17.2 勾股定理的逆定理(第1课时).2 勾股定理的逆定理(第1课时)

合集下载

内蒙古呼和浩特市赛罕区八年级数学下册17勾股定理17.2勾股定理的逆定理(第1课时)教案新人教版(

内蒙古呼和浩特市赛罕区八年级数学下册17勾股定理17.2勾股定理的逆定理(第1课时)教案新人教版(

内蒙古呼和浩特市赛罕区八年级数学下册17 勾股定理17.2 勾股定理的逆定理(第1课时)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(内蒙古呼和浩特市赛罕区八年级数学下册17 勾股定理17.2 勾股定理的逆定理(第1课时)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为内蒙古呼和浩特市赛罕区八年级数学下册17 勾股定理17.2 勾股定理的逆定理(第1课时)教案(新版)新人教版的全部内容。

17.2 勾股定理的逆定理课题17.2 勾股定理的逆定理课时第1课时课型新授课作课时间教学内容分析本节课学习勾股定理的逆定理及其应用.教学目标1. 通过一系列富有探究性的问题,理解互逆命题、互逆定理、勾股数的概念及互逆命题之间的关系.2. 通过三角形三边的数量关系来判断三角形的形状,掌握勾股定理的逆定理,体验数形结合思想的应用。

重点难点勾股定理的逆定理及其应用.教学策略选择与设计通过一系列富有探究性的问题,通过三角形三边的数量关系来判断三角形的形状,体验数形结合思想的应用。

掌握勾股定理的逆定理,并掌握判定一个三角形是直角三角形的方法。

学生学习方法探究分析法,讨论法教学过程【课堂引入】1.把准备好的一根打了13个等距离结的绳子,按3个结、4个结、5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状.2.分别以2。

5 cm、6 cm、6.5 cm和4 cm、7。

5 cm、8.5 c m为三边长画出两个三角形,请观察并说出此三角形的形状.3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?【新课教学】1. 介绍命题的题设和结论,并且举例说明。

勾股定理的逆定理-完整版课件

勾股定理的逆定理-完整版课件

一、探究勾股定理的逆定理:
2、实验探究: (1)画一画:下列各组数中的两数平方和等于第三数的平方,分别以这些数 为边长画出三角形(单位:cm),它们是直角三角形吗? ① 2.5,6,6.5; ② 6,8,10. (2)量一量:用量角器分别测量上述各三角形的最大角的度数. (3)想一想:请判断这些三角形的形状,并提出猜想.
PQ=16×1.5=24,PR=12×1.5=18,QR=30. ∵24²+18²=30², 即PQ²+PR²=QR², ∴△PQR为直角三角形,即∠QPR=90°. ∵∠1=45°, ∴∠2=45°,即“海天”号沿西北方向航行.
练习4、如图,如图,南北向MN为我国领域,即MN以西为我国领海,以东 为公海.上午9时50分,我反走私A艇发现正东方向有一走私艇C以13海里/时的 速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知 A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得离C艇 的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海?
2
2
∴BE= AB•BC60.
B
AC 13
.
在Rt△BCE中,由勾股定理得,
N
∴CE= BC 2BE 2 12 2(60 )2144
13 13
∴最早进入时间≈0.85小时=51分钟.
.
9时50分+51分=10时41分.
答:走私艇最早在10时41分进入我国领海.
五、课堂小结:
1、利用勾股定理的逆定理判定是否为直角三角形的一般步骤: ①确定最大边长c; ②计算a2+b2和c2的值, 若a2+b2=c2,则此三角形是直角三角形; 若a2+b2<c2,则此三角形是钝角三角形; 若a2+b2>c2,则此三角形是锐角三角形. 2、互逆命题表明两个命题在形式上的关系,将一个命题的题设和结论互换 即可得到它的逆命题,当原命题成立时,它的逆命题不一定成立,即互逆 的两个命题不一定同真或同假. 3、已知一三角形的三边的长度时,首先应对该三角形进行判断,判断最长 边的平方是否等于其余两边的平方和,如何满足这一条件则此三角形为直 角三角形.

