“新材料之王”石墨烯应有行业标准

“新材料之王”石墨烯应有行业标准
“新材料之王”石墨烯应有行业标准

“新材料之王”石墨烯应有行业标准

被称作“黑金”、“新材料之王”的石墨烯正受到更多的关注。它的发现就像当年发明电

一样,或将引领又一次新的工业革命。然而,具有非常广阔应用前景的“神奇材料”,国

内却没有一个统一的“硬杠杠”。第十二届全国人大代表、济南圣泉集团股份有限公司董

事长唐一林在接受齐鲁网专访时表示,应尽快制定石墨烯产品的国家、行业标准,以期对

石墨烯国际标准的制定起到推动和带动作用。

随着石墨烯技术与资本深化融合,围绕石墨烯的技术、业态和商业模式协同创新力度

持续增大,石墨烯材料的生产技术、工艺装备和产品质量不断取得新突破,有关石墨烯材

料制备及应用的专利快速增加,石墨烯材料在储能器件、防腐涂料、功能纺织品、橡胶制品、显示器件、智能保健品等产品中的应用日益显露出广阔市场空间。

“虽然前景光明,但是存在的问题也不少。”在唐一林看来,我国石墨烯产业化发展

还存在一些弊端:一是石墨烯材料规模化制备关键性技术和成套装备亟待完善。二是石墨

烯材料应用开发严重滞后。三是有影响力的百强企业还很少参与石墨烯材料制备和应用。

四是有关石墨烯的技术标准和公共平台亟待建设。五是一些企业热炒概念,忽视知识产权

建设和保护,有碍产业良性发展。

唐一林介绍说,石墨烯是当前最热点的新材料之一,是新材料之王,具有神奇的功能。圣泉的生物质石墨烯是全球首创产品,用植物秸秆玉米芯,通过纤维素部分的碳化,通过

一系列高科技工艺,最终形成符合国家石墨烯标准的、得到大家认可的石墨烯产品。

他在这次的两会议案上,从多个方面就石墨烯产业谈了自己的见解。唐一林认为,应

该落实相关政策,加强规划和政策引导,促进石墨烯材料生产与应用协调发展。针对石墨

烯产业发展面临的问题,为引导产业健康发展,强化协同创新,培育应用市场,提高发展

质量,2015年11月,工业和信息化部、发展改革委、科技部联合就石墨烯产业出台《关

于加快石墨烯产业创新发展的若干建议》,首次提出了今后3-5年我国石墨烯产业发展路

线图、发展目标、重点任务以及促进产业发展的相关举措。当下,要推进若干意见稳步落实,并在“十三五”发展规划中统筹石墨烯产业发展,加强规划和政策引导,指导相关地

区因地制宜制定本地区石墨烯产业发展规划,促进上下游联动,建立合理预期,避免低水

平重复和产业结构雷同。

此外,应完善标准体系,组建石墨烯产业创新中心,强化公共服务。抓快制订石墨烯

材料分类、术语、方法等国家标准,以及石墨烯产品的团体标准或行业标准,完善石墨烯

标准体系。依托并整合现有资源,组建石墨烯产业创新中心,强化材料制备与性能表征共

性技术研究,新性能新产品先期演示验证和基于石墨烯薄膜的元器件研制。加强知识产权

建设和保护,定期发布产业专利态势。研究石墨烯材料及应用产品的评价认证技术要求,

开展行业统计和运行监测,发布产业发展报告。打击虚假宣传与不当竞争,防止个别商家

在资本市场炒着石墨烯概念,引导产业理性发展。

科普:神奇的石墨烯

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,通过用胶带反复粘取的方法,成功从石墨中分离出石墨烯,两人因此于2010年获得诺贝尔物理学奖。

石墨烯(Graphene)是一种以石墨为原料的新型纳米材料,它是迄今为止世界上已知材料中最轻、最薄、最硬的韧性材料:一根头发丝的直径约等于10万层石墨烯叠加起来的厚度。如果用1毫克的石墨烯做成吊床,可以承受一只重1000克的猫,而1毫克只相当于猫的一根胡须。石墨烯的断裂强度比最好的钢材还要高200倍。

材料界一哥—— 石墨烯(五大应用领域)

材料界“网红一哥”——石墨烯 5大应用领域,产业浪潮开启看点:应用领域不断拓展,石墨烯大规模产业化即将开始。 石墨烯属于二维碳纳米材料,具有优秀的力学特性和超强导电性导热性等出色的材料特性,其下游应用主要涵盖基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。石墨烯的大规模商业应用方向主要分为粉体和薄膜,其中石墨烯粉体目前主要用于新能源、防腐涂料等领域,石墨烯薄膜主要应用于柔性显示和传感器等领域,其中来自新能源的需求超过 70%。 全球石墨烯行业市场规模呈稳步增长态势。预计到 2020 年末,全球和国内石墨烯行业市场规模分别为 95 亿美元和 200 亿元,中国石墨烯市场规模约占全球石墨烯总市场规模的 30%,并有逐年提高的趋势。 本期的智能内参,我们推荐国信证券的研究报告,揭秘石墨烯的性能特点、产业链概况、下游需求和国内外行业现状。 本期内参来源:国信证券

