微生物发酵工程

合集下载

微生物发酵工程

微生物发酵工程

微生物发酵工程微生物发酵工程是一门应用生物学领域的重要学科,它利用生物转化功能强大的微生物来生产各种化学物质。

这项技术在药品、食品、饮料、化妆品、环境保护等领域都有广泛的应用。

本文将从微生物发酵的定义、应用、工程设计等多个方面进行探讨。

一、微生物发酵的定义及原理微生物发酵是指利用微生物的代谢能力和酶的功能,通过适宜的培养条件,将底物转化成目标产物的过程。

它是一种自然而又复杂的生物反应过程,其基本原理可以归纳为底物与微生物的相互作用。

1. 微生物的选择酿酒、面包等产物需要酵母菌;乳酸、醋等食品需要乳酸菌和醋酸菌;抗生素需要青霉菌、链霉菌等。

不同的产品需要不同种类的微生物。

2. 培养条件的控制温度、pH、氧气供应、营养物质的添加等都是微生物发酵过程中需要控制的因素。

这些因素会影响微生物的生长速率和产物生成率。

3. 酶的作用微生物在发酵过程中产生的酶在催化底物转化成产物的反应中起到了关键的作用。

不同的产物需要特定的酶来完成转化。

二、微生物发酵的应用微生物发酵技术的应用广泛,以下主要介绍几个方面的应用。

1. 食品工业微生物发酵在食品工业中应用非常广泛。

例如,酸奶、豆豉、泡菜、味精等都是通过微生物发酵得到的。

微生物在发酵过程中可以产生有益的物质,例如乳酸、醋酸、氨基酸等,为食品增添了特殊的风味和营养价值。

2. 药品工业抗生素是微生物发酵的重要应用之一。

青霉素、链霉素等都是通过微生物发酵生产的。

此外,微生物发酵还可以用于生产维生素、氨基酸等药用物质。

3. 环境保护微生物发酵技术在环境保护领域也有广泛的应用。

例如废水处理中利用微生物的能力来分解有机物,减少污染物的排放。

还可以通过微生物发酵来处理有机废弃物,降低对环境的影响。

三、微生物发酵工程的设计与优化微生物发酵工程的设计是实现高效产物合成的关键。

以下是一些常用的优化策略。

1. 培养基优化培养基的成分对微生物的生长和产物生成起到重要的影响。

通过合理调整培养基的组成,可提高产物的生成效率。

微生物发酵工程

微生物发酵工程

3. 农业领域
在农业领域,微生物 发酵工程主要用于有 机肥、生物农药等的 生产。例如,通过微 生物发酵工程可以将 有机废弃物转化为有 机肥料,同时也可以 产生具有杀虫效果的 生物农药
4. 环保领域
在环保领域,微生物发酵工程主要用于废水 处理、垃圾处理等。例如,通过微生物发酵 工程可以将有机废水中的有机物转化为二氧 化碳和水,从而达到废水处理的目的
微生物发酵工程的基本原理 是利用微生物的生长和代谢 活动,在特定的条件下产生 有用的物质
这些物质可以是微生物自身 产生的,也可以是通过微生 物转化其他物质条件下会生长和繁殖,同时 进行一系列的代谢活动。这些代谢活动会产 生各种有用的物质,如氨基酸、酶、抗生素 等
-
1 微生物发酵工程的基本原理 2 微生物发酵工程的应用 3 微生物发酵工程的意义
微生物发酵工程
微生物发酵工程,也称为微生物生物技术,是一种利 用微生物在特定条件下产生有用物质的技术
x
这种技术广泛应用于医药、食品、农业、环保等领域 ,为人类的生产和生活带来了巨大的便利
1
微生物发酵工程的基本原理
3. 环保和可持续发展
随着环保意识的不断提高,未来 微生物发酵工程将会更加注重环 保和可持续发展。通过研究和开 发新的技术和设备,我们可以实 现更加环保和可持续的微生物发 酵过程
总之,微生物发酵工程作为一 种重要的生物技术,在未来将 会在各个领域发挥更大的作用
-
20XX
感谢您的聆听
ADD YOUR TITLE ADD YOUR TITLE HERE.ADD YOUR TITLE.ADD YOUR TITLE. HERE.ADD YOUR TITLE.ADD YOUR TITLE
微生物发酵工程的应用 非常广泛,下面列举几

发酵工程综合实验报告(3篇)

