灰色系统理论及其应用
灰色系统理论及其应用

灰色系统理论及其应用
灰色系统理论是一种用于研究不完全可信息的系统分析方法,可以用来模拟和预测系统的动态行为。
它的主要特点是以不确定性和不确定性作为基础,开发出一套灰色系统模型,用于分析和研究各种灰色的系统。
灰色系统理论的出现可以追溯到20世纪70年代,它是基于系统动力学理论的。
灰色系统理论的应用非常广泛,可以应用于各种系统,包括社会系统、经济系统、生态系统等。
它可以用于分析和预测各种复杂系统的动态行为,为改进系统结构和性能提供了重要依据。
例如,它可以用于分析社会经济发展的潜力,进而改善经济政策;也可以用于分析和改善生态系统的结构和功能,以解决生态系统的问题。
此外,灰色系统理论也可以用于企业管理,可以帮助企业更好地管理和控制其经营状况,从而提高企业的效率和生产力。
通过灰色系统理论,企业可以分析其经营状况,识别存在的问题,并采取有效措施来改善企业管理水平。
综上所述,灰色系统理论是一种用于分析和预测复杂系统的动态行为的理论,它的应用非常广泛,并可以用于企业管理,为改善系统性能和企业管理水平提供了重要依据。
灰色系统理论及其应用

灰色系统理论及其应用第一章灰色系统的概念与基本原理1.1灰色系统理论的产生和发展动态1982年,北荷兰出版公司出版的《系统与控制通讯》杂志刊载了我国学者邓聚龙教授的第一篇灰色系统理论论文”灰色系统的控制问题”,同年,《华中工学院学报》发表邓聚龙教授的第一篇中文论文《灰色控制系统》,这两篇论文的发表标志着灰色系统这一学科诞生。
1985灰色系统研究会成立,灰色系统相关研究发展迅速。
1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。
目前,国际、国内300多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。
国际著名检索已检索我国学者的灰色系统论著3000多次。
灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。
1.2几种不确定方法的比较(系统科学---系统理论)概率统计,模糊数学和灰色系统理论是三种最常用的不确定系统研究方法。
其研究对象都具有某种不确定性,是它们共同的特点。
也正是研究对象在不确定性上的区别,才派生了这三种各具特色的不确定学科。
模糊数学着重研究“认识不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。
比如“年轻人”内涵明确,但要你划定一个确定的范围,在这个范围内是年轻人,范围外不是年轻人,则很难办到了。
概率统计研究的是“随机不确定”现象,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性大小。
要求大样本,并服从某种典型分布。
灰色系统理论着重研究概率统计,模糊数学难以解决的“小样本,贫信息”不确定性问题,着重研究“外延明确,内涵不明确”的对象。
如到2050年,中国要将总人口控制在15亿到16亿之间,这“15亿到16亿之间“是一个灰概念,其外延很清楚,但要知道具体数值,则不清楚。
三种不确定性系统研究方法的比较分析项目灰色系统概率统计模糊数学研究对象贫信息不确定随机不确定认知不确定基础集合灰色朦胧集康托集模糊集方法依据信息覆盖映射映射途径手段灰序列算子频率统计截集数据要求任意分布典型分隶属度可布知侧重点内涵内涵外延认知表达目标现实规律历史统计规律特色小样本大样本凭经验1.3灰色系统理论的基本概念定义1.3.1信息完全明确的系统称为白色系统。