1性能强大的新材料之王 石墨烯是 2004 年用微机械剥离法从石墨中分离出的一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,英文名为 Graphene,为一层碳原子构成的二维晶体。石墨烯与其他有机高分子材料相比,有比较独特的原子结构和力学特性。石墨烯的理论杨氏模量达 1.0TPa,固有的拉伸强度为 130Gpa,是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,被誉为“新材料之王”、“黑金”。 ▲典型的石墨烯结构图

▲ 单层石墨烯是其他碳材料的基本元素 石墨烯按照层数可分为单层石墨烯、双层石墨烯、少层石墨烯和多层石墨烯。按照功能化形式可以分为氧化石墨烯、氢化石墨烯、氟化石墨烯等。按照外在形态、又可分为片、膜、量子点、纳米带或三维状等。 ▲石墨烯分类 石墨烯具有超强导电性、良好的热传导性、良好的透光性、溶解性、渗透率、高柔性和高强度等出色的材料特性。它的的应用领域非常广泛,主要集中在基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。

完--氧化石墨烯改性PVC的性能研究总结

氧化石墨烯改性PVC的性能研究 摘要通过共混方法制备了分散均匀的聚氯乙烯(PVC)/氧化石墨烯(GO)复合材料,研究了材料的力学性能、热稳定性能、导电性能。结果表明,微量GO能较大幅度提高PVC的拉伸强度,且保持较高的断裂伸长率;添加GO还能提高PVC的起始分解温度、最大分解温度以及PVC的成碳量。 关键词:聚氯乙烯;氧化石墨烯;改性 石墨烯(Graphene,又称单层石墨或二维石墨,图1所示)是单原子厚度的呈二维蜂窝状排列的碳原子晶体,被认为是富勒烯、碳纳米管和石墨(图2所示)的基本结构单元[1]。在石墨烯中,碳原子以sp2杂化轨道与其它原子通过强σ键相连接,这些高强度的σ键使石墨烯具有优异的结构钢性,平行片层方向具有很高的强度。碳原子有四个价电子,这样每个碳原子都贡献一个未成键π电子,这些π电子在同一平面层碳原子的上下形成大π键,进而形成垂直于石墨烯片层的互相平行的π轨道,这种离域π电子在碳网平面内可以自由流动,类似自由电子,因此在石墨烯面内具有类似于金属的导电性和导热性,它的抗磁性也十分明显。因其特殊结构石墨烯具有高的比表面积[2] ,良好的力学和电学性能。石墨烯中载流子具有弹道输运特性,室温下载流子的平均自由程和相干长度达到微米量级,迁移率(200000 cm2/Vs)大约是硅的100倍,有利于制造更小的快速转换信号的晶体管[3-5],因其一系列优异的性质,引起科技工作者的极大兴趣。 图1 石墨烯基本结构示意图图2 单层石墨烯及其派生物 石墨烯丰富和奇特的物理化学性质,这使人们联想到石墨烯衍生物是否也具备如此的优异性能。因此,多种具有不同性能的石墨烯衍生物也逐步被发现,其中包括氧化石墨烯(grapheme oxide) [6],,反磁性半氢化石墨烯(graphone)[7],和半导体氢化石墨烯(graphane)[8]等等。在这些物质中氧化石墨烯以其低廉的制备成本,高度的可加工性能,在多个领域的应用都有所涉及。而氧化石墨烯由于其特殊的性质和结构,成为制备石墨烯和基于石墨烯复合材料的理想前驱体。氧