发酵工程综合实验报告(3篇)

第1篇一、实验目的1. 了解发酵工程的基本原理和操作方法;2. 掌握微生物的培养、分离、鉴定及发酵条件优化等实验技术;3. 提高实验操作能力和数据分析能力。

二、实验原理发酵工程是一门研究微生物发酵过程及其应用的科学。

通过发酵工程,可以利用微生物的代谢活动生产出各种有用的产品,如食品、医药、化工产品等。

本实验主要涉及微生物的培养、分离、鉴定及发酵条件优化等实验技术。

三、实验材料与仪器1. 材料:土壤样品、牛肉膏蛋白胨培养基、葡萄糖、酵母提取物、氯化钠、硫酸铵、磷酸二氢钾、硫酸镁、琼脂等;2. 仪器:高压蒸汽灭菌器、恒温培养箱、显微镜、电子天平、pH计、发酵罐、酒精灯、试管、培养皿等。

四、实验方法1. 微生物分离与纯化(1)土壤样品的采集与处理:在校园内采集土壤样品,将土壤样品过筛,去除杂质,备用;(2)牛肉膏蛋白胨培养基的制备:按照实验要求,称取牛肉膏、蛋白胨、葡萄糖、氯化钠、硫酸铵、磷酸二氢钾、硫酸镁等试剂,加入适量的水,搅拌均匀,煮沸10分钟,待冷却后加入琼脂,搅拌均匀,倒入培养皿中,待凝固;(3)土壤样品的接种:将处理好的土壤样品稀释,取适量涂布在牛肉膏蛋白胨培养基上,置于恒温培养箱中培养;(4)分离纯化:观察菌落特征,挑选单菌落进行纯化,重复以上步骤,直至获得纯化菌株。

2. 微生物鉴定(1)观察菌落特征:观察纯化菌株在牛肉膏蛋白胨培养基上的菌落特征,如菌落大小、形状、颜色、边缘等;(2)显微镜观察:将纯化菌株进行涂片、染色,在显微镜下观察菌体形态、染色特性等;(3)生化试验:进行糖发酵试验、氧化酶试验、淀粉酶试验等,鉴定菌株的生理生化特性。

3. 发酵条件优化(1)发酵培养基的制备:根据实验要求,称取葡萄糖、酵母提取物、氯化钠、硫酸铵、磷酸二氢钾、硫酸镁等试剂,加入适量的水,搅拌均匀,煮沸10分钟,待冷却后加入琼脂,搅拌均匀,倒入发酵罐中;(2)发酵条件优化:通过改变发酵温度、pH值、接种量、发酵时间等条件,观察发酵产物的产量和品质,确定最佳发酵条件。

