低压熔断器和自动空气开关的选择计算_上_

低压熔断器和自动空气开关的选择计算_上_
低压熔断器和自动空气开关的选择计算_上_

如何选择熔断器

(1)熔断器的安秒特性 熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短。而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。因此对熔体来说,其动作电流和动作时间特性即熔断器的安秒特性,为反时限特性,如图所示。 图熔断器的安秒特性 每一熔体都有一最小熔化电流。相应于不同的温度,最小熔化电流也不同。虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的最小熔断电流与熔体的额定电流之比为最小熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流12.5A以下时不会熔断。熔断电流与熔断时间之间的关系如表1-2所示。 从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。 表1-2熔断电流与熔断时间之间的关系 (2)熔断器的选择 主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。通常选用铅锡合金熔体的RQA系列熔断器。对于较大容量的电动机和照明干线,则应着重考虑短路保护和分断能力。通常选用具有较高分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器。 熔体的额定电流可按以下方法选择: 1)保护无起动过程的平稳负载如照明线路、电阻、电炉等时,熔体额定电流略大于或等于负荷电路中的额定电流。 2)保护单台长期工作的电机熔体电流可按最大起动电流选取,也可按下式选取: IRN ≥(1.5~2.5)IN 式中IRN--熔体额定电流;IN--电动机额定电流。如果电动机频繁起动,式中系数可适当加大至3~3.5,具体应根据实际情况而定。 3)保护多台长期工作的电机(供电干线) IRN ≥(1.5~2.5)IN max+ΣIN IN max-容量最大单台电机的额定电流。ΣIN其余.电动机额定电流之和。 (3)熔断器的级间配合 为防止发生越级熔断、扩大事故范围,上、下级(即供电干、支线)线路的熔断器间应有良好配合。选用时,应使上级(供电干线)熔断器的熔体额定电流比下级(供电支线)的大1~2个级差。 常用的熔断器有管式熔断器R1系列、螺旋式熔断器RLl系列、填料封闭式熔断器RT0系列

负荷开关熔断器组合电器选型中问题.doc

负荷开关熔断器组合电器选型中问题 近年来,在10KV配电变压器的保护和控制开关的选用中,由于负荷开关—熔断器组合电器与断路器相比具有结构简单、操作维护方便、造价低、运行可靠等优点,从而使组合电器获得广泛的应用。在实际应用中,如何正确选用组合电器,负荷开关、熔断器与变压器如何合理选配参数,是关系到能否发挥组合电器作用,保证系统安全运行的关键问题。 1、转移电流的校验 由于组合电器的三相熔断器熔体熔化具有时间差,三相熔断器中有一相首先断开后,撞击器动作,此时可能出现另两相熔断器尚未熄弧开断,而撞击器出击形成由负荷开关切断故障电流的现象,即原本由熔断器承担的开断任务转移给负荷开关承担。因此转移电流是指熔断器与负荷开关转换职能时的三相对称电流。低于该值时,首开相电流由熔断器开断,其他两相电流由负荷开关开断。大于该值时,三相电流仅由熔断器开断。转移电流是我们在选用组合电器时应注意的一个重要指标,假如选用不当,负荷开关所能承受的转移电流不足够,将无力承担开断两相短路电流的任务而引起开关的爆炸。 负荷开关通常分为一般型和频繁型两种,以空气为绝缘介质的产气式和压气式负荷开关为一般型,真空和SF6负荷开关为频繁型,不同的负荷开关,转移电流的指标各不相同,一般型负荷开关的转移电流在800~1000A左右,频繁型可达1500~3150A。 配电变压器的容量不同,相应的转移电流也不相同,实际的转移电流可由变压器容量进行估算。一般S9-800?10型配变的转移电流为978A。 按照转移电流的定义及结合负荷开关的开断时间和特性,负荷开关转移电流要避开最大短路电流,控制在最大短路电流的70%以内,即实际转移电流约为978×70%=685A。在分析国产负荷开关和熔断器技术系数的基础上,考虑到产品的离散性,按照转移电流的验算结果,以某市的经验,容量在800KV A以内的变压器,可选用以空气绝缘的一般型负荷开关,容量在800~1250KV A范围内的变压器,一般选用真空或SF6绝缘的频繁型负荷开关。容量大于1250KV A的变压器则要求选用断路器进行保护及控制。从我市组合电器多年的运行情况来看,安全可靠,情况良好,一直未出现由于选配不当而发生事故。 2、交接电流指标的选配 某些负荷开关配备有分励脱扣器供过载等保护跳闸用,即过载时通过继电保