灰色系统理论在环境评估中的应用分析

灰色系统理论在环境评估中的应用分析引言:随着环境污染和资源浪费的日益严重,环境评估成为我们认识、改善和保护环境的重要手段之一。
在环境评估过程中,我们需要对各种因素进行全面、准确的分析与评价。
灰色系统理论作为一种新颖的分析方法,具有适用于不确定和不完全信息的特点,逐渐引起环境评估领域的关注与应用。
本文将通过分析灰色系统理论在环境评估中的应用,探讨其优势和局限性,并展望未来的发展。
一、灰色系统理论概述灰色系统理论是由我国科学家陈纳言教授于1982年提出的,是一种处理灰色信息的系统方法。
灰色信息是指知识、数据或信息不完全、不确定的情况下所获得的信息。
灰色系统理论通过数学和统计方法,将灰色信息转化为可分析的模型,从而实现对信息的预测、决策和优化。
灰色系统理论具有简单、快速、灵活、经济等特点,被广泛应用于工程、经济、环境、社会等领域。
二、灰色系统理论在环境评估中的应用1. 环境质量评估环境质量评估是对某一特定环境区域内的污染状况进行全面评估的过程。
灰色系统理论可以有效地处理环境质量评估中存在的不完全信息和不确定性。
通过对已知的环境因素进行建模和分析,可以预测环境变量的发展趋势,评估环境质量的变化情况,并提出预警措施。
例如,在城市环境质量评估中,可以利用灰色系统理论预测空气质量、水质指标等,并为城市管理部门提供决策依据。
2. 环境风险评估环境风险评估是对自然环境或人类活动可能引发的危害和风险进行定量评估的过程。
灰色系统理论可以有效地处理环境风险评估中的不确定性和复杂性。
通过对已知的环境影响因素进行建模和分析,可以预测环境风险的发展趋势,并进行等级评估。
例如,在土壤污染风险评估中,可以利用灰色系统理论分析土壤样本中的有害物质含量、地下水流动速度等因素,评估土壤污染的程度和风险,并制定相应的修复和监控对策。
3. 环境绩效评估环境绩效评估是对某一特定组织、企业或行业在环境保护和可持续发展方面的表现进行评估的过程。
灰色系统理论与应用

5.求最值
min min x0 (k ) xi (k ) min(0,1, 0,1, 0, 0) 0
i 1 k 1 n m
max max x0 (k ) xi (k ) max(7, 6,5, 6, 6,5) 7
i 1 k 1
n
m
6. =0.5 取计算,得
0 0.5 7 0 0.5 7 1 (1) 0.778, 1 (2) 1.000 1 0.5 7 0 0.5 7 1 (3)=0.778, 1 (4)=0.636, 1 (5)=0.467, 1 (6)=0.333
二、灰色系统的基本概念
作为实际系统,灰色系统在世界中是大量存在的,绝对的 白色或黑色系统是很少的,尤其在社会经济领域,如粮食 作物的生产等。
三、灰色系统理论的主要内容来自灰色系统理论经过 20 多年的发展,已基本 建立起了一门新兴学科的结构体系,其主 要内容包括以“灰色朦胧集”为基础的理 论体系、以晦涩关联空间为依托的分析体 系、以晦涩序列生成为基础的方法体系, 以灰色模型( G , M )为核心的模型体系。 以系统分析、评估、建模、预测、决策、 控制、优化为主体的技术体系。
应用举例
Step 4. 对关联度依据大小排序,给出分析结果。
应用举例
例:利用灰色关联分析对6位教师工作状况进 行综合评价 1 .评价指标包括:专业素质、外语水平、 教学工作量、科研成果、论文、著作与出 勤.