人教版八年级下册 17.2 勾股定理的逆定理 课件 (共15张PPT)

人教版八年级下册 17.2 勾股定理的逆定理   课件 (共15张PPT)

知识点一:勾股定理逆定理的实际应用
学以致用
1.我国南宋著名数学家秦九韶的著作《数书九章》里记载有
这样一道题目:“问有沙田块,有三斜,其中小斜五里,中斜
十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一
块三角形沙田,三条边长分别为5里、12里13里,问这块沙
田面积有多大?题中的“里”是我国市制长度单位,1里=
7
• 解:设AD=x,则CD=10-x.
• 在 RtABD 中,

DB2 AB2 AD2
在RtCDQ中,
DB2 CQ2 CD2
62 x2 82 (10 x)2
解得: x 3.6
AD长为6.4n mile
8
知识点二:勾股定理逆定理在几何中的应用
3.如图,在四边形ABCD中,AB=8,BC=6,AC=10,
①若∠C- ∠B= ∠A,则△ABC是直角三角形;
②若c2=b2-a2,则△ABC是直角三角形,且∠C=90°;
③若(c+a)(c-a)=b2,则△ABC是直角三角形;
④若∠A:∠B:∠C=5:2:3,则△ABC是直角三
角形.
以上命题中的假命题个数是( A )
A.1个
B.2个
C.3个
D.4个
4.已知a、b、c是△ABC三边的长,且满足关系式 c2 +a2 - b2 + c - a = 0 ,则△ABC的形状是
典例讲评
解:根据题意: PQ=16×1.5=24 PR=12×1.5=18 QR=30
∵242+182=302, 即 PQ2+PR2=QR2 ∴∠QPR=90°
由”远航“号沿东北方向航行可知,∠1=45°.所以∠2=45°,

勾股定理的逆定理--教学设计

勾股定理的逆定理--教学设计

17.2勾股定理的逆定理(第1课时)一、内容和内容解析1.内容勾股定理的逆定理证明及简单应用。

2.内容解析勾股定理的逆定理:如果三角形的三边长a 、 b 、 c满足a2+b2=c2, 那么这个三角形是直角三角形。

勾股定理的逆定理是利用边长关系来判定三角形是直角三角形的一种方法。

本节课的教学重点:探究并证明勾股定理的逆定理。

二、目标和目标解析1.目标(1)理解勾股定理的逆定理,并能运用它解决一些简单的实际问题。

(2)经历“实验操作——猜想——论证”的定理探究过程,体会“构造法”证明数学命题的基本思想。

(3)会用三角形三边的数量关系来判断三角形是否是直角三角形,体验数与形的内在联系。

2.目标解析经历勾股定理的逆定理的探究及证明过程,并理解通过构造一个直角三角形,证明此三角形和原三角形全等,从而证明三角形为直角三角形的方法,能用勾股定理的逆定理来判断一个三角线是直角三角形。

三、学生学情分析尽管已到八年级下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距。

证明勾股定理的逆定理的实质,是通过a2+b2=c2证明三角形中有一个角是90°,直接证明结论很困难,但学生学过全等三角形,可以先构造一个直角三角形,使得它的直角边分别为a,b,如果两个三角形全等,由全等三角形的对应角相等可知这个三角形是直角三角形,这种方法学生首次见到,较难理解。

基于以上分析,可以确定本节课的教学难点为:用“同一法”证明勾股定理的逆定理。

难点:探究勾股定理的逆定理的推导方法。

四、教学问题诊断分析:在教学中,我采用直观教学,多媒体等手段,开展以探究活动为主的教学模式,边设疑边操作,边讨论,启发学生提出问题,分析问题,进而解决问题,从而达到突出重点的目的。

勾股定理的逆定理的证明关键是构建全等的直角三角形,教学中采取了从特殊到一般、从动手操作到推理证明的顺序,以问题串的形式,使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的,更有利于突破难点。

《勾股定理的逆定理》PPT课件(第1课时)

《勾股定理的逆定理》PPT课件(第1课时)
的逆定理,这个三角形是直角三角形,且∠C是直角. (2)∵132+142=365,152=225,∴132+142≠152,不符合勾股定
理的逆定理,∴这个三角形不是直角三角形.
总结:根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长的平方.
巩固练习
D
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为
斜边.∴∠AFE=90°,即AF⊥EF.
课堂小结
勾股定理 的逆定理
内容 作用 注意
如果三角形的三边长a 、b 、c满
下列各组线段中,能够组成直角三角形的一组是( D )
A. 1,2,3
B. 2,3,4
C. 4,5,6
D. 1, 2, 3 C
满足下列条件的三角形中,不是直角三角形的是( C )
A.三个内角比为1:2:1
C.三边之比为 3 : 2 : 5
B. 三边之比为1:2: 5 D. 三个内角比为1:2:3
探究新知 考 点 2 勾股定理的逆定理和乘法公式判断三角形
b
根据勾股定理,则有 A1B1 2=B1C1 2+C1A1 2=a2+b2. B
B
∵a2+b2=c2, ∴A1B1 =c, ∴AB=A1B1.
A1
在△ABC和△A1B1C 1中,
aC
BC=B1C1,
b
CA=C1A1, AB=A1B1.
B1 a C1
∴∆ABC ≌ ∆A1B1C1. ∠C=∠ C1 =90°.