微生物学与发酵工程的关系

微生物学与发酵工程的关系

微生物学与发酵工程的关系微生物学是研究微生物的科学,而发酵工程是利用微生物进行工业生产的一门学科。

微生物学与发酵工程之间存在着紧密的联系和互相促进的关系。

微生物学为发酵工程提供了理论基础和实验依据,而发酵工程则是微生物学研究成果的应用和发展。

微生物学为发酵工程提供了丰富的微生物资源。

微生物是发酵工程的基础和关键。

通过对各种微生物的研究和分离,可以得到适合发酵生产的菌种。

微生物学家通过对微生物的形态、生理、遗传等方面的研究,为发酵工程提供了合适的菌种选择和培养条件的优化。

微生物学的发展也推动了发酵工程的进步,新的微生物资源的发现使得发酵工程的应用范围更加广泛。

微生物学为发酵工程提供了发酵过程的理论基础。

微生物学研究了微生物的代谢途径、生长规律、产物合成等方面的原理,为发酵工程的设计和优化提供了重要的依据。

通过对微生物代谢途径的研究,可以了解微生物在不同条件下的生长和代谢特点,从而调节发酵条件以提高产物的合成效率。

微生物学还研究了微生物的基因工程和代谢工程,通过改造微生物的基因组和代谢途径,可以实现对发酵过程的精确控制和产物的改良。

发酵工程的实践应用也促进了微生物学的发展。

发酵工程的需求推动了微生物学技术的创新和改进。

在大规模发酵生产中,微生物的培养、发酵条件的控制、产物的提取纯化等都需要微生物学的技术支持。

同时,发酵工程中的问题和挑战也促使微生物学家进行更深入的研究,以提供更好的解决方案和技术支持。

微生物学与发酵工程的关系可以用一个相互促进的循环来描述。

微生物学为发酵工程提供了理论和实验基础,为发酵工程的发展提供了支持;而发酵工程的应用和需求则推动了微生物学的研究和创新。

两者相互依赖、相互促进,共同推动了微生物学和发酵工程的发展。

总的来说,微生物学与发酵工程之间存在着紧密的关系。

微生物学为发酵工程提供了微生物资源和理论基础,而发酵工程则是微生物学研究成果的应用和发展。

微生物学与发酵工程的合作促进了两个领域的发展,为工业生产和科学研究提供了重要的支持和推动。

微生物工程

微生物工程

微生物复习资料1.发酵工程:即微生物工程。

是渗透有工程学的微生物学,是传统的发酵技术与基因工程、细胞工程、蛋白质工程等相结合,具体包括菌种选育、菌体生产、代谢产物的发酵以及微生物机能的利用等。

发酵:借助微生物在有氧或无氧条件下的生命活动,来制备微生物菌体本身,或其代谢产物的过程。

2.菌种:用于发酵过程作为活细胞催化剂的微生物,包括细菌、放线菌、酵母菌和霉菌四大类。

来源于自然界大量的微生物,从中经分离并筛选出有用菌种,再加以改良,贮存待用于生产。

3.培养基:供微生物、植物和动物组织生长和维持用的人工配制的养料,一般都含有碳水化合物、含氮物质、无机盐(包括微量元素)以及维生素和水等。

有的培养基还含有抗菌素和色素,用于单种微生物培养和鉴定。

4.菌种退化:菌种的发酵能力降低、繁殖能力降低、发酵产品的得率降低5.下游技术:发酵液、动植物细胞培养液、酶反应液和动植物组织细胞与体液等中提取、分离纯化、富集生物产品的过程称为下游加工过程6.工业微生物育种方法:A、自然选育;B、生产选育;C、诱变育种;D、细胞工程育种E、基于代谢调节的育种;F、代谢工程育种G、基因重组育种;H、蛋白质工程育种;J、组合生物合成育种;K、反向生物工程育种7.菌种选育目的:改善菌种的特性,使产量提高,改进质量、降低成本、改革工艺、方便管理及综合利用等8.影响微生物生长的环境因素:温度ph 氧9.好氧发酵罐:机械搅拌式通风发酵罐、自吸式发酵罐、气升式发酵罐和塔式发酵罐10.影响种子质量的主要因素1、培养基:2、种龄与接种量3、斜面冷藏时间4、温度:温度直接影响生长和酶的合成;5、pH值:对微生物有明显的影响。

[调节方法有三种方法:用酸碱溶液中和法;使用缓冲溶液法;使用生理缓冲剂.]6、通气搅拌:[溶解氧的作用:参与菌体呼吸作用]7、泡沫:8、染菌的控制9、种子罐级数11)大规模工业生产的培养方法A、固体培养(曲法培养):浅盘固体培养,深层固体培养B、液体培养:浅盘液体培养,液体深层培养(目前几乎所有的好气发酵均采用此法);C、载体培养:用天然(或人工)多孔材料代替麦麸之类固态基质作微生物生长的载体,营养成分可严格控制。

微生物发酵工程的特点

微生物发酵工程的特点

微生物发酵工程的特点
1. 微生物发酵工程可神奇啦!就像一个魔法盒子,能把普通的原料变得大不一样。

比如说酿酒,利用微生物的发酵,就能把粮食变成香醇的美酒,这不是很奇妙吗?
2. 它的高效性简直让人惊叹!好比是一辆飞速前进的列车,快速地产生我们需要的东西。

像生产酸奶,通过微生物发酵,短时间内就能得到美味的酸奶,这多厉害呀!
3. 微生物发酵工程的多样性太让人惊喜啦!如同一个巨大的宝库,有着无穷无尽的可能。

比如生产各种生物制剂,不同的微生物发挥着不同的作用,能创造出这么多不同的产物,难道不酷吗?
4. 它的适应性真的很强啊!就像一个顽强的战士,不管在什么环境下都能战斗。

在各种极端条件下,微生物都可以进行发酵,为我们带来需要的东西,怎能不让人佩服?
5. 微生物发酵工程还有着惊人的灵活性呢!仿佛是一个百变精灵,可以根据我们的需求随时调整。