对石墨烯产业化现状和未来趋势的认识

对石墨烯产业化现状和未来趋势的认识 ■ 文/姚 磊 北京碳世纪科技有限公司 近几年,石墨烯学术和产业界的许多专家学者已经针对石墨烯卓越的特性及广阔的应用前景,进行了细致、精彩的研究和解读。在此,笔者仅就北京碳世纪科技有限公司(以下简称“碳世纪”)在石墨烯产业化进程中遇到的机会和挑战进行分析。碳世纪主要采用化学法制备石墨烯,笔者本文所谈对石墨烯的认识和理解,也是基于化学法制备的石墨烯而言。另外,笔者在此声明,碳世纪有其特殊性,所遇到的问题不一定具备普遍性。 一、对石墨烯产业化的认识 1.现阶段石墨烯产业化需要的人才 自2004年石墨烯被发现到现在,科学界和产业界对这一新材料的研究已有近10年时间,但石墨烯产业真正的爆发是在近几年,特别是2010年石墨烯发明者获得诺贝尔奖以后。目前,在石墨烯领域还有大量相关工作需要突破,但同时也有大量应用研究成果随之而出,初步具备了产业化的可能性。 现阶段,在技术研发方面需要一 批具备“科学家的头脑、工程师的双 手”、既对石墨烯的性质有着深刻认 识,又对下游应用产品有着良好感觉 的人来完成开创期最关键、最艰难的 几步。 与此同时,产业还需要一些非技 术人员配合技术团队工作。目前,石墨 烯企业还没有发展到靠优厚的薪资来 吸引高素质管理人才加盟的程度。此 时,石墨烯行业的非技术团队更需要 一群乐观、对未来充满希望、不安于现 状、愿意为明天赌一把的人来支撑。 2.石墨烯的界定问题 石墨烯毕竟是微观世界中的纳 米材料。目前,业界还没有一个统一的 标准来界定什么是“石墨烯”。而且,估 计在很长一段时期内这样的标准也难 以出台。科研领域,讲究的是严谨和准 确;产业领域,讲究的是效率和结果。 如何抚平科学和技术之间的鸿 沟?现阶段,不必过多争论什么是石 墨烯。当下的重点工作是在保证能大 规模制备出高质量石墨烯的前提下, 将精力更多地向应用开发倾斜。石墨 烯具备能够很好促进其他材料提升性 能的纳米结构,可以在不破坏材料原 有基础性能的前提下,极大程度提升 该材料某些特殊性能。这一过程,主要 是通过对石墨烯和其他材料复合的方 式及对石墨烯片径的控制来实现。 “要做有用的石墨烯,而不是纯粹 的石墨烯。”化学法制备的石墨烯具备 上述特质。 3.石墨烯产业化过程中遇到的问题 目前,碳世纪已经有3款石墨烯 应用产品走出了实验室,开始进入示 范生产阶段。这3款产品分别是石墨 烯改性超级电容器用储能活性碳、石 墨烯改性高密度聚乙烯(H D P E),以 及一款目前还属保密阶段的产品。现 仅就石墨烯改性超级电容器用活性碳 为例,谈谈碳世纪对石墨烯应用的认 识和在产业化过程中遇到的问题。 活性炭是超级电容器电级材料的 主要组成部分。目前,应用在储能方面 新材料产业NO.11 201429

石墨烯论文正稿

石墨烯研究进展 雷洪 (中国矿业大学化工学院江苏徐州 221116) 摘要:石墨烯是一种由碳原子构成的单层片状结构的新材料,由于碳原子组成的特殊结构使得石墨烯拥有一系类特殊性能,包括特殊的导热性质,电学性质,力学性质等等。特殊的性质使得石墨烯有在很多领域发展的潜力,因此引起了科学界的广泛关注,本文介绍了石墨烯的一些制备方法,性质和应用领域。 关键词:石墨烯制备方法特性应用领域 Advances in graphene research LEI hong (China University of Mining and technology,SCET Xuzhou Jiangsu 221116) Abstract:Graphene is a new material consisting of a single layer of carbon atoms sheet structure,Because of the special structure of carbon atoms makes graphene has a series of special class performance,Including special thermal properties,electrical properties and mechanical properties, etc. Special properties make graphene has the potential in many areas of development,so,it attracted wide attention in the scientific community. This article describes some of graphene preparation methods properties and applications. Keywords:graphene preparation methods properties application areas 0引言 自2004年Novoselov,K.S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯(Graphene)以来,碳元素同素异形体又增加了新的一员.随着2010年诺贝尔物理奖颁给英国曼彻斯特大学51岁的俄裔荷籍教授安德烈.海姆和曾是他的博士生36岁的俄裔英、俄双重国籍的教授康斯坦丁.诺沃肖洛夫之后,“石墨烯”这一专业名词突然进入人们的眼帘,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。碳原子呈六角形网状键合的材料“石墨烯”具有很多出色的电特性、热特性以及机械特

生而不凡——新材料之王石墨烯阅读附答案

生而不凡——新材料之王石墨烯阅读附答案 生而不凡——新材料之王石墨烯 手机充电只需几秒钟?史上最薄电灯泡?光驱动飞行器?关于石墨烯不凡利用的新闻不断呈现在人们的视线之中,仿佛石墨烯已成为了无所不能的超级材料。石墨烯是甚么?到底有甚么特性让它备受推重? 石墨烯是从石墨材料中剥离出来的,它由碳原子组成,并且只有一层原子厚度,是一种二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,胜利从石墨中分离出石墨烯,证实它可以单独存在,两人也因而共同取得2010年诺贝尔物理学奖。 实际上石墨烯原本就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包括300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层乃至仅仅一层石墨烯。 石墨烯对物理学基础钻研有着特殊意义,它使一些此前只能空言无补的量子效应可以通过试验来验证,例如电子疏忽障碍、实现幽灵一般的穿越。但更使人感兴致的,是它那许多“极端”性质的物理性质。 作为目前发现的最薄、最坚固、导电导热机能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家乃至预言石墨烯将“完全扭转21世纪。” 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最佳的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能到达自身尺

