可以在黑暗或低光环境中提供清晰的图像,为安防工作提供有效的辅助手段。
3. 工业检测领域:红外线成像仪在工业检测中具有广泛应用,如电力设备、机械设备、化工装置等。
红外线成像仪可以实时检测设备的热量分布、热耗损和异常情况,从而可提前发现故障并采取相应的措施。
在工业生产过程中,红外线成像仪还可以用于热分析、温度监测和质量控制等方面,提高产品质量和生产效率。
4. 医疗保健领域:红外线成像仪在医疗保健中有着重要的应用。
它可以用于疾病诊断、体温测量、皮肤病检测等方面。
例如,在临床中可以使用红外线成像仪检测体表皮肤温度,从而判断人体的健康状况或者诊断疾病。
此外,红外线成像仪还可以用于体温检测仪器的制造和使用,提高了体温测量的准确性和便利性。
5. 建筑工程领域:红外线成像仪可以用于建筑工程中的能源管理、热漏检测等方面。
通过使用红外线成像仪,可以快速、准确地检测建筑物的热量分布情况,发现建筑物的隐患和热漏点,从而优化建筑的能源利用效率,提高建筑物的节能性能。
6. 生命科学研究领域:红外线成像仪在生命科学研究中起着重要的作用。
例如,科学家可以利用红外线成像仪观察动物或人体在不同情况下的热量分布和代谢情况,了解其生理状态和健康状况。
红外微光夜视仪

红外微光夜视仪红外微光夜视仪是将微光夜视和红外夜视结合起来的产品,集微光夜视和红外夜视功能于一身。
新近的数码加强型红外微光夜视仪是一个高敏度高辨别率的CCD阵列和一个新的轻型TM软体技术使用于数码加强装置,5倍放大和长距离观景范围—高达600米,图像清楚度和亮度上也都有很大提高,图像传送给单色LCD显示屏是清楚和锋利的,在整个察看领域。
该装置能够在一个广泛的自然夜间照明范围内波动的情况下使用。
多云月深夜进行察看,打开可调式红外照明灯可以使用。
波浪长度达940nm—察看者看不见的红外光,即使是单位用在自动模式。
内置的视频输出允许转让的形象到监视器或电视上便于长期固定时间观看,录影,以外部录音设备。
目录红外微光夜视仪的特点与用途红外微光夜视技术红外微光夜视仪的特点与用途特点:现在红外微光夜视仪一般体积灵巧,简单携带,便利夜间察看,利用夜间目标反射的低亮度的夜天光星光月光大气辉光等自然光,将其加强放大到几千到几十万倍,从而达到适于人眼夜间进行察看、侦察、瞄准、车辆驾驶和其它战场作业。
用途:察看,徒步旅行,野营,洞窟探险,商业捕鱼和业余垂钓,划船,执法,搜救,监视。
红外微光夜视技术红外微光夜视仪集两种技术于一身,具红外夜视与微光夜视两种功能。
夜视技术是借助于光电成象器件实现夜间察看的一种光电技术。
夜视技术包括微光夜视和红外夜视两方面。
微光夜视技术又称像加强技术,是通过目镜将光线聚焦在影象加强器上来采集和加强现有光线,在加强器内部,一个光电阴极会被光“激活”,并将光子能量变化成电子,这些电子经过一个位于加强器内部的静电区域被加速后,撞击在磷表面屏幕上(就好象一个绿色的电视屏幕),形成人眼可见的图象。
经过对电子的加速,加强了亮度和图象的清楚度。
新型的数字夜视仪采纳了第2和第3代影像加强管,视野边缘不再模糊,而且它在完全黑暗和长距离的使用上效果特别好。
微光夜视仪,是目前国外生产量和装备量最大和用途最广的夜视器材,可分为直接察看(如夜视察看仪、武器瞄准具、夜间驾驶仪、夜视眼镜)和间接察看(如微光电视)两种。
红外夜视仪的工作原理

红外夜视仪的工作原理
红外夜视仪的工作原理是利用红外辐射的特性来实现夜间观测。
其工作原理如下:
1. 红外辐射感应:红外夜视仪通过红外光电转换器件(如光电二极管或光电倍增管)感应周围环境中发出的红外辐射。