初中数学_勾股定理的逆定理(1)教学设计学情分析教材分析课后反思

初中数学_勾股定理的逆定理(1)教学设计学情分析教材分析课后反思

勾股定理的逆定理(1)教学设计教学设计思路本节从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方).从而发现画出的三角形是直角三角形.猜想如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,即教科书中的命题2,把命题2的条件、结论与上节命题1的条件、结论作比较,引出逆命题的概念。

然后学习勾股定理逆定理的证明,经历证明勾股定理逆定理的过程,得出命题2是正确的,引出勾股定理的逆定理的概念,最后是利用勾股定理的逆定理解决实际问题的例子,可以进一步理解勾股定理的逆定理,体会数学与现实世界的联系。

教学目标1.知识与技能:(1)理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

(2)掌握勾股定理的逆定理,并能应用勾股定理的逆定理判定一个三角形是不是直角三角形。

2.过程与方法(1)通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程。

(2)通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用。

(3)通过对勾股定理的逆定理的证明,体会数形结合方法在问题解决中的作用,并能应用勾股定理的逆定理来解决相关问题。

3.情感态度(1)通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐与辨证统一的关系(2)在探索勾股定理的逆定理的活动中,通过一系列的富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

教学方法启发引导、分组讨论,合作探究教学媒体多媒体课件演示。

教学过程设计(一)创设问题情境,引入新课大家思考一下有没有其他的方法来说明一个三角形是直角三角形呢?前面我们学习了勾股定理,可不可以用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?(二)讲授新课活动1问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