寸的20%。如果用一块面积1平方米的石墨烯做成吊床,自身重量不足1毫克可以经受一只猫的重量。 难以想象的是,石墨自身几近是最软的矿物质(莫氏硬度只有1-2级),“切”成一个碳原子厚度的薄片时,“性情”会产生如斯之大的变化,石墨烯的硬度比莫氏硬度10级的金刚石还要高,但却又有很好的韧性,可以曲折。 由于只有一层原子,电子的运动被限制在一个平面上,石墨烯也有着全新的电学属性。石墨烯是世界上导电性最佳的材料,电子在其中的运动速度到达了光速的1/300,远远超过了电子在一般导体中的运动速度。 石墨烯目前最有潜力的利用是成为硅的替代品,制造超微型晶体管,用来出产未来的超级计算机。据相干专家分析,用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 此外,石墨烯几近是完整透明的,只吸收 2.3%的光。另一方面,它无比致密,即便是最 小的气体原子(氦原子)也没法穿透。这些特点使得它无比合适作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯拥有很强的化学敏感性,可以制成高效探测器等。涂有石墨烯的传感器可以检测到含有用于火药、氨等化学物质的低浓度的蒸汽。 石墨烯的这些特性注定要给诸多产业带来天翻地覆的变化。尽管现在仍有制备上的难题和成本限制等问题,但已有一些优良钻研成果问世,展示了极佳的研发前景。 (来源:凤凰网,2015-06-29 ,有删改) 12.第一段连用好几个问句,有何作用?(3分) 13.以下加点词语能否删去?为甚么?(4分)

氧化石墨烯的结构及应用

氧化石墨烯的结构及应用 2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov)成功地从石墨中分离出一层碳原子构成的石墨烯,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。自此,石墨烯由于其突出的导热性、室温高速载流子迁移率、透光性和力学性能等,同时具有完美的量子隧道效应、半整数的量子霍尔效应、从不消失的电导率等一系列性质,受到了世界各界的广泛关注,也成为科研领域的新兴宠儿。 氧化石墨烯是石墨粉末经化学氧化后的产物,它是一种性能优异的新型碳材料,具有较高的比表面积和表面丰富的官能团。氧化石墨烯复合材料包括聚合物类复合材料以及无机物类复合材料更是具有广泛的应用前景,因为成为研究的又一重点。 一、氧化石墨烯的分子结构 石墨被强氧化剂氧化,氧原子进入到石墨层间,结合л电子,使层面内的二键断裂,并以C=O,C-OH, -COOH等官能团与密实的碳网面中的碳原子结合,形成共价键型石墨层间化合物。氧化石墨烯的理想结构组成为C400H,也有文献报道其组成为C X+(OH)Y-(H20)2,其中C、H、O等各元素的含量随氧化程度不同而发生改变,一般范围为C7O4H2-C24O13H9,目前,普遍认为氧化石墨是一个准二维固体物质。氧化石墨烯由尺寸不定的未被氧化的芳香“岛”组成,而这些“岛”则被含有醇羟基、环氧基团和双键的六元脂环所分开,芳香环、双键和环氧基团使得碳原子点阵格式近乎处于同一平面,仅有连接到羟基基团的碳原子有较轻微的四面体构型畸变,导致了一些层面的卷翘。官能团处于碳原子点阵格子的上下,形成了不同密度的氧原子分布。 干燥的氧化石墨在空气中稳定性较差,很容易吸潮而变成水合氧化石墨,层间距也会随其含水量的高低而有所不同。随含水量的增加,层间距从0.6nm增加到1.1nm,从而导致X射线(100)衍射峰的位置的变化。 鉴于氧化石墨烯在石墨烯材料领域中的地位,许多科学家试图对氧化石墨烯的结构进行详细和准确的描述,以便有利于石墨烯材料的进一步研究,虽然已经利用了计算机模拟、拉曼光谱,核磁共振等手段对其结构进行分析,但由于种种原因(不同的制备方法,实验条件的差异以及不同的石墨来源对氧化石墨烯的结构都有一定的影响),氧化石墨烯的精确结构还无法得到确定。 二、氧化石墨烯的制备方法 氧化石墨烯的制备方法主要有Brodie、Staudenmaier和Hummers三种方法,它们都是用无机强质子酸(如浓硫酸、发烟硝酸或它们的混合物)处理原始石墨,将强酸小分子插入石墨层问,再用强氧化剂(如KMnO4、KC104等)对其进行氧化。 1、Brodie法 1898年Brodie采用发烟HNO3体系,以KC103为氧化剂,反应体系的温度需先维持在0℃,然后,不断搅拌反应20-24h。洗涤后获得的氧化石墨的氧化程度较低,需进行多次氧化处理以提高氧化程度,反应时间相对较长。该法的优点是其氧化程度可利用氧化时间进行控制,合成的氧化石墨结构比较规整。但因采用KC103作氧化剂,有一定的危险性。