在夜间或低光条件下,许多物体会发出红外辐射,这种辐射能在一定程度上穿透雾气、烟尘和极低能见度的情况。
2. 信号放大与处理:红外光电转换器件将感应到的微弱红外辐射转换成微弱电信号,并通过放大电路将其增强。
这些增强的信号被传送给图像处理部分。
3. 图像增强:图像处理部分对微弱电信号进行滤波、放大和修饰,以增强图像的对比度和清晰度。
这一过程包括对图像进行增益和调整亮度、对比度、饱和度等参数。
4. 图像显示:经过增强处理的信号被传送到显示装置(如液晶屏或眼镜),显示出来的图像能够提供更清晰、更可识别的目标信息。
红外辐射所显示的场景可能与人眼所见的有所不同,因为红外辐射是由物体的热量发出的,而不受可见光的限制。
总结起来,红外夜视仪利用红外辐射感应和转换、信号增强与处理,以及图像显示等技术,使我们可以在夜间或低光条件下看到并识别目标物体。
这种设备在军事、安全监控和夜间救援等领域具有重要应用。
红外线夜视仪原理

红外线夜视仪原理
红外线夜视仪是一种利用红外线技术来增强夜间视觉能力的设备。
其工作原理基于红外线辐射和热成像技术。
红外线是一种人眼无法见到的电磁波,其波长范围在可见光的波长之上。
夜视仪通过接收周围环境中发出的红外线辐射,然后转化为可见光图像,供用户观察。
红外线夜视仪中最核心的部件是红外探测器。
红外探测器能够感知周围环境发出的红外线辐射,并将其转化为电信号。
常用的红外探测器有热电偶和半导体红外探测器。
热电偶探测器利用红外辐射瞬时将热源表面温度变化转化为电信号。
它由两个不同的导体材料组成,当红外辐射照射到其中一个导体上时,会引起温度差,从而产生微弱的电流。
这个电流经过放大后,可以生成红外图像。
半导体红外探测器则是通过材料的特殊属性来实现红外辐射的探测。
当红外辐射照射到探测器上时,会引起半导体材料中的电子从价带跳迁到导带,产生电信号。
这个信号经过放大和处理,就可以形成红外图像。
红外探测器产生的电信号经过信号处理和放大后,会被发送给显示屏或眼镜。
显示屏或眼镜通过显示红外图像,使用户能够看到夜间环境中不可见的物体。
有些红外夜视仪还具有调节亮度和对比度的功能,以便根据环境的光照条件进行调整。
总的来说,红外线夜视仪的工作原理是通过探测周围环境中的红外辐射,并将其转化为可见光图像,从而实现夜间视觉增强。
红外夜视仪原理

红外夜视仪原理
红外夜视仪的原理是利用红外光的特性来实现在黑暗环境下观察目标物体的能力。
红外光是一种波长较长的电磁辐射,位于可见光谱的波长范围之外。
红外光具有高穿透力和强烈的热辐射,因此可用于夜间观察。
红外夜视仪由三个基本部分组成:红外光源、光电转换器和显像装置。
红外光源是红外夜视仪的关键部分,它发射红外光以照亮目标物体。
目标物体吸收红外光后会发生热辐射,这种辐射可以通过光电转换器来转化为电信号。
光电转换器的主要功能是将红外光转化为电信号。
它包括红外感应器和光电倍增管。
红外感应器能够将吸收到的红外光转化为微弱的电流信号,而光电倍增管则能将微弱的电流信号放大。
通过这样的转换和增强,使得红外光能够被更好地观察和辨认。
显像装置是红外夜视仪的最后一部分,它的主要功能是将电信号转化为可视的图像。
显像装置通常采用微光增强器和显示屏。
微光增强器能够进一步增强电信号,并将其转化为可见的光信号,而显示屏则能将光信号显示为图像,供观察者观看。
总的来说,红外夜视仪通过利用红外光的特性,并通过红外光源、光电转换器和显像装置的作用,实现了在黑暗环境下观察
目标物体的能力。
这种原理使得红外夜视仪在军事、安防和夜间观测等领域具有广泛的应用。
红外线夜视仪原理