人教版八年级数学下册_2021春《第1课时_勾股定理的逆定理》教学设计

人教版八下17.2.1勾股定理的逆定理(第1课时)教学设计教学内容解析教学流程图地位与作用在证明一个三角形是直角三角形时,之前都是从角的角度进行证明,三角形勾股定理的逆定理则是从边的数量关系的角度进行证明.通过对勾股定理及其逆定理的学习,加深对性质和判定之间关系的认识.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,互逆命题和互逆定理是几何中的重要概念.概念解析勾股定理的逆定理是通过三角形边的数量关系判定一个三角形是直角三角形,是直角三角形的判定定理.思想方法从特殊到一般的探索勾股定理的逆定理,在寻找证明思路的过程中蕴含着逻辑推理及转化思想.知识类型勾股定理的逆定理是原理与规则类知识,通过探索去发现图形的性质,提出一般的猜想,证明勾股定理逆定理.教学重点探索勾股定理的逆定理.教学目标解析教学目标1.探索勾股定理的逆定理,运用勾股定理的逆定理解决简单的问题.2.结合具体实例,了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.目标解析目标1达成的标志是能通过画图探究或从逆命题的角度,猜想勾股定理逆定理,并用文字语言、符号语言、图形语言叙述勾股定理逆定理.能证明勾股定理逆定理.记住一些简单的勾股数,并能根据勾股定理的逆定理判断一个三角形是否是直角三角形.目标2达成的标志是会举例说明逆命题和逆定理的概念,以及性质定理和判定定理的关系.能举例说明原命题和逆命题不一定同时成立.能写出一个命题的逆命题,并判断这个逆命题是否成立.教学问题诊断分析具备的基础学生能运用勾股定理进行简单的计算,经历了探究勾股定理的过程,学习过其他图形的性质和判定,能体会性质与判定的关系.与本课目标的差距分析学生对利用计算证明几何结论比较陌生.存在的问题学生难以想到勾股定理逆定理的证明方法,对于没有写成“如果…那么…”形式的命题,在叙述它的逆命题时有时会感到困难.应对策略勾股定理的逆定理的证明关键是构建全等的直角三角形,教学中采取了从特殊到一般、从动手操作到推理证明的顺序,以问题串的形式,使学生在动手操作的基础上和合作交流的良好氛围中.通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的,更有利于突破难点.教学难点证明勾股定理的逆定理.教学支持条件分析准备直角边长为3cm,4cm的直角三角形,用来和画出来的三边长为3cm、4cm、5cm的三角形进行比较,看是否能够重合,从而验证勾股定理的逆定理.利用《几何画板》或图形计算器画已知边长的三角形,度量最大角,发现勾股定理的逆定理.教学过程设计课前检测1.在直角三角形中,有两边分别为3和4,则第三边是()A. 1B. 5C.D. 5或2.如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上作法中能证明△POM≌△PON根据的是()A. SSSB. SASC. AASD. HL3.写出命题“两条直线相交,只有一个交点”的题设部分和结论部分,判断它是真命题还是假命题,并说明理由.设计意图:复习勾股定理的内容为本节课勾股定理逆定理做准备,全等的证明过程为证明勾股定理逆定理做准备,命题的相关概念为学习互逆命题、互逆定理做准备.新课学习1.探究新知,得到猜想方案一:基于测评,学生对于命题的相关概念遗忘较严重.问题1:我们知道,对于一个直角三角形,已知两条边的长度利用勾股定理可以求出直角三角形的第三边,那么当一个三角形满足什么条件时它是直角三角形?师生互动设计:教师给学生一定的时间思考问题,然后视学生情况以下列问题引导学生进行思考.学生大部分回答①有一个内角是90°;②一个三角形有两个角的和是90°,那么这个三角形是直角三角形.教师总结我们知道,在三角形中,如果有一个角是90°,或两个锐角和为90°,那么这个三角形就为直角三角形,这是从角度的方面判定直角三角形,本节课,我们将学习如何从边的角度判定一个三角形是直角三角形.设计意图:先提出目标性问题,引发学生思考,再逐步探究解决.问题2:实际上,刚才老师提的那个问题,在很久之前的古埃及人已经有了答案,看看他们是怎么做的.在古代,没有直角尺、圆规、量角器等作图工具,人们是怎样得到一个直角的呢?方法:把一根长绳打上13个等距的结,把一根绳子分成等长的12段,然后以3个结间距,4个结间距,5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.按照这种方法真的能得到一个直角吗?设计意图:介绍前人经验,引发思考,让学生感受数学来源于生活,激发学生学习兴趣.合作探究1:接下来我们也按照古人的方法画一画,请同学们组内合作完成合作探究部分,要求组内每位同学完成一幅作图.师生互动设计:学生合作活动1:(小组内合作完成).1.画图:画出边长分别是下列各组数的三角形(单位:厘米)A:3、4、5 ;B:2.5、6、6.5 ;C:3、4、6 ;D:6、8、102.测量:用你的量角器分别测量一下上述各三角形的最大角的度数,并记录下来.3.判断:请判断一下上述你所画的三角形的形状.4.找规律:每组给出的三边之间具有怎么样的数量关系?5.你能得到什么猜想?你的猜想是__________________________.学生分小组回答问题.追问1:C组作图当两边的平方和小于第三边时,这个三角形是钝角三角形,若两边的平方和大于第三边时,这个三角形又是什么三角形呢?追问2:教师适当动画展示,通过老师的动画演示,和同学们的猜想一致,如果给出任意一个三角形,三边长为a、b、c,这三边之间满足什么关系,就构成了直角三角形?结合图形,你能说出这个猜想命题吗?猜想:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.设计意图:教学中让学生画三角形,测量边长,然后计算边长的平方,并分析最长边的平方和其它两边平方和之间的关系,最后引导得出结论.让学生充分经历测量——计算——归纳——猜想等几何定理的探索过程.