石墨烯技术产业发展现状与趋势

摘要:2013年1月,石墨烯入选欧盟两项“未来和新兴技术旗舰项目”之一(另一项为“人类大脑工程”),欧盟委员会计划在未来十年投入10亿欧元开展石墨烯应用技术研发与产业化,再一次激起了各界对这一革命性材料的关注。 关键字:石墨烯;态势;趋势;技术转移;石墨烯;态势;趋势;技术转移;石墨烯;技术转化;产业化 石墨烯(Graphene)又称单层墨,是一种新型的二维纳米材料,也是目前发现的硬度最高、韧性最强的纳米材料。因其特殊纳米结构和优异的物理化学性能,石墨烯在电子学、光学、磁学、生物医学、催化、储能和传感器等领域应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。英国两位科学家因发现从石墨中有效分离石墨烯的方法而获得2010年诺贝尔奖,引起了科学界和产业界的高度关注,石墨烯相关专利开始呈现爆发式增长(2010年353件,2012年达1829件)。世界各国纷纷将石墨烯及其应用技术研发作为长期战略予以重点关注,美国、欧盟各国和日本等国家相继开展了大量石墨烯研发计划和项目。总体看来,石墨烯技术开始进入快速成长期,并迅速向技术成熟期跨越。全球石墨烯技术研发布局竞争日趋激烈,各国的技术优势正在逐步形成,但总体竞争格局还未完全形成。具体发展态势如下: 态势一:制备与改性的突破为产业化提供了技术支撑 一方面,石墨烯制备技术取得突破。石墨烯制备技术与设备是石墨烯生产的基础。一直以来,石墨烯大规模制备技术是阻碍其产业化的最重要因素。近来,石墨烯制备技术取得了若干突破,目前已形成自上而下(Top-Down)和自下而上(Bottom-Up)两种途径,开发出了从简易低成本制造到大面积量产工艺的多种方法,包括:机械剥离、氧化还原法、化学气象沉积(CVD)、外延生长、有机合成、液相剥离等。这些方法各有优缺点,需要根据不同的需求进行选择(表1)。其中,氧化还原法因成本低且易实现,有望成为最具发展前景的制备方法之一。同时,各种方法

石墨烯(论文)

石墨烯的制备,特征,性能及应用的研究 内蒙古工业大学化学工程与工艺徐涛 010051 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的碳! 热潮。分析了近1 年来发表在Science、Nature 等期刊上的关于石墨烯的论文, 对石墨烯制备、表征及应用方面的最新进展进行了综述, 并对各种制备技术及表征手段进行了分析评价。 关键字: 石墨烯, 制备, 表征, 应用, 石墨烯氧化石墨烯(GO) 功能化石墨烯传感器 碳是最重要的元素之一,它有着独特的性质,是所有地球生命的基础。纯碳能以截然不同的形式存在,可以是坚硬的钻石,也可以是柔软的石墨。碳材料是一种地球上较普遍而特殊的材料, 它可以形成硬度较大的金刚石, 也可以形成较软的石墨. 近20 年来, 碳纳米材料一直是科技创新的前沿领域, 1985 年发现的富勒烯[1]和1991 年

发现的碳纳米管(CNTs)[2]均引起了巨大的反响, 兴起了研究热潮. 2004 年, Manchester 大学的Geim 小组[3]首次用机械剥离法获得 了单层或薄层的新型二维原子晶体——石墨烯. 石墨烯的发现, 充 实了碳材料家族,形成了从零维的富勒烯、一维的CNTs、二维的石墨 烯到三维的金刚石和石墨的完整体系. 石墨烯是由碳原子以sp2 杂 化连接的单原子层构成的, 其基本结构单元为有机材料中最稳定的 苯六元环, 其理论厚度仅为0.35 nm, 是目前所发现的最薄的二维材料[3]. 石墨烯是构成其它石墨材料的基本单元, 可以翘曲变成零维 的富勒烯, 卷曲形成一维的CNTs[4-5]或者堆垛成三维的石墨(图1). 这种特殊结构蕴含了丰富而奇特的物理现象, 使石墨烯表现出许多 优异的物理化学性质, 如石墨烯的强度是已测试材料中最高的, 达130 GPa[6], 是钢的100 多倍; 其载流子迁移率达1.5×104 cm2〃V-1〃s-1 [7], 是目前已知的具有最高迁移率的锑化铟材料的2 倍, 超过商用硅片迁移率的10 倍, 在特定条件下(如低温骤冷等), 其迁移率甚至可高达2.5×105 石墨烯的热导率可达5×103W〃m-1〃K-1, 是金刚石的3 倍[. 另外, 石墨烯还具有室温量子霍尔效应(Hall effect)[10]及室温铁磁性[11]等特殊性质. 石墨烯的这些优异性引 起科技界新一轮的“碳”研究热潮, 已有一些综述性文章从不同方面对石墨烯的性质进行了报道.,本文仅根据现有的文献报道对石墨烯 的制备方法、功能化以及在化学领域中的应用作一综述

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽频的光吸收和非线性光学性质, 以及室温下的量子霍尔效应等。常温

辽宁鑫瑞嘉石墨新材料有限公司_招标190923

招标投标企业报告辽宁鑫瑞嘉石墨新材料有限公司

本报告于 2019年9月23日 生成 您所看到的报告内容为截至该时间点该公司的数据快照 目录 1. 基本信息:工商信息 2. 招投标情况:招标数量、招标情况、招标行业分布、投标企业排名、中标企业 排名 3. 股东及出资信息 4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚 5. 企业信息:工程人员、企业资质 * 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息 1. 工商信息 企业名称:辽宁鑫瑞嘉石墨新材料有限公司统一社会信用代码:91211000MA0XTYYL63工商注册号:211000004119448组织机构代码:MA0XTYYL6 法定代表人:李岩松成立日期:2018-06-05 企业类型:有限责任公司(自然人独资)经营状态:存续 注册资本:10000万人民币 注册地址:辽宁省辽阳市太子河区繁荣路中段 营业期限:2018-06-05 至 2048-06-04 营业范围:石墨及碳素制品、陶瓷制品和耐火材料制造;金属及金属矿批发及零售;环境保护专用设备制造;其他仓储业。(依法须经批准的项目,经相关部门批准后方可开展经营活动。) 联系电话:*********** 二、招投标分析 2.1 招标数量 企业招标数: 个 (数据统计时间:2017年至报告生成时间)1