2.对原始数据经处理后得到以下数值, 见下表
编号 专业 外语 教学 科研 论文 著作 出勤 量 1 8 9 8 7 5 2 9 2 3 4 5 6 7 9 6 8 8 8 7 8 6 9 7 9 8 6 5 5 6 8 9 7 7 6 4 8 6 3 4 3 3 4 8 7 6 8 8
灰色系统理论及其应用

第二十五章灰色系统理论及其应用客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。
对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。
本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。
§1 灰色系统概论客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互联系而构成一个整体,我们称之为系统。
按事物内涵的不同,人们已建立了工程技术系统、社会系统、经济系统等。
人们试图对各种系统所外露出的一些特征进行分析,从而弄清楚系统内部的运行机理。
从信息的完备性与模型的构建上看,工程技术等系统具有较充足的信息量,其发展变化规律明显,定量描述较方便,结构与参数较具体,人们称之为白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。
这类系统内部特性部分已知的系统称之为灰色系统。
一个系统的内部特性全部未知,则称之为黑色系统。
区别白色系统与灰色系统的重要标志是系统内各因素之间是否具有确定的关系。
运动学中物体运动的速度、加速度与其所受到的外力有关,其关系可用牛顿定律以明确的定量来阐明,因此,物体的运动便是一个白色系统。
当然,白、灰、黑是相对于一定的认识层次而言的,因而具有相对性。
某人有一天去他朋友家做客,发现当外面的汽车开过来时,他朋友家的狗就躲到屋角里瑟瑟发抖。
他对此莫名其妙。
但对他朋友来讲,狗的这种行为是可以理解的,因为他知道,狗在前不久曾被汽车撞伤过。
显然,同样对于“狗的惧怕行为”,客人因不知内情而面临一个黑箱,而主人则面临一个灰箱。
作为实际问题,灰色系统在大千世界中是大量存在的,绝对的白色或黑色系统是很少的。
灰色系统理论及其应用

5 灰色模型
5.1 GM(1,1) 模型
将时刻 k 2,3,, n 视为连续变量t 则数列 x(1) 就可视为时间 t 的函数,x(1) x(1) (t) GM(1,1) 的白化型为:
dx(1) ax(1) (t) b dt
5 灰色模型
5.2 GM(1, N)模型
GM (1, N) :模型是一阶的,包含N个变量的灰色模型
x(1) 的灰导数为: d (k) x(0) (k) x(1) (k) x(1) (k 1), k 2,3,, n
5 灰色模型
5.1 GM(1,1) 模型
x(1) 的紧邻均值序列为: z(1) (z(1) (2), z(1) (3),, z(1) (n))
z(1) (k) 0.5x(1) (k) 0.5x(1) (k 1), k 2,3,, n
1 n
n
( k
k 1
)2
6 灰色预测
6.2 灰色预测的步骤
(5)小误差概率合格模型: 小误差概率为:
p P k 0.67445S1
给定 p0 0, p p0 称模型为小误差概率合格模型
6 灰色预测
6.2 灰色预测的步骤
常用精度等级:
6 灰色预测
6.3 Verhulst GM (2,1) DGM
2 2
可容覆盖区域:(e n1 , e n2 )
2 2
(k ) (e n1 , e n2 )
6 灰色预测
6.2 灰色预测的步骤
1.数据的检验与处理:
2 2
(k ) (e n1 , e n2 )
2 2
(k ) (e n1 , e n2 )
数据列可用为模型的预测数据 数据列需进行变换处理
平移变换
灰色系统理论及其应用

灰色系统理论及其应用第一章灰色系统的概念与基本原理1.1灰色系统理论的产生和发展动态1982年,北荷兰出版公司出版的《系统与控制通讯》杂志刊载了我国学者邓聚龙教授的第一篇灰色系统理论论文”灰色系统的控制问题”,同年,《华中工学院学报》发表邓聚龙教授的第一篇中文论文《灰色控制系统》,这两篇论文的发表标志着灰色系统这一学科诞生1985灰色系统研究会成立,灰色系统相关研究发展迅速。
1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。
目前,国际、国内300多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。
国际著名检索已检索我国学者的灰色系统论著3000多次。
灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。
1.2几种不确定方法的比较概率统计,模糊数学和灰色系统理论是三种最常用的不确定系统研究方法。
其研究对象都具有某种不确定性,是它们共同的特点。
也正是研究对象在不确定性上的区别,才派生了这三种各具特色的不确定学科。
模糊数学着重研究“认识不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。
比如“年轻人”内涵明确,但要你划定一个确定的范围,在这个范围内是年轻人,范围外不是年轻人,则很难办到了。
概率统计研究的是“随机不确定”现象,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性大小。
要求大样本,并服从某种典型分布。
灰色系统理论着重研究概率统计,模糊数学难以解决的“小样本,贫信息”不确定性问题,着重研究“外延明确,内涵不明确”的对象。
如到2050年,中国要将总人口控制在15亿到16亿之间,这“15亿到16亿之间“是一个灰概念,其外延很清楚,但要知道具体数值,则不清楚。
1.3灰色系统理论的基本概念定义1.3.1信息完全明确的系统称为白色系统。
第六章灰色理论和安全系统1

一、灰色关联分析与安全系统 灰色关联分析包括系统因素分析和系统行为分析。对影响系统主行为的作用因素进行分析称为系统因素分析,对不同系统的行为进行量化对比,则称为系统行为分析。比如对人-机-环境系统来说,影响其安全性的因素包括人的生理与心理特征、操作技能、健康状况等,也包括机器的可靠性、维修保养情况、新旧程度等,还包括温度与湿度、噪声与振动等环境因素,那么,要分析哪些因素是主要的,哪些因素是次要的,这就是系统安全的因素分析。
年代 序号
月均千人负伤率/%
全员培训率/%
岗位变化率/%
安全机构业务能力
安全投资/万元
1
1.600
0.18
0.0140
1.00
14.5
2
1.306
0.14
0.0140
1.07
22.0
3
1.200
0.15
0.0029
1.20
10.0
4
0.990
0.17
0.0036
1.23
9.0
5
0.900
0.13
0.0095
二、灰色系统与几种不确定问题方法的比较。 模糊数学着重研究“认知不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。主要凭借经验,借助于隶属函数进行处理。 概率统计研究的是“随机不确定”现象的历史统计规律,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性的大小,其出发点是,大样本,且对象服从某种典型分布。 灰色系统研究的是“部分信息明确,部分信息未知”的“小样本,贫信息”不确定性系统,它通过对已知“部分” 信息的生成去开发了解、认识现实世界。着重研究“外延 明确,内涵不明确”的对象。
定义:起点,终点确定的左升、右降连续函数称为典型的白化权函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰色系统理论及其应用第一章灰色系统的概念与基本原理1.1灰色系统理论的产生和发展动态1982年,北荷兰出版公司出版的《系统与控制通讯》杂志刊载了我国学者邓聚龙教授的第一篇灰色系统理论论文”灰色系统的控制问题”,同年,《华中工学院学报》发表邓聚龙教授的第一篇中文论文《灰色控制系统》,这两篇论文的发表标志着灰色系统这一学科诞生1985灰色系统研究会成立,灰色系统相关研究发展迅速。
1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。
目前,国际、国内300多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。
国际著名检索已检索我国学者的灰色系统论著3000多次。
灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。
1.2几种不确定方法的比较概率统计,模糊数学和灰色系统理论是三种最常用的不确定系统研究方法。
其研究对象都具有某种不确定性,是它们共同的特点。
也正是研究对象在不确定性上的区别,才派生了这三种各具特色的不确定学科。
模糊数学着重研究“认识不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。
比如“年轻人”内涵明确,但要你划定一个确定的范围,在这个范围内是年轻人,范围外不是年轻人,则很难办到了。