红外线夜视仪原理红外线夜视仪是一种利用红外线技术来观察黑暗环境下物体的设备。
它通过接收和处理环境中的红外辐射,将其转化为可见光,从而使用户能够在夜间或低光条件下看清物体。
红外线夜视仪的原理是基于红外线的物理特性和人眼对不同波长光的感知能力。
首先,红外线是一种波长长于可见光的电磁波,它在光谱中的位置介于可见光和微波之间。
红外线夜视仪利用的是红外线在环境中的发射和反射特性。
在夜间或低光条件下,物体会发出或反射出一定强度的红外辐射,而人眼无法直接感知这种辐射。
红外线夜视仪的传感器可以接收并放大这种红外辐射,然后将其转化为可见光信号,使用户能够看清周围的环境。
其次,红外线夜视仪利用的是人眼对不同波长光的感知能力。
人眼对于不同波长的光有不同的感知能力,其中包括可见光和一部分红外光。
红外线夜视仪通过将接收到的红外辐射转化为可见光信号,使用户能够在黑暗中看到物体的轮廓和细节。
这种原理类似于热成像技术,但红外线夜视仪更加便携和实用,广泛应用于军事、安防、夜间观测等领域。
红外线夜视仪的工作原理可以简单总结为,接收红外辐射、放大信号、转化为可见光。
它通过高灵敏度的传感器接收周围环境中的红外辐射,然后经过信号放大和处理,最终转化为用户可以看到的图像。
这种技术在黑暗中具有重要的应用价值,不仅可以提供夜间观测和监控功能,还可以用于搜索救援、夜间驾驶、狩猎等活动。
总的来说,红外线夜视仪是一种利用红外线技术实现夜间观测的设备,其原理基于红外辐射的接收和转化。
通过将环境中的红外辐射转化为可见光信号,红外线夜视仪使用户能够在黑暗中看清物体,具有广泛的应用前景和重要的实用价值。
随着红外技术的不断发展和成熟,红外线夜视仪将在更多领域得到应用,并为人们的生活和工作带来更多便利。
红外线夜视仪的工作原理

红外线夜视仪的工作原理
红外线夜视仪的工作原理是利用红外线传感器来探测可见光范围以外的红外辐射,然后将其转换成可见图像。
其主要工作原理如下:
1. 红外传感器:红外线夜视仪内部装有红外传感器,它能够感知并接收入射到仪器内部的红外辐射。
通常使用的是微光增强器和热成像仪两种不同类型的红外传感器。
2. 光学器件:红外线夜视仪内部还安装有适应不同环境的光学器件,它们可以实现聚焦、放大和改变光线传输的功能。
例如,使用透镜聚焦红外辐射,使用凸透镜进行光学放大。
3. 电子处理:红外线传感器所接收到的红外辐射信号会被转化为电信号,并经过电子处理进行放大和滤波。
然后,电子信号会经过调节和优化,以得到更好的红外图像质量。
4. 显示器:经过电子处理后的信号将被传送到红外线夜视仪的显示器上,并以可见形式显示出来。
通常使用的显示器类型有CRT、LCD或OLED。
总的来说,红外线夜视仪的工作原理是通过红外传感器接收和转换红外辐射信号,并经过光学器件和电子处理来放大和优化信号,最后以可见形式显示在显示器上,
使人能够在暗光环境下观察到红外图像。
红外夜视仪原理及基本知识介绍

红外夜视仪原理及基本知识介绍1. 夜视仪的原理及用途通俗讲:将来自目标的人眼看不见的光(微光或红外光)信号转换成为电信号,然后再把电信号放大,并把电信号转换成人眼可见的光信号。
专业讲:夜视产品通过目镜将光线聚焦在影象增强器上来采集和增强现有光线,在增强器内部,一个光电阴极会被光“激活”,并将光子能量转变成电子,这些电子经过一个位于增强器内部的静电区域被加速后,撞击在磷表面屏幕上(就好象一个绿色的电视屏幕),形成人眼可见的图象。
经过对电子的加速,增强了亮度和图象的清晰度用途:适用于军队,海关、边防、治安守卫的夜间巡逻,侦破取证。
银行、金库文物重要物资仓库的夜间监控。