2.2 企业招标情况(近一年) 2018年10月1 企业近十二个月中,招标最多的月份为,该月份共有个招标项目。 序号地区日期标题 1辽阳2018-10-112018AS012小庄街南(辽阳经济开发区KFQ-3-2)地块2.3 企业招标行业分布(近一年) 1 【矿山工程】 () 序号地区日期标题 1辽阳2018-10-112018AS012小庄街南(辽阳经济开发区KFQ-3-2)地块

生而不凡新材料之王石墨烯阅读理解附答_教学工作总结.doc

生而不凡新材料之王石墨烯阅读理解附答_ 教学工作总结 新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。那么关于生而不凡新材料之王石墨烯阅读附答案是怎样呢?下面是我整理的生而不凡新材料之王石墨烯阅读理解附答案,欢迎阅读。 《生而不凡新材料之王》阅读材料 生而不凡——新材料之王石墨烯 手机充电只需几秒钟?史上最薄电灯泡?光驱动飞行器?关于石墨烯非凡应用的新闻不断出现在人们的视野当中,似乎石墨烯已经成为了无所不能的超级材料。石墨烯是什么?到底有什么特性让它备受推崇?石墨烯是从石墨材料中剥离出来的,它由碳原子组成,并且只有一层原子厚度,是一种二维晶体。2004年,英国曼彻斯特大学物理学家安德烈盖姆和康斯坦丁诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。

石墨烯对物理学基础研究有着特殊意义,它使一些此前只能纸上谈兵的量子效应可以通过实验来验证,例如电子无视障碍、实现幽灵一般的穿越。但更令人感兴趣的,是它那许多"极端"性质的物理性质。作为目前发现的最薄、最坚硬、导电导热性能最强的一种新型纳米材料,石墨烯被称为"黑金",是"新材料之王",科学家甚至预言石墨烯将"彻底改变21世纪。" 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克可以承受一只猫的重量。 难以想象的是,石墨本身几乎是最软的矿物质(莫氏硬度只有1-2级),"切"成一个碳原子厚度的薄片时,"性格"会发生如此之大的变化,石墨烯的硬度比莫氏硬度10级的金刚石还要高,但却又有很好的韧性,可以弯曲。 因为只有一层原子,电子的运动被限制在一个平面上,石墨烯也有着全新的电学属性。石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。据相关专家分析,用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,

功能化氧化石墨烯的细胞相容性

[Article] https://www.360docs.net/doc/8416630110.html, 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.?Chim.Sin .2012,28(6),1520-1524 June Received:November 25,2011;Revised:March 11,2012;Published on Web:March 13,2012.? Corresponding authors.YANG Rong,Email:yangr@https://www.360docs.net/doc/8416630110.html,;Tel:+86-10-82545616.HENG Cheng-Lin,Email:hengcl@https://www.360docs.net/doc/8416630110.html,.The project was supported by the National Natural Science Foundation of China (20911130229,21073047)and Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences,China (KJCX2.YW.M15). 国家自然科学基金(20911130229,21073047)和中国科学院知识创新工程重要方向项目(KJCX2.YW.M15)资助 ?Editorial office of Acta Physico ?Chimica Sinica doi:10.3866/PKU.WHXB 201203131 功能化氧化石墨烯的细胞相容性 张晓1,2 杨蓉2,*王琛2衡成林1,* (1北京理工大学物理学院,教育部簇科学重点实验室,北京100081; 2 国家纳米科学中心,中国科学院纳米生物效应与安全性重点实验室,北京100190) 摘要:采用改进的Hummers 方法制备了纳米尺度的氧化石墨烯.对氧化石墨烯的表面进行羧基化,并连接上 聚乙二醇(PEG)使其在细胞培养液中可溶并能稳定保存.采用透射电镜(TEM)、傅里叶变换红外(FTIR)光谱和zeta 电位测量等对修饰后的氧化石墨烯的结构和功能进行了表征.体外细胞实验表明PEG 修饰的氧化石墨烯在水中具有良好的可溶性,对A549细胞没有明显的毒性,在生物医药领域具有潜在的应用价值.关键词: 氧化石墨烯;纳米材料;生物相容性;表面功能化 中图分类号: O645 Cell Biocompatibility of Functionalized Graphene Oxide ZHANG Xiao 1,2 YANG Rong 2,* WANG Chen 2 HENG Cheng-Lin 1,* (1Key Laboratory of Cluster Science of Ministry of Education,School of Physics,Beijing Institute of Technology,Beijing 100081,P .R.China ;2Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,Chinese Academy of Sciences, National Center for Nanoscience and Technology,Beijing 100190,P .R.China ) Abstract:We report on synthesis of nanoscale graphene oxide (NGO)by modified Hummers ’method.Synthesized NGO particles were surface functionalized by attaching carboxylic acid and polyethylene glycol groups to render them soluble in cell culture medium.The structures and properties of functionalized NGO were characterized by transmission electron microscopy (TEM),Fourier transform infrared (FTIR)spectroscopy,and zeta potential analyzer.Cell viability studies show that PEG-modified NGO particles are highly soluble and incur almost no cytotoxicity to A549cells,which suggest a great potential for the use of NGO in various biomedical applications.Key Words:Graphene oxide; Nanomaterials;Biocompatibility;Surface functionalization 1Introduction Graphene,a single layer of carbon atoms with excellent ther-mal,mechanical,and electrical properties,has attracted consid-erable attention in recent years.1-3Graphene oxide (GO)4-10is one of the most important graphene derivatives which contains aromatic regions randomly interspersed with oxidized aliphatic rings.These oxidized rings containing epoxide (C ―O ―C)and hydroxyl (C ―OH)groups,and the GO sheets terminated with both carbonyl (C =O)and carboxylic acid (―COOH) groups 5-7can provide reactive sites for chemical modification to obtain new derivatives for biology application.8-10It is known that many pharmaceutical ingredients are poorly solu-ble in water.As a result,their clinical applications are seriously influenced.Therefore,finding a nanoscale drug carrier is criti-cal in biology application.Recently,researchers started to ex-plore the ability of GO in attachment and delivery of aromatic,water insoluble drugs.Yang et al.11investigated loading doxo-rubicin hydrochloride,an anticancer drug,on GO sheets,and 1520