概率统计研究的是“随机不确定”现象,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性大小。
要求大样本,并服从某种典型分布。
灰色系统理论着重研究概率统计,模糊数学难以解决的“小样本,贫信息”不确定性问题,着重研究“外延明确,内涵不明确”的对象。
如到2050年,中国要将总人口控制在15亿到16亿之间,这“15亿到16亿之间“是一个灰概念,其外延很清楚,但要知道具体数值,则不清楚。
1.3灰色系统理论的基本概念定义1.3.1信息完全明确的系统称为白色系统。
定义1.3.2信息未知的系统称为黑色系统。
定义1.3.3部分信息明确,部分不明确的系统称为灰色系统。
1.4灰色系统理论的基本原理公理1(差异信息原理)“差异“是信息,凡信息必有差异。
公理2(解的非唯一性原理)信息不完全,不确定的解是非唯一的。
公理3(最少信息原理)灰色系统理论的特点是充分开发利用已占有的“最少信息“。
公理4(认知根据原理)信息是认知的根据。
公理5(新信息优先原理)新信息对认知的作用大于老信息。
公理6(灰性不灭原理):信息不完全是绝对的1.5灰色系统理论的主要内容灰色系统理论经过20多年的发展,现在已经基本建立起一门新兴学科的结构体系。
其主要内容包括以灰色代数系统,灰色方程、灰色矩阵等为基础的理论体系。
以灰色序列生成为基础的方法体系,以灰色关联空间为依托的分析体系。
以灰色模型(GM)为核心的模型体系,以系统分析,评估,建模,预测,决策,控制,优化为主体的技术体系。
1.6灰数灰数是灰色系统理论的基本“单元“或”细胞“。
我们把只知道大概范围而不知道其确切值的数称为灰数。
在应用中,灰数实际上指在某一个区间或某个一般的数集内取值的不确定数。
通常用记号“⊗”表示灰数。
灰数有以下几类:1. 仅有下界的灰数。
有下界而无上界的灰数记为⊗∈[,]a -∞,其中a 是灰数⊗的下确界,是确定的数,我们称[,]a -∞为⊗的取数域,简称⊗的灰域。
2. 仅有上界的灰数。
有上界而无下界的灰数记为⊗∈[,]a --∞ ,其中a --是灰数⊗的上确界,是确定的数。
3. 区间灰数。
既有下界又有上界的灰数称为区间灰数,记为⊗∈[,]a a ---- 4.连续灰数与离散灰数。
5. 黑数与白数。
当⊗∈[,]-∞+∞,称⊗为黑数;当⊗∈[,]a a ----且a a ----=时,⊗为白数。
6. 本征灰数与非本征灰数。
本征灰数是指不能或暂时还不能找到一个白数作为其“代表”的灰数,比如一般的事前预测值,宇宙的总能量等。
非本征灰数是指凭先验信息或某种手段,可以找到一个白数作为其代表的灰数。
我们称此白数为相应灰数的白化值。
第二章 序列算子与灰色序列生成灰色系统理论的主要任务之一,是根据社会,经济,生态等系统的行为特征数据,寻找不同系统变量之间或某些系统变量自身的数学关系和变化规律。
灰色系统理论认为任何随机过程都是在一定幅值范围和一定时区内变化的灰色量,并把随机过程看成灰色过程。
灰色系统理论是通过对原始数据的挖掘,整理来寻求其变化规律的,这是一种就数据寻找数据的现实规律的途径,我们称为灰色序列生成。
灰色系统理论认为,尽管客观系统表象复杂,数据离乱,但它总是有整体功能的,因此必然蕴含某种内在规律。
关键在于如何选择适当的方式去挖掘它和利用它。
一切灰色序列都能通过某种生成弱化其随机性,显现其规律性。
例如考虑4个数据,记为)4(),3(),2(),1()0()0()0()0(X X X X ,其数据见下表: 序号1 2 3 4 符号)1()0(X )2()0(X )3()0(X )4()0(X 数据1 2 1.5 4将上表数据作图得 0123451234X Y上图表明原始数据)0(X 没有明显的规律性,其发展态势是摆动的。
如果将原始数据作累加生成,记第K 个累加生成为)()1(K X ,并且1)1()1()0()1(==X X321)2()1()2()0()0()1(=+=+=X X X5.45.121)3()2()1()3()0()0()0()1(=++=++=X X X X5.735.121)4()3()2()1()4()0()0()0()0()1(=+++=+++=X X X X X得到数据如下表所示 序号1 2 3 4 符号)1()1(X )2()1(X )3()1(X )4()1(X 数据 1 3 4.5 7.5123456781234X Y上图表明生成数列X (1)是单调递增数列。
2.1冲击扰动系统与序列算子定义2.1.1 设0000((1),(2),,())X x x x n = 为系统真实行为序列,而观察到的系统行为数据序列为000012((1),(2),,())((1),(2),,())n X x x x n x x x n X εεεε==+++=+其中,12(,)n εεεε= 为冲击扰动项(干扰项)。