像根据市场需求调整发酵产物的种类和产量,多么灵活呀,是不是很赞?
6. 它的可持续性更是让人充满希望!恰似一股源源不断的清泉,为未来提供动力。

利用微生物发酵来生产清洁能源,既环保又可持续,这是多么美好的事情啊!
总的来说,微生物发酵工程就是这么神奇、高效、多样、适应、灵活、可持续,给我们的生活带来了巨大的改变和惊喜!。

微生物工程与发酵工程

微生物工程与发酵工程

微生物工程与发酵工程微生物工程与发酵工程是一门涵盖微生物学、生物工程学和化学工程学等多个学科知识的综合性学科。

本文将从微生物工程与发酵工程的基本概念、应用领域以及发展前景等方面进行探讨。

微生物工程与发酵工程是利用微生物生长、代谢和功能特性,通过工程手段加工产品的一门学科。

微生物是一类生命活动较为简单的生物体,但却在自然界中发挥着不可或缺的作用。

微生物工程利用这些微生物可控地合成有用的物质,如酶、抗生素、有机酸等。

而发酵工程则是在具体产品的生产过程中,通过对微生物生长环境、培养基和发酵条件的控制,达到最佳生产效果。

微生物工程与发酵工程的应用领域非常广泛。

在食品工业中,微生物工程与发酵工程被广泛应用于酿造、发酵、酸奶、酵素等食品的生产过程中,提高了产品的质量和产量。

在制药工业中,利用微生物工程生产抗生素和其他药物,为人类的健康提供了重要保障。

在环境保护领域,微生物工程与发酵工程可以用来处理废水、废气等环境问题,起到净化环境、保护生态的作用。

随着科学技术的不断发展,微生物工程与发酵工程的前景非常广阔。

在新药开发领域,微生物工程可以利用基因重组技术合成更多更有效的药物,为医疗健康领域带来更多新的突破。

在能源领域,微生物工程可以研发利用微生物生产生物燃料的技术,为替代传统石油能源提供新的途径。

在环境领域,微生物工程可以利用微生物降解有害物质、净化环境等技术,为环境保护和生态建设贡献力量。

总而言之,微生物工程与发酵工程作为一门前沿交叉学科,将继续在多个领域发挥重要作用,为人类的生产生活、医疗健康、环境保护等方面提供更多更好的解决方案。

未来,随着科学技术的不断进步和创新,微生物工程与发酵工程必将迎来更加美好的发展前景。

微生物发酵工程概述

微生物发酵工程概述

四、微生物发酵的一般工艺过程

微生物发酵产品名 目繁多,这么多的 发酵产品生产过程 是否一样呢?在工 业流程细节上很不 相同。然而,概括 来讲其工艺流程是 相似的。如有的发 酵需氧,有的发酵 不需氧。
图3.3 微生物发酵的一般工艺过程
(一)原料选择
1、原料中碳的可利用率高; 2、发酵产率高,而且尽可能使发酵废物少; 3、原料质量好,成分稳定,污染变质少,易灭菌; 4、价格便宜、来源方便、易于贮存。 但最便宜的原料也不一定是最合适的原料,如 生产谷氨酸时,过去曾用糖蜜做原料,但因为它是 制糖中的废液,成分变化大,难以控制,所以谷氨 酸产酸率低,发酵周期长,还给产物的提取、精制 以及废水处理带来很大问题。现在我国已采用淀粉 水解成葡萄糖来生产谷氨酸。
三、按发酵动力学类型分
t图3.2
发酵动力学类型图
(一)发酵动力学及其研究内容,目的
1、发酵动力学及内容
发酵动力学是研究发酵过程中菌体生长、营 养消耗、产物生成的动态平衡及其内在规律。研 究内容包括:了解发酵过程中菌体生长速率、基 质消耗和产物生成速率的相互关系,环境因素如 温度、pH、溶解氧等对以上三者的影响。
(二)淀粉水解糖的制备
淀粉是由葡萄糖组成的生物大分子,除少数霉菌和细菌可直 接利用淀粉外,目前大多数的微生物都不能直接利用淀粉,例如 在酒精酵母、抗生素生产、氨基酸生产中都要求将淀粉水解成糖。 由于水解的方法不一,葡萄糖生成量也不同。
1、淀粉水解法分为三类:酸解法、酶解法、 酸酶法或酶酸法。 (1)酸解法 ① 、工艺过程:
④控制酸水解的影响因素 a、淀粉浓度 b、酸浓度、酸种类 c、温度和时间等条件 a、淀粉浓度:一般来讲淀粉浓度越高,复合反应分解反应程 度越高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微生物发酵工程学号:1413030112 姓名:胡晓晓班级:生物工程1班微生物工程又叫发酵工程。