方案二:基于测评,学生对于命题的相关概念掌握情况良好.问题1:怎样判定一个三角形是直角三角形呢?师生互动设计:学生可能无从回答这个问题.或者从角的关系入手回答.追问1:回忆一下我们学习等腰三角形的过程,学习完了等腰三角形我们学习了什么?是如何进行学习的?学生回答“学习等腰三角形的判定”,通过把等腰三角形的性质中的题设和结论互换,得到等腰三角形判定的猜想.追问2:你还学习过哪些将题设和结论互换得到的定理呢?师生互动设计:学生思考后回答平行线的性质和判定也是将题设和结论互换得到的.追问3:你能从性质和判定的关系出发思考一下怎样判定一个三角形是直角三角形吗?师生互动设计:学生猜想将勾股定理的题设和结论互换得到直角三角形的判定.猜想:如果三角形的三边长a、b、c满足a2+b2=c2 , 那么这个三角形是直角三角形.设计意图:引导学生从研究一个图形的性质和判定的角度入手进行思考,感受性质和判定的关系,体会互逆命题的关系,从而得到猜想.2.证明猜想,得到定理问题3:我们看到这个猜想和勾股定理的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做逆命题.我们得到的这个猜想是不是正确的呢?我们要进行证明.如何证明这个命题呢?师生互动设计:学生先独立思考,然后教师视学生情况直接让学生分析或以下列问题引导.追问1:对于这个猜想我们需要证明的是什么?通过什么证明?师生互动设计:学生回答一个三角形是直角三角形.通过三边的关系进行证明.设计意图:检测学生是否真的明确证明对象.追问2:那么满足什么条件的三角形是直角三角新呢?师生互动设计:学生回答一个内角是90°.设计意图:将证明对象聚焦到三角形的构成元素.追问3:如何证明一个角是90°?师生互动设计:学生感觉到困难.追问4:如果已经有一个三角形是直角三角形呢?师生互动设计:学生回答只需要运用全等进行证明即可.设计意图:帮助学生理清证明对象渗透证明方法.合作探究2:作图:1.三边长度为3cm,4cm,5cm的三角形ABC;2.以3cm,4cm为直角边的直角三角形A'B'C',并剪下△A'B'C',放在△ABC上,两个三角形是否重合?师:如果老师把边长是3、4、5的三角形换成边长分别为a、b、c,且满足a2+b2=c2,你会证明这个三角形是直角三角形么?几何推理论证:已知:在△ABC中,AB=c,BC=a,CA=b,并且a2+b2=c2求证:∠C=90°.(探究的关键是构建一个直角边是a、b的Rt△A’B’C’,然后和△ABC比较!于是画一个Rt△A’B’C’,使∠C’=90°,A’C’=b,B’C’=a)证明 : 作△A’B’C’,使∠C’=90°,A’C’=b,B’C’=a,如图,那么A’B’2=a2+b2(勾股定理)又∵a2+b2=c2(已知)∴A’B’2= c2,即A’B’=c (A’B’>0)∴△ABC≌△A’B’C’(SSS)∴∠C=∠C’=90°,∴△ABC是直角三角形.当我们证明了命题2是正确的,那么命题就成为一个定理.并且这个命题的题设和结论和勾股定理的题设和结论相反,我们就称之为勾股定理逆定理,利用这个定理可以判定一个三角形是否为直角三角形.一般地原命题成立时,它的逆命题可能成立也可能不成立.像勾股定理和它的逆定理这样的两个互逆命题都是成立的,我们称之为互逆定理.设计意图:引导学生分组画三边长度为3cm,4cm,5cm的三角形和3cm,4cm 为直角边的直角三角形.让学生自然联想到三角形全等这一工具,为构造直角三角形,证明当前三角形与一个直角三角形全等做好铺垫,从而证明当前三角形是直角三角形,让学生体会这种证明思路的合理性,经历从特殊到一般的探究过程,从而突破本节课的教学难点.实际应用归纳总结3.定理运用,加深理解【例题1】判断以下线段组成的三角形是不是直角三角形:(1)a=15,b=17,c=8;(2)a=13,b=14,c=15;师生互动设计:学生计算并判断三角形是否为直角三角形,教师进行适当点拨.关注学生能否进一步理解勾股定理的逆定理的用处,以及能否运用几何语言规范书写过程.介绍勾股数,像15、8、17这样,能够成为直角三角形三条边长度的三个正整数,称为勾股数.设计意图:通过练习帮助学生把陈述性的定理转化为认知操作,让学生学会用勾股定理的逆定理判断一个三角形是直角三角形.【例题2】说出下列命题的逆命题.这些命题的逆命题是真命题吗?(1)两条直线平行,内错角相等.(2)对顶角相等.(3)线段垂直平分线上的点到线段两端点的距离相等.师生互动设计:学生独立思考并完成回答,教师关注学生如何写出命题的逆定理,对互逆命题关系及真假性的理解,体会原命题成立但是逆命题不一定成立.归纳总结4.课堂小结,有效提升教师引导学生对以下问题进行反思,回顾本节课内容:1.勾股定理的逆定理的内容是什么?它有什么作用?2.原命题、逆命题之间有什么关系?什么是互逆定理?3.我们证明勾股定理的逆定理的思路是什么?设计意图:引导学生回顾和理解勾股定理的逆定理,明确其基本应用.体会互逆命题的有关知识.引导学生回顾和体会证明勾股定理逆定理的基本思路.人教版八下17.2.1勾股定理逆定理(第1课时)目标检测一、选择题1.已知三角形三条边分别是1,,2,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.若a,b,c为三角形的三边,则下列各组数据中,不能组成直角三角形的是()A.a=8,b=15,c=17B.a=3,b=5,c=4C.a=4,b=8,c=9D.a=9,b=40,c=41二、填空题3.下列命题:①对顶角相等;②等腰三角形的两个底角相等;③两直线平行,同位角相等.其中逆命题为真命题的有:_________________(请填上所有符合题意的序号).4.已知∆ABC中,BC=41,AC=40,AB=9,则此三角形为____________三角形,____________是最大角.三、解答题5.在△ABC中,AB=c,BC=a,CA=b,判断由下列a,b,c组成的三角形是不是直角三角形;如果是,请指出哪个角是直角:(1)a=15,b=8,c=17;(2)a=13,b=15,c=14.。