海底资源的夜间探查,海上石油平台水下部分监控,远洋捕鱼,夜视仪器都重要的工具。
卫星遥感遥测,天文星系弱星的的夜间观察。
记录植物夜间的生长规律研究,以及夜行动物的生活习性研究。
现在,夜视仪器的使用范围已经越来越广泛。
2.为什么夜视仪的成像是绿色的而不是呈红色的红外光谱?绝对0 度以上的物体都要辐射能量。
温度越低,波长越长。
一般室温时,为红外线。
当温度为800度左右,辐射为可见光,就是为什么铁烧红了你能看到亮光。
红外线我们是看不见的,晚上了,没有可见光,但是仍在辐射红外线,人和周围的树木的温度不同,辐射的红外线波长也不同。
夜视仪的原理是将我们肉眼看不红外线转化成为可见光。
因为辐射的红外线很弱,所以转化成的可见光也很弱。
图像呈绿色是因为我们的眼睛对绿光感光性最敏感,而且容易疲劳,这些都是使我们对弱光看得更清楚些。
而且红光和绿光的区别就是波长不一样而已,很容易转变的。
夜间模糊的图象→光电阴极(把光子转化为电子)→微通道板(通过高压使电子数量增加)→荧光屏(电子撞击一个具有磷光质涂层的屏幕)所以夜视仪看到的景象大多是绿色的3.夜视仪图像增强管的介绍(没找到解说,根据自己的理解写了一段。
这个理科生比较容易懂,知道就行,不需要理解,中间涉及的知识属于物理专业,不是我们特别关注的领域)这些短管时,更多的电子被释放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外夜视仪的介绍及用途
近10年来,随着军用产品逐渐的民用化,夜视仪逐渐走入到人们的视野中,但是很多人对夜视仪的理解一直有误,在“茫茫人海”的夜视仪里面不知道如何去对比,及选择。
只一贯追求高价格的夜视仪,每一个产品,每个级别性的夜视仪,所处的价格不一样。
本文将详细介绍,以帮助大家理解。
一、红外夜视仪的发展趋势
夜视仪现已发展了1代至4代,从1代到4代之间,可以说2代与1代是夜视仪成像品质的一个真正飞跃。
任何人用肉眼就能分辨出来,2代夜视仪在清晰度和明亮度上与1代的区别,3,4代虽然在技术上比2代有一定的提升,但是与2代并没有质的区别。
所以说只要能购买到2代夜视仪,其成像效果就应该很满意了
第一代为三级级联式微光夜视仪(由3个0代光电管串联组成)。
第二代为微通道板式微光夜视仪,第三代为|||-V族负电子亲和势光电阴极像增强器微光夜视仪。
在第二代向第三代过度时发展了一种超二代的光电管称二代加,其技术性能仅次于三代产品。
微光夜视仪如细分类那么就是0代、1代、2代、2代加、3代、共五个档次。
微光夜视仪发展到今天,技术上已比较成熟且成像质量好,造价低、因此在今后相当一段时期里,它们仍然是世界夜视装备一主要装备。
二代加和三代产品具有体积小,重量轻、图像清晰、功能全、实用等特点。
是军队、公安、武警、海关、石油行业、新闻采访、旅游、水产养殖、大自然爱好者、及其它行业夜晚工作不可缺少的装备。
但是由于其核心部件微光像增强器属高科技产品,工艺特别复杂、成本高、价格相对较高。
但从性能价格比看,还是相当好的。
三.红外夜视仪的功能类别
1.数码功能:数码夜视仪是夜视仪的很重要的分支,数码夜视仪与传统的夜视仪相比,提供了数码视频输出口,可以直接输出数码图像。
数码夜视仪由于原理和普通夜视仪不一样,透过镜头是看到内部的LCD,所以都是方形的,如果设计不合理,视野相对比较窄。
其实你直接输出到电脑屏幕上看,会感觉非常清晰,可以看很远的距离。
所以很多时候数码夜视望远镜不适合手持使用,需要外接屏幕。