对微生物进行生物工程改造,包括基因工程技术、转基因生物技术、合成生物学技术等,以及工业化应用微生物发酵生产的工程等。

发酵是微生物特有的作用,在几千年前就被人类认识了,并且用来制造酒、面包、酱、醋等。

微生物工程,是大规模发酵生产工艺的总称,就是利用微生物发酵作用,通过现代工程技术手段来生产有用物质,或者把微生物直接应用于生物反应器的技术。

它是在发酵工艺基础上吸收基因工程、细胞工程和酶工程以及其他技术的成果而形成的。

发酵工程的内容包括菌种选育、培养基的配置、灭菌、种子扩大培养和接种、发酵过程和产品的分离提纯(生物分离工程)等方面。

发酵工程跟化学工业、医药、食品、能源、环境保护和农牧业等许多领域关系密切,对它的开发有很大的经济效益。

DNA重组技术和生物反应器?装有固定化酶的容器,能进行生物化学合成,是生物工程中的两大支柱。

从工业规模生产这一点看,生物反应器尤其重要。

因为只有通过微生物发酵,才能形成新的产业。

发酵工程以其生产条件温和,原料来源丰富且价格低廉,产物专一,废弃物对环境污染小和容易处理等特点,而在医药工业、食品工程、农业、冶金工业、环境保护等许多领域得到了广泛的应用,逐步形成了规模庞大的发酵工业。

在一些发达国家,发酵工业的总产值占到国民生产总值的5%左右。

从广义上讲,发酵工程由三部分组成:是上游工程,中游工程和下游工程。

其中上游工程包括优良种株的选育,最适发酵条件(pH、温度、溶氧和营养组成)的确定,营养物的准备等。

中游工程主要指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的工艺技术。

这里要有严格的无菌生长环境,包括发酵开始前采用高温高压对发酵原料和发酵罐以及各种连接管道进行灭菌的技术;在发酵过程中不断向发酵罐中通入干燥无菌空气的空气过滤技术;在发酵过程中根据细胞生长要求控制加料速度的计算机控制技术;还有种子培养和生产培养的不同的工艺技术。

此外,根据不同的需要,发酵工艺上还分类批量发酵:即一次投料发酵;流加批量发酵:即在一次投料发酵的基础上,流加一定量的营养,使细胞进一步的生长,或得到更多的代谢产物;连续发酵:不断地流加营养,并不断地取出发酵液。

在进行任何大规模工业发酵前,必须在实验室规模的小发酵罐进行大量的实验,得到产物形成的动力学模型,并根据这个模型设计中试的发酵要求,最后从中试数据再设计更大规模生产的动力学模型。

由于生物反应的复杂性,在从实验室到中试,从中试到大规模生产过程中会出现许多问题,这就是发酵工程工艺放大问题。

下游工程指从发酵液中分离和纯化产品的技术:包括固液分离技术(离心分离,过滤分离,沉淀分离等工艺),细胞破壁技术(超声、高压剪切、渗透压、表面活性剂和融壁酶等),蛋白质纯化技术(沉淀法、色谱分离法和超滤法等),最后还有产品的包装处理技术(真空干燥和冰冻干事燥等)。

现代意义上的发酵工程是一个由多学科交叉、融合而形成的技术性和应用性较强的开放性的学科。

发酵工程经历了“农产手工加工——近代发酵工程——现代发酵工程”三个发展阶段。

发酵工程发源于家庭或作坊式的发酵制作(农产手工加工),后来借鉴于化学工程实现了工业化生产(近代发酵工程),最后返璞归真以微生物生命活力为中心研究、设计和指导工业发酵生产(现代发酵工程),跨入生物工程的行列。

原始的手工作坊式的发酵制作凭借祖先传下来的技巧和经验生产发酵产品,体力劳动繁重,生产规模受到限制,难以实现工业化的生产。

于是,发酵界的前人首先求教于化学和化学工程,向农业化学和化学工程学习,对发酵生产工艺进行了规范,用泵和管道等输送方式替代了肩挑手提的人力搬运,以机器生产代替了手工操作,把作坊式的发酵生产成功地推上了工业化生产的水平。