人教版八年级下册数学:17.2.2-勾股定理的逆定理课件


过了2秒后行驶了50米,此时测得小汽车与车速检测仪
间的距离为40米. 问:2秒后小汽车在车速检测仪的哪
个方向?这辆小汽车超速了吗?
小汽车在车 速检测仪的2秒后
你觉的此题解对了吗?
50米
小汽车
北偏西60° 方向 25米/秒=90千米/时 40米 >70千米/时∴小汽车超速了
30米 北 30°
60°
车速检测仪
∠B=90°
B
答:C在B地的正北方向.
13cm
A 12cm
2、有一电子跳蚤从坐标原点O出发向正东方向跳1cm,
又向南跳2cm,再向西跳3cm,然后又跳回原点,问电
子跳蚤跳回原点的运动方向是怎样的?所跳距离是多
少厘米?
y
电子跳蚤跳回原点 的运动方向是
东北方向;
所跳距离是 2 2 厘
米.
O1 x
22 2 2 2
(1)类似这样的关系6,8,10;9,12,15是否 也是勾股数?如何验证?
(2)通过对以上勾股数的研究,你有什么样的 猜想?
结论:若a,b,c是一组勾股数,那么ak,bk,ck (k为正整数)也是一组勾股数.

Q
30
R S 东 12×1.5=1485° 16×1.5=24 P
港口
解:根据题意画图,如图所示:
N
PQ=16×1.5=24
Q
PR=12×1.5=18
30
S
QR=30 ∵242+182=302,
R
16×1.5=24
12×1.5=18 45°45°
即 PQ2+PR2=QR2 ∴∠QPR=900
P
E
3
3、小明向东走80m后,又向某一方向走60m后,再沿

《勾股定理的逆定理》优质公开课1

人教版数学八年级下册
第十七章
17.2.1 勾股定理的逆定理
学习目标
1.能利用勾股定理的逆定理判定一个三角形是 否为直角三角形.
2.灵活运用勾股定理及其逆定理解决问题. 3.理解原命题、逆命题、逆定理的概念及关 系.
导入新知
同学们,古埃及人曾经用下面的 方法画直角:将一根长绳打上等距离 的13个结,然后用桩钉成一个三角形 (如图),他们认为其中一个角便是直 角.你知道这是什么道理吗?
新知小结
用数学几何知识解决生活实际问题的关键是:建模 思想,即将实际问题转化为数学问题;这里要特别注意 弄清实际语言与数学语言间的关系;如本例中:“点与 点之间的最短路线”就是“连接这两点的线段”,“点 与直线的最短距离”就是“点到直线的垂线段的长”.
巩固新知
1 如果三条线段长a,b,c满足a2=c2–b2,这三 条线段组成的三角形是不是直角三角形?为 什么?
导引:根据题目要求,先判断原命题的真假,再将原命题 的题设和结论互换,写出原命题的逆命题,最后判 断逆命题的真假.
解:(1)原命题是真命题.逆命题为:如果两条直线只有 一个交点,那么它们相交.逆命题是真命题.
(2)原命题是假命题.逆命题为:如果a2>b2,那么a >b.逆命题是假命题.
(3)原命题是真命题.逆命题为:如果两个数的和为 零,那么它们互为相反数.逆命题是真命题.
A.1个 便是直角.你知道这是什么道理吗?
B.2个
C.3个 D.4个
合作探究
知识点 3 勾 股 数
1. 勾股数:能够成为直角三角形三条边长的三个 正整数. 常见的勾股数有:3,4,5;5,12,13; 8,15,17;7,24,25;9,40,41;….
2.判断勾股数的方法: (1)确定是否是三个正整数; (2)确定最大数; (3)计算:看较小两数的平方和是否等于最大数的