数码夜视望远镜品种少,总的市面上就那么几款,市面上销量比较好的是ORPHA奥尔法C S-6、CS-8 ,奥尔法一代CS-6与CS-8是2014年新款,倍率在6倍与8倍,是一代数码夜视仪里面倍率最大的,这两款支持SD卡,可拍照、录像,性价比也是最好的两款,相对于
其它一代的产品,这两款在数码界可是领导者,不管在成像清晰度与亮度上还是观测距离上,都是佼佼者。
效果上也比使用增像管的夜视仪清晰、明亮,这款产品上市两个月来,迅速占据了全球数码夜视仪销售冠军的宝座。
而排第二的是博士能260650、260542、以及二代数码夜视仪爱吉NV2020、NV2020 IC ,这几款占了全球销量的第二、三位。
2. 双筒功能:夜视仪一般都是单筒的,有部分双筒夜视仪,价格会比单筒高,其优点是观察时会更方便。
奥尔法跟踪者TRACKER560。
这是一款可调眼距的自动对焦双筒夜视仪。
这种双筒夜视仪结构复杂,生产工艺要求高。
在机身内是两套独立的光学系统,最为主要的使用的是两个增像管。
所以生产成本比固定眼距的双筒夜视仪高很多。
其优点出了可以调整眼距外,更为主要的,因为使用了两个增像管,观测距离大大提高,理论上可以比前一种的观测距离提高一倍,清晰度也大大提高。
(1)奥尔法ORPHA双筒夜视望远镜B550
这是目前世界上最先进的双筒夜视仪,其构造与双筒望远镜完全一样,采用中央调焦技术。
中央调焦是指无需单独对两个物镜调焦。
这样调焦不准精准,而且速度很快。
5倍的放大倍率,50超大口径,视野广、效果清晰,双筒观看舒服。
此款仪器在双筒夜视仪里面是销售第一,在全球尤其是美军部队,都在使用它。
此款售价在7980元
3.头戴功能:头盔夜视仪也是夜视仪的一个主要分支,主要是为了方便佩戴,适用于打猎或地下工作。
二代+头盔夜视仪,一般都采用双目设计,其来由是军用行军使用,美国军方大量采购双目单筒头盔夜视仪作为部队夜间行军使用,奥尔法ONV2+就是在这种背景下诞生的,美国军方每年要采购上万台奥尔法ONV2+双目头盔夜视仪,这款产品非常出名,美军编号是OS3 876. 这款激光夜视仪可以更换镜头,成为远距离双目单筒激光夜视仪。
图片见下图,就不是从ORPHA AN/PVS-3衍生而来,作为一款多功能的二代+夜视仪,80-90年代,其广泛被美军采用,美军在20年内的采购量超过了10万台。
4.当然目前市面上主要的夜视仪是单筒夜视仪,单筒夜视仪占了所有夜视仪的一半的销量,其中有单筒数码夜视仪、1代、2代的。
下面我介绍几款在二代夜视仪里单筒比较行销的,占据全球单筒夜视仪稳占一、二的位置。
1、奥尔法的G450二代+红外夜视仪
是一万左右最经典的一款。
观察距离是500米,识别距离是300米,采用单目设计,超大口很径,让你夜间观察时很方便,视野舒服。
售价在15900元。
是奥尔法商家推出唯一一款低于2万的价格在售的二代夜视仪。
2、ORPHA奥尔法G350+ 超高清二代+夜视仪3X50
观测距离最远,分辨率最高的单筒手持夜视仪。
目前售价是:28800元
奥尔法G350+产品特点非常明显,是一款适合长时间观测的二代夜视仪,G350+成像更为细腻,并且采用IMALL图像输出设计,成像柔和。
如果您使用另外的夜视仪感觉久了,眼
睛很难受,这款G350+不会出现这样的情况。
奥尔法G350+是根据美国国防部的要求开发的一款产品,被美军大量采购,美军的要求就是让士兵能够长时观看。
3、奥尔法CS-3 5X50 G2+二代红外夜视仪
这款机器是一代CS-3 5X50的升级版,现使用二代增像管,5倍放大倍率,50超大口径,让你观测的时候更加清晰,图像扭曲程度明显下降,也是一款2万左右的红外夜视仪,如果选择单筒的客户这款也可以考虑一下。