发酵生产与化学和化学工程的结合促成了发酵生产的第一次飞跃。

通过发酵工业化生产的几十年实践,人们逐步认识到发酵工业过程是一个随着时间变化的(时变的)、非线性的、多变量输入和输出的动态的生物学过程,按照化学工程的模式来处理发酵工业生产(特别是大规模生产)的问题,往往难以收到预期的效果。

从化学工程的角度来看,发酵罐也就是生产原料发酵的反应器,发酵罐中培养的微生物细胞只是一种催化剂,按化学工程的正统思维,微生物当然难以发挥其生命特有的生产潜力。

于是,追溯到作坊式的发酵生产技术的生物学内核(微生物),返璞归真而对发酵工程的属性有了新的认识。

发酵工程的生物学属性的认定,使发酵工程的发展有了明确的方向,发酵工程进入了生物工程的范畴。

世纪20年代的酒精、甘油和丙酮等发酵工程,属于厌氧发酵。

从那时起,发酵工程又经历了几次重大的转折,在不断地发展和完善。

20世纪40年代初,随着青霉素的发现,抗生素发酵工业逐渐兴起。

由于青霉素产生菌是需氧型的,微生物学家就在厌氧发酵技术的基础上,成功地引进了通气搅拌和一整套无菌技术,建立了深层通气发酵技术。

它大大促进了发酵工业的发展,使有机酸、维生素、激素等都可以用发酵法大规模生产。

1957年,日本用微生物生产氨基酸成功,如今20种氨基酸都可以用发酵法生产。

氨基酸发酵工业的发展,是建立在代谢控制发酵新技术的基础上的。

发酵家在深入研究微生物代谢途径的基础上,通过对微生物进行人工诱变,先得到适合于生产某种产品的突变类型,再在人工控制的条件下培养,就大量产生人们所需要的物质。

目前,代谢控制发酵技术已经与氨基酸、有机酸和部分抗生素等的生产中。

20世纪80年代以来,随着学科之间的不断交叉和渗透,微生物学家开始用数学、动力学、化工工程原理、计算机技术对发酵过程进行综合研究,使得对发酵过程的控制更为合理。

在一些国家,已经能够自动记录和自动控制发酵过程的全部参数,明显提高了生产效率。

综上可知微生物发酵工程是非常有意义非常有用途的,一下就具体介绍微生物发酵工程的具体应用。

微生物发酵食品已经成为食品工业中的重要分支就广义而言;凡是利用微生物的作用制取的食品都可称为发酵食品。

功能性发酵食品主要是以高新生物技术(包括发酵法、酶法)制取的具有某种生理活性的物质生产出能调节机体生理功能的食品。

发酵食品因在食品加工过程中有微生物参与作用,进而可以形成一些特异性营养因子。

如提供小肠黏膜能源的谷氨酰胺,供结肠黏膜能源物质的短链脂肪酸,以及亚油酸、精氨酸等。

经发酵过程制造食品时所利用的。

最常用的有酵母菌、曲霉以及细菌中的乳酸菌、醋酸菌、黄短杆菌、棒状杆菌等。

通过这些微生物作用制成的食品通常有以下5类(见表[代表性的发酵食品及其使用的微生物]):①酒精饮料,如蒸馏酒、黄酒、果酒、啤酒等;②乳制品,如酸奶、酸性奶油、马奶酒、干酪等;③豆制品,如豆腐乳、豆豉、纳豆等;④发酵蔬菜,如泡菜、酸菜等;⑤调味品,如醋、黄酱、酱油、甜味剂(如天冬甜味精)、增味剂(如5′-核苷酸)和味精等。