保险丝的选择和使用

保险丝的选择和使用 熔断器是动力和照明线路的一种保护器件,当发生短路或过大电流故障时,能迅速切断电源,保护线路和电气设施的安全(但不能准确保护过负荷)。 一、熔断器的分类 熔断器分为高压和低压两大类。用于3kV-35kV的为高压熔断器;用于交流220V 、380V 和直流220V 、440v 的为低压熔断器。 高压熔断器又分为户内式和户外式两种,型号说明如下: 例如RN1-3 / 150 -200 即为户内式。额定电压3kV、额定电流150A 、断开容量为200MVA。 户内式有RN1、RN2、RN3 、RN5 、RN6 等,户外式有RW3 、RW4 、RW10 等,直流电机车用有RNZ 、RNZ1等。 低压熔断器常见有插入式、管式、螺旋式三大类。又可分为开启式、半封闭式和封闭式三种。 开启式不单独使用,常与闸刀开关组合使用;半封闭管式的一端或两端开启,熔体熔化粒子喷出有一定方向,使用请注意安全;封闭式常见有插入式、无填料管式、有填料管式和有填料螺旋式。低压熔断器字母含义如下:

R-熔断器; C-插入式; L -螺旋式; M-密闭管式; S-快速;T-有填料管式。如RC1、RC1A 为插人式; RM-无填料管式; RT0、RL1、RLS分别为有填料管式和有填料螺旋式。 二、熔断器的选择原则 1.按照线路要求和安装条件选择熔断器的型号。容量小的电路选择半封闭式或无填料封闭式;短路电流大的选择有填料封闭式;半导体元件保护选择快速熔断器。 2.按照线路电压选择熔断器的额定电压。 3.根据负载特性选择熔断器的额定电流。 4.选择各级熔体需相互配合,后一级要比前一级小,总闸和各分支线路上电流不一样,选择熔丝也不一样。如线路发生短路,15 A 和25A 熔件会同时熔断,保护特性就失去了选择性。因此只有总闸和分支保持2-3 级差别,才不会出现这类现象。如一台变压器低压侧出口为RT0 1000 / 800 、电机为RT0 400 / 250 或RT0 400 / 350 ,上下级间额定电流之比分别为3.2 和2.3 故选择性好,即支路发生短路,支路保险熔断不影响总闸供电。 5.熔体不能选择太小。如选择过小,易出现一相保险丝熔断后,造成电机单相运转而烧坏;据统计60%烧坏的电机均系保险配置不合适造成的。

熔断器种类及选择

对熔断器的选择要求是: 在电气设备正常运行时,熔断器不应熔断;在出现短路时,应立即熔断;在电流发生正常变动(如电动机起动过程)时,熔断器不应熔断;在用电设备持续过载时,应延时熔断。对熔断器的选用主要包括类型选择和熔体额定电流的确定。 选择熔断器的类型时,主要依据负载的保护特性和短路电流的大小。 例如,用于保护照明和电动机的熔断器,一般是考虑它们的过载保护,这时,希望熔断器的熔化系数适当小些。所以容量较小的照明线路和电动机宜采用熔体为铅锌合金的RC1A系列熔断器,而大容量的照明线路和电动机,除过载保护外,还应考虑短路时分断短路电流的能力。若短路电流较小时,可采用熔体为锡质的RCIA系列或熔体为锌质的RM10系列熔断器。用于车间低压供电线路的保护熔断器,一般是考虑短路时的分断能力。当短路电流较大时,宜采用具有高分断能力的RL1系列熔断器。当短路电流相当大时,宜采用有限流作用的RT0系列熔断器。 熔断器的额定电压要大于或等于电路的额定电压 熔断器的额定电流要依据负载情况而选择。 ①电阻性负载或照明电路,这类负载起动过程很短,运行电流较平稳,一般按负载额定电流的1~1.1倍选用熔体的额定电流,进而选定熔断器的额定电流。 ②电动机等感性负载,这类负载的起动电流为额定电流的4~7倍,一般选择熔体的额定电流为电动机额定电流的1.5~2.5倍。这样一般来说,熔断器难以起到过载保护作用,而只能用作短路保护,过载保护应用热继电器才行。