新人教版初中数学八年级下册17.2.1 勾股定理的逆定理


8.(2018·南通)下列长度的三条线段能组成直角三角形的是( A )
A.3,4,5
B.2,3,4
C.4,6,7
D.5,11,12
9.(2019·益阳)已知 M,N 是线段 AB 上的两点,AM=MN=2, NB=1,以点 A 为圆心,AN 长为半径画弧;再以点 B 为圆 心,BM 长为半径画弧,两弧交于点 C,连接 AC,BC,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
答案显示
1.如果两个命题的题设和结论刚好相反,那么这样的两个命题 叫做__互__逆___命__题___,如果把其中一个命题叫做原命题,那么 另一个叫做它的__逆__命__题____.
2.一般地,如果一个定理的逆命题经过证明是正确的,那么它 也是一个定理,称这两个定理互为_逆__定___理__.
3.下列命题的逆命题正确的是( A ) A.两条直线平行,内错角相等 B.若两个实数相等,则它们的绝对值相等 C.全等三角形的对应角相等 D.若两个实数相等,则它们的平方也相等
17.(2019·河北)已知:整式 A=(n2-1)2+(2n)2,整式 B>0. 尝试 化简整式 A. 解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1 =(n2+1)2.
发现 A=B2,求整式 B. 解:∵A=B2,B>0,∴B=n2+1.
联想 由上可知,B2=(n2-1)2+(2n)2,当 n>1 时,n2-1,2n,
(30°,60°,45°)的和的形式; (2)用旋转法将△CPB 绕点 C 顺时针旋转 90°到△CP′A 的位置.
解:如图,将△CPB 绕点 C 顺时针旋转 90°得△CP′A,则 P′C =PC=2,P′A=PB=1,∠BPC=∠AP′C,连接 PP′. 因为∠PCP′=90°,所以 PP′2=22+22=8. 又因为 P′A=1,PA=3, 所以 PP′2+P′A2=8+1=9,PA2=9. 所以 PP′2+P′A2=PA2. 所以∠AP′P=90°. 易知∠CP′P=45°, 所以∠BPC=∠AP′C=∠AP′P+∠CP′P=90°+45°=135°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