2018年石墨烯产业发展现状分析报告

2018年石墨烯产业发展现状分析报告

目录 一 产业概况 (一)产业规模 (二)产业链分析 1. 产业链上游 2. 产业链中游 3. 产业链下游 (三)石墨烯产业区域分布 1. 石墨烯产业全球分布 2. 我国石墨烯产业区域分布 (四)国内外重点企业动态 二 产业技术进展 (一)国外技术进展 (二)国内技术进展 三 产业发展问题及对策建议 (一)石墨烯产业发展存在的问题 (二)政策建议 图表目录 表1 石墨烯制备方法 表2 石墨烯应用产品及相关企业 表3 我国石墨烯主要产区企业分布 表4 国内主要石墨烯企业动态 表5 各国石墨烯技术动态 表6 我国石墨烯技术动态 图1 2011-2017年我国石墨烯企业增长情况 图2 石墨烯技术专利申请数量的年度分析 图3 我国受理的石墨烯专利公开数量年度变化趋势图4 全球石墨烯专利受理地区及机构分析 图5 我国新注册石墨烯企业地区分布

摘 要:一石墨烯作为最受关注的新材料,2017年产业化进程不断加快,但受制于制备技术工艺不成熟二应用市场缺少实质性产 品,石墨烯突破产业化瓶颈尚需时日三与此同时,我国石墨 烯产业在发展过程中逐渐显现出同质化发展的苗头三未来, 需要进一步优化石墨烯产业市场环境,加强政策支撑二服务 支撑二产业支撑,提高石墨烯市场集中度和产业竞争力,以 推动石墨烯产业持续健康发展三 一 产业概况 总体来看,2017年石墨烯产业延续了近几年火热的势头,依然是社会关注度最高的新材料,产业规模不断扩大呈爆发式增长势头,技术专利数量快速增长,正在接近实现产业化三但是,从产业生命周期的角度看,石墨烯产业仍处在导入期:大量企业进入二中小企业为主二中上游产业发展速度相对较快二产业下游缺乏具有实质性应用产品,石墨烯产业化道路任重而道远三

石墨烯及其材料综述

关于石墨烯和石墨烯复合材料的综述 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。自从2004年发现以来,研究者对这种材料在未来技术革命方面提出了大量的建设性创意,石墨烯被认为是未来能够取代硅的一种新型电子材料。石墨烯是只有一个原子厚的结晶体,具有超薄、超坚固和超强导电性等特性,其优异的电学、热学和力学性能,在纳米电子器件、储能材料、光电材料等方面的潜在应用价值引起了科学界新一轮的“碳”热潮。 它不仅是已知材料中最薄的一种,还非常牢固坚硬,仅仅是一个原子的厚度,并形成了高质量的晶体格栅,石墨烯的结构,是由碳原子六角结构紧密排列构成的二维单层石墨,是构造其他维度碳质材料的基本单元。它可以包裹形成0维富勒烯,也可以卷起来形成一维的碳纳米管,同样,它也可以层层堆叠构成三维的石墨。 石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。 这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。 大量制备尺寸、厚度可控的石墨烯材料对石墨烯基材料的应用具有重要的意义。制备石墨烯可以归结为两个基本的思路:一是以石墨为原料,通过削弱以及破坏石墨层间的范德华力来剥开石墨层从而得到石墨烯:二是基于活性碳原子的定向组装,“限制”碳原子沿平面方向生长。基于上述思想,化学剥离法、SiC 表面石墨化法和金属表面外延法等一些新的方法相继被报道。本人通过大量的归纳总结,共总结出以下七种方法。 机械剥离法就是利用机械力,将石墨烯片从具有高度定向热解石墨(Highly