X 称为冲击扰动序列。
所以本章我们的讨论围绕:由X →X 0展开(扰动还原真实)2.2缓冲算子公理定义 2.2.1 设系统行为数据序列为((1),(2),,())X x x x n = ,1. 若2,3,,()(1)0k n x k x k ∀=--> ,则称X 为单调增长序列;2. 若1中不等号反过来成立,则称X 为单调衰减序列;3. 若,{2,3,},()(1)0,()(1)0k k n x k x k x k x k '''∃∈-->--< 有,则称X 为随机振荡序列。
4. 设{}{}max ()|12,3,,,()|12,3,,M x k k n m x k k n ==== ,,,则称M-m 为序列X 的振幅定义2.2.2 设((1),(2),,())X x x x n = 为系统行为数据系列,D 为作用于X 的算子,X 经过算子D 作用后所得序列记为((1),(2),,())XD x d x d x n d =称D 为序列算子,称XD 为一阶算子作用序列。
序列算子的作用可以多次,相应的,若123,,D D D 都是序列算子,我们称12D D 为二阶算子,并称12121212((1),(2),,())XD D x d d x d d x n d d =为二阶算子作用序列,同理,123D D D 为三阶序列算子……定义 2.2.3 称下述三公理为缓冲算子三公理,满足缓冲算子三公理的序列算子D 称为缓冲算子,一阶,二阶,三阶……缓冲算子作用序列称为一阶,二阶,三阶……缓冲序列。
公理1(不动点公理) 设((1),(2),,())X x x x n = 为系统行为数据系列,D 为序列算子,则D 满足 ()()x n d x n =。
不动点公理限定在序列算子作用下,系统行为数据序列的数据()x n 保持不变。
根据定性分析的结论,亦可使()x n 以前的若干个数据在序列算子作用下保持不变。
例如,令()()()()x j d x j x i d x i ≠=且,1,2,1,1,,.j k i k k n =-=+ 其中公理2.(信息充分利用公理)系统行为数据序列X 中的每一个数据(),1,2,x k k = ,都要充分地参与算子的作用全过程公理3(解析化、规范化公理) 任意的 (),(1,2,x k d k = ,皆可由一个统一的(1),(2),,()x x x n 的初等解析式表达。
定义2.2.4 设X 为原始数据序列,D 为缓冲算子,当X 分别为增长序列,衰减序列或振荡序列时:1.若缓冲序列XD 比原始序列X 的增长速度(或衰减速度)减缓或振幅减小,则称缓冲算子D 为弱化算子。
2.若缓冲序列XD 比原始序列X 的增长速度(或衰减速度)加快或振幅增大,则称缓冲算子D 为强化算子。
2.3实用缓冲算子的构造定理 2.3.1 设原始数据序列((1),(2),,())X x x x n = 令缓冲序列 ((1),(2),,X D xd x d x n d = 其中1()[()(1)()]1x k d x k x k x n n k =++++-+ ;k=1,2,……,n,则当X 为增长序列,衰减序列或振荡序列时,D 为弱化算子,并称为平均弱化缓冲算子(AWBO )证明:直接利用(),(1,2,)x k d k = 的定义,可知定理成立。
推论2.3.1对于定理1中定义的弱化算子D ,令2222((1),(2),,())XD XDD x d x d x n d ==21()[()(1)()],1,21x k d x k d x k d x n d k n n k =++++=-+ , 则2D 对于增长序列,衰减序列或振荡序列时,皆为二阶弱化算子。
定理2.3.2设原始序列和其缓冲算子序列分别为((1),(2),,())X x x x n =((1),(2),,())XD x d x d x n d = 其中(1)(2)(1)()(),1,2,121x x x k kx k x k d k n k +++-+==--()()x n d x n =则当X 为增长序列,衰减序列或振荡序列时,D 为强化算子。
推论2.3.2 设D 为定理2中定义的强化算子,令2222((1),(2),,())X D X D D x d x d x n d == ,其中 2()()()x n d x n d x n ==,2(1)(2)(1)()(),1,2,121x d x d x k d kx k dx k d k n k +++-+==-- 则2D 对于增长序列,衰减序列或振荡序列皆为二阶强化算子。