猜想: 命题2
如果三角形的三边长a、b、c满足下 面的关系a2+b2=c2,那么这个三角形是直角三角形。
互逆命题:
两个命题中, 如果第一个命题的题设是第 二个命题的结论, 而第一个命题的结论又是第 二个命题的题设,那么这两个命题叫做互逆命 题. 如果把其中一个叫做原命题, 那么另一个叫 做它的逆命题.
(1)等腰三角形的两底角相等
原命题:如果一个三角形是等腰三角形,那么这个 三角形的两底角相等。
逆命题:如果一个三角形的两底角相等,那么这个 三角形是等腰三角形。
原命题: 1、同位角相等两直线平行。 原命题的逆命题是:两直线平行同位角相等。 原命题: 2、如果天空在下雨,那么地面是湿的。
原命题的逆命题是:如果地面是湿的,那么天空在下雨。 原命题:3、对顶角相等。
原命题的逆命题是:如果两个角相等, 那么这两个角是对顶角。
写出下列命题的逆命题并判断它们是否成立:
1、你知道判断一个三角形是直角三角 形的方法吗?
有一个角为直角的三角形是直角三角形。 2、勾股定理的内容是什么?请找出它的题 设和结论。
• 据说,几千年前的古埃及人用如图的方法画直角: 把一根长绳打上等距离的13个结,然后,以3个 结、4个结、5个结的长度为边长,用木桩钉成一 个三角形,其中一个作便是直角。知道为什么吗?
A
A′
b C B′ a
b
C′
(2 )
互逆定理: 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互 逆定理, 其中一个叫做另一个的逆定理.
原命题:猫有4只脚
(正确) 逆命题:有4只脚的是猫 (不正确) 原命题:等边三角形的三边相等。 (正确)
(正确) 逆命题:三边相等的三角形是等边三角形。 (1)任何一个命题都有逆命题; (2)原命题正确,逆命题不一定正确;原命题不正 确,逆命题可能正确。 (3)原命题与逆命题的关系是题设和结论相互转换
• 这节课我们一起来探讨这个问题,相信同学们会感兴趣的.
学习目标:
你明确任务了吗?
1、探索并掌握直角三角形判别思想,会应
用勾股逆定理解决实际问题. 2、经历直角三角形判别条件的探究过程, 体会命题、定理的互逆性,掌握推理数学意识. 3、 培养数学思维以及合情推理意识,感悟 勾股定理和逆定理的应用价值。 学习重点:理解并掌握勾股定理的逆定理,并会 应用;互逆命题,原命题、逆命题的 有关概念及关系。 学习难点:理解勾股定理的逆定理的推导。
学习方法:通过主动探究、合作交流,注意数形结合
来分析、解决问题。
画一画:
• 用圆规、直尺作△ABC,使AB=5cm, AC=4cm,BC=3cm,如图,量一量∠C, 它是90°吗? A
5
B 4 ∠C是直 角吗?
3
C
• 再画一个△ABC,使它的三边长分别是2.5cm、6cm、6.5cm, 这个三角形有什么特征? • 为什么用上面的三条线段围成的三角形,就一定是直角三角形 呢?它们的三边有怎样的关系?
3.给你一根带有刻度的皮尺,你如何用它来判断课桌面 的角是直角?用这种办法能判断柱子是否与地面垂直吗?
通过本节课的学习,你有哪些收获? 还有什么困惑?
1.勾股定理的逆定理.
2.勾股定理与它的逆定理之间有何关系?
3.勾股定理的逆定理是如何证明的? 4.应用该定理的基本步骤有哪些?
思考并回答下列命题的逆命题:
归纳总结: 通过上面的证明可以得到如下定理.
• 勾股定理的逆定理 如果三角形两边的平 方和等于第三边的平方,那么这个三角形 A 是直角三角形. 几何符号语言:
b
c
C
B
如图△ABC中,
逆定理 定理
a
a2+b2=c2
△ABC是 直角三角形
例1:判断由线段a、 b 、 c 组成的三角形是不是直角三 角形: (1)a=15, b=8, c=17; (2) a=13, b=14,c=15。 解: (1) a 2 b2 152 82 289 c 2 172 289
例如:两直线平行,同位角相等
原命题:如果两条直线平行,那么同位角相等。
题设
结论
逆命题:如果同位角相等,那么两直线平行。
猜想: 命题2
如果三角形的三边长a、b、c满足下 面的关系a2+b2=c2,那么这个三角形是直角三角形。
已知:在△ABC中,AB=c,BC=a,AC=b, 并且a2+b2=c2,如图(1). 求证:∠C=90°. 证明: 作△A’B’C’,使∠C’=90°, A’C’=b,B’C’=a,如图(2), 那么A’B’2=a2+b2.(勾股定理) 又∵ a2+b2=c2,(已知) ∴ A’B’2=c2,A’B’=c (A’B’>0) c 在ABC和A’B’C’中, ∵ BC=a=B’C’, a B CA=b=C’A’, (1) AB=c=A’B’, ∴ △ABC≌△A’B’C’(SSS) ∴ ∠C=∠C’=90°, ∴ △ABC是直角三角形.
这个三角形是直角三角 形
a b c
2 2
2
(2) a 2 b2 132 142 365
a 2 b2 c 2
c 2 152 225
这个三角形不是直角三 角形
方法归纳:两条最短边的ຫໍສະໝຸດ 方和是否等于最长边的平方。学会了吗?
1.判断下列三个边长组成的三角形是不是直角三角形? (1)a=2,b=3,c=4. (2)a=9,b=7,c=12. (3)a=25,b=20,c=15. 2.如果三条线段长a、b、c满足a,这三条线段组成的三 角形是不是直角三角形?为什么?
相关文档
最新文档