防静电聚乙烯-石墨复合物新材料的制备及表征

- -第31卷第4期 非金属矿 V ol.31 No.4 2008年7月 Non-Metallic Mines July, 2008 近年来聚乙烯复合物越来越引起人的关注,并已制备出一些以聚乙烯为原料的复合材料。如:高密度聚乙烯/碳纳米管复合物[1],新的聚乙烯纳米复合物[2],硅石/聚丙烯酰胺/聚乙烯纳米复合物[3],聚乙烯/巴西粘土纳米复合物和聚乙烯/阻燃剂复合物[4],聚乙烯/石脑油纳米复合物[5],低密度聚乙烯/石蜡混合物[6],铜/低密度聚乙烯纳米复合物[7],低密度聚乙烯/粘土纳米复合物[8]等。另外,单壁碳纳米管/高密度聚乙烯复合物[9] 已被证明具有低的导电性能。这结果也预示着在聚乙烯内添加一些具有导电性能的材料,可增强聚乙烯的导电性能。 笔者以可膨胀石墨、膨胀石墨和聚乙烯为原料,在二甲苯溶剂中成功地制备出了聚乙烯/可膨胀石墨和聚乙烯/膨胀石墨两种复合材料,并对两种材料的导电性能进行了测定。实验结果显示,采用这种方法制备出的两种聚乙烯/石墨复合材料尽管电阻率不同,但均在105~108Ω·m 之间;值得注意的是,在这电阻率范围内的材料具有防静电的性能,预示已制备出了具有防静电性能的聚乙烯/石墨复合材料。1?实验部分 1.1 材料与仪器?保定艾克森碳化有限公司提供 的粒度为50目的鳞片石墨,按照参考文献[10]制备可膨胀石墨和膨胀石墨;高密度聚乙烯, 二甲苯(分析纯,天津市化学试剂一厂);氮气(石家庄)。8900 FT-IR 分光光度仪(日本),扫描电子显微镜(日本),UT60A-CN 数字万用电表(中国)。 1.2 聚乙烯/可膨胀石墨和聚乙烯/膨胀石墨复合物 的制备 首先将高密度聚乙烯和二甲苯溶剂按1.0∶2.5的质量比进行混合,制备成浓度为40%的悬浮分散溶液,然后将此悬浮分散液与可膨胀石墨或膨胀石墨(聚乙烯与可膨胀石墨或膨胀石墨的质量比分别为10∶1、10∶2、10∶3、10∶4、10∶5)一起倒入一个干燥三颈烧瓶中。三颈烧瓶的中央孔安装一个搅拌器,一个侧孔安装一个氮气进入装置,另一个侧孔安装一个温度计。待一切安装完毕,开启氮气进气阀。将反应温度升高到100℃并维持此温度继续搅拌30min 。待反应结束之后,停止加热和搅拌,关闭氮气进气阀。然后将已制备的混合物在氮气保护下,在反应温度100℃下进行蒸馏。待二甲苯溶剂被分离出来后,将混合物从烧瓶内取出,放入通入氮气的红外干燥箱内,在60℃下干燥30min ,即得聚乙烯/可膨胀石墨或聚乙烯/膨胀石墨复合物。 1.3 聚乙烯/可膨胀石墨和聚乙烯/膨胀石墨复合 防静电聚乙烯/石墨复合物新材料的制备及表征 李冀辉?徐?洋?米彩丽?李?晶?黎?梅?刘淑芬 (河北师范大学化学与材料科学学院,石家庄 050016) 摘?要?以可膨胀石墨、 膨胀石墨和高密度聚乙烯为原材料,在二甲苯溶剂中制备了聚乙烯/可膨胀石墨和聚乙烯/膨胀石墨复合材料。扫描电镜显示,聚乙烯已包覆在可膨胀石墨和膨胀石墨上,傅立叶红外光谱分析确认了包覆在可膨胀石墨和膨胀石墨上的高分子为聚乙烯分子。该法利用可膨胀石墨和膨胀石墨的导电性能改善不导电的聚乙烯,并且成功地制备出具有防静电性能的聚乙烯/石墨复合新材料。 关键词?可膨胀石墨?膨胀石墨?防静电?复合材料?聚乙烯 中图分类号: TQ325.1;TB332 文献标识码:A 文章编号:1000-8098(2008)04-0029-03Preparation and Characterization of Antistatic Polyethylene/Graphite Composites Li Jihui Xu Yang Mi Caili Li Jing Li Mei Liu Shufen (College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050016) Abstract The polyethylene/graphite composites were prepared by high density polyethylene and expandable graphite or expanded graphite in dimethylbenzene solvent. Scan electron microscope (SEM) exhibited that polyethylene had covered on expandable graphite and expanded graphite. It had been affirmed that polymer molecules on expandable graphite and expanded graphite were polyethylene molecule by Fourier transform infrared (FTIR) spectrum. The method had a great application worth in which the electric property of expandable graphite and expanded graphite was applied to improve non-electric polyethylene, and a new polyethylene/graphite composites which possessed the antistatic property had been prepared successfully. Key words expandable graphite expanded graphite antistatic composites material polyethylene 收稿日期:2008-04-03 万方数据

相关文档
最新文档