醋酸杆菌常见于腐烂的水果、蔬菜、酸果汁、醋和饮料酒中。

属革兰式阴性无芽孢杆菌,兼性好氧,但易出现退化型。

退化型菌体出现枝状、丝状等弯曲状。

培养物中的菌株革兰氏染色也常常出现变化。

醋酸杆菌能氧化乙醇使之成为乙酸,因而是制造食醋的主要菌种。

非致病棒杆菌经常从土壤、水、空气和被污染的细菌培养皿或血平板中分离得到。

非致病棒杆菌中的谷氨酸棒杆菌、力士棒杆菌、解烃棒杆菌经常用于味精(L-谷氨酸盐)的生产。

它们能将糖分解成有机酸,并将含氮物质分解成铵离子,再进一步合成谷氨酸并积累于发酵液中。

乳酸菌能产生乳酸,是发酵乳制品制造过程中起主要作用的一类菌。

按其对糖发酵特性可分为同型发酵菌和异型发酵菌。

我们常吃的发酵食品主要有谷物发酵制品、豆类发酵制品和乳类发酵制品。

谷物发酵制品包括甜面酱、米醋、米酒、葡萄酒等,这些食品中富含苏氨酸等成分,可以防止记忆力减退。

另外,醋的主要成分是多种氨基酸及矿物质,有降低血压、血糖及胆固醇的效果。

此外,还有馒头、面包、包子、发面饼等。

豆类发酵制品包括豆瓣酱、酱油、豆豉、腐乳等。

发酵的大豆含有丰富的抗血栓成分,有预防动脉粥样硬化、降低血压之功效。

豆类发酵之后,能参与维生素K合成,防止骨质疏松症的发生。

乳类发酵制品如酸奶、奶酪等含有乳酸菌等成分,能抑制肠道腐败菌的生长,又能刺激机体免疫系统,调动机体的积极因素,有效地预防癌症。

发酵后的馒头、面包就比大饼、面条等没有发酵的食物营养更丰富,原因就在于所使用的酵母。

实验证明,酵母不仅改变了面团结构,还让它们变得更松软好吃,这也大大增加了馒头、面包的营养价值。

因此,常吃发酵食品有如下好处:发酵食品含有丰富的蛋白质实验证明,酵母富含多种维生素、矿物质和酶类。

每1千克干酵母所含的蛋白质,相当于5千克大米、2千克大豆或2.5千克猪肉的蛋白质含量。

因此,馒头、面包中所含的营养成分比大饼、面条要高出3~4倍,蛋白质增加近2倍。

营养物质有利于吸收发酵后的酵母还是一种很强的抗氧化物,可以保护肝脏,有一定的解毒作用。

酵母里的硒、铬等矿物质能抗衰老、抗肿瘤、预防动脉硬化,并提高人体免疫力。

发酵后,面粉里一种影响钙、镁、铁等元素吸收的植酸可被分解,从而提高人体对这些营养物质的吸收和利用。

适宜消化功能弱的人食用经过发酵的面包、馒头有利于消化吸收,这是因为酵母中的酶能促进营养物质的分解。

因此,身体瘦弱的人、儿童和老年人等消化功能较弱的人,更适合吃这类食物。

同样,早餐最好吃面包等发酵面食,因为其中的能量会很快释放出来,让人整个上午都干劲儿十足。

现代发酵工程是人们非常关注的,所以接下来我将重点介绍现代发酵工程20世纪70年代,基因重组技术、细胞融合等生物工程技术的飞速发展,为人类定向培育微生物开辟了新途径,微生物工程应运而生。

通过DNA的组装,或细胞工程手段能按照人类设计的蓝图,创造出新的“工程菌”和超级菌。

然后通过微生物的发酵生产出对人有益的物质产品。

现代发酵工程:在生物界中,微生物的比表面积(表面积与体积之比)、转化能力、繁殖速度、变异与适应性、分布范围等五项指标超出所有生物之上,因而具有极强的自我调节、环境适应和自我增殖能力。

在适宜的条件下,细菌20分钟即可繁殖一代,24小时后,一个细胞可繁殖成4亿个细胞,细菌比植物繁殖率快500倍,比动物快2000倍。

传统的发酵技术,与现代生物工程中的基因工程、细胞工程、蛋白质工程和酶工程等相结合,使发酵工业进入到微生物工程的阶段。

微生物工程包括菌种选育、菌体生产、代谢产物的发酵以及微生物机能的利用等。

代微生物工程不仅使用微生物细胞,也可用动植物细胞发酵生产有用的产品。

例如利用培养罐培养大量杂交瘤细胞,生产用于疾病诊断和治疗的单克隆抗体等。

生物工程和技术被认为是21世纪的主导技术,作为新技术革命的标志之一,已受到世界各国的普遍重视。

生物工程将为解决人类所面临的环境、资源、人口、能源、粮食等危机和压力提供最有希望的解决途径,但生物工程真正能应用于工业化生产的,主要还是微生物工程(发酵工程)。

相关文档
最新文档