熔断器型号规格用途对照大全 第一位:产品字母代号(R-熔断器) 第二位:使用环境(N-户内,W-户外) 第三位:设计序号(1,2,3……) 第四位:额定电压(KV) 第五位:结构特点(H-带有限流电阻,Z-带重合闸,T-带热脱扣器) 第六位:额定电流(A) 1;熔断器型号:QX374-RN2 用于1000v以下电力设备保护 2;PW10户外跌落式熔断器 产品名称:PW10户外跌落式熔断器 产品型号:RW10-100 RW10-200 10KV-15KV 产品概述:PW10户外跌落式熔断器采用IEC60282、GB15166标准!适用于交流50Hz,额定电压为10KV ∽35KV户外架空配电系统上,作为线路或电力变压器的过载和短路保护用。

低压断路器与熔断器如何选择

低压断路器与熔断器如何选择 发表时间:2017-06-14T11:14:41.027Z 来源:《电力设备》2017年第6期作者:汪春生[导读] 合理的选择低压保护电器,满足工程需要,减少运行维护难度和节省投资,保证配电系统运行的稳定性,因此进一步加强对其的研究非常有必要。 (中国电建集团西北勘测设计研究院有限公司陕西西安 710065)摘要:低压熔断器和低压断路器作为保护电器,都有着各自不同的特点和优势,合理的选择低压保护电器,满足工程需要,减少运行维护难度和节省投资,保证配电系统运行的稳定性,因此进一步加强对其的研究非常有必要。在选型过程中我们不但要对配电系统认真分析,掌握器件的各项技术参数,还要借鉴以往的经验不断总结和创新提高系统安全性,从而确保其最大程度发挥其功效。基于此本文分析 了低压断路器与熔断器的选择了。 关键词:低压断路器;熔断器;保护 1 低压断路器与熔断器概述 1.1 低压熔断器的发展 在中国,熔断器由国外引进,在80年代以前,中国的熔断器主要仿制苏联产品,在80年代后,中国的熔断器产业兴起,形成了系列化产品,但技术标准滞后,生产水平一般,产业基础薄弱。代表性产品是RL1和RTO系列。改革开放后熔断器随国外设备的引进而大量涌入,使得中国熔断器开始了新的发展。欧美产品大规模进入,极大的丰富了国内市场,也促进了国内熔断器的进一步发展。 熔断器具有很多的优点和特点,主要是: ①选择性好。上下级熔断器的熔断体额定电流只要符合国标和IEC标准规定的过电流选择比为1.6:1的要求,即上级熔断体额定电流不小于下级的该值的1.6倍,就视为上下级能有选择性切断故障电流;②限流特性好,分断能力高;③相对尺寸较小;④价格较便宜。 但是其也存在一定的缺点,主要是:①故障熔断后必须更换熔断体;②保护功能单一,只有一段过电流反时限特性,过载、短路和接地故障都用此防护;③发生一相熔断时,对三相电动机将导致两相运转的不良后果,当然可用带发报警信号的熔断器予以弥补,一相熔断可断开三相;④不能实现遥控,需要与电动刀开关、开关组合才有可能。 1.2 低压断路器的发展 世界上最早的断路器出现于1885年,它是一种刀开关和过电流脱扣器的组合。就世界范围而言,1905年具有自由脱扣装置的空气断路器诞生了;1930年以来,随着科学、技术的进步,电弧原理的发现和各种灭弧装置的发明,逐渐形成了目前的操作机构;50年代末,电子元件的兴起,产生了电子脱扣器;20世纪末,由于小型化电脑的发展和普及,又有智能型断路器的问世。国内断路器的发展随着市场的不断扩大也进一步发展,拥有了全系列产品和自己的核心技术,而国产的断路器也广泛的应用于各行业中。 断路器具有很多的优点和特点:①具有非选择性断路器上述各项优点;②具有多种保护功能,有长延时、瞬时、短延时和接地故障(包括零序电流和剩余电流保护)保护,分别实现过载、断路延时、大短路电流瞬时动作及接地故障防护,保护灵敏度极高,调节各种参数方便,容易满足配电线路各种防护要求。另外,可有级联保护功能,具有更良好的选择性动作性能;③现今产品多具有智能特点,除保护功能外,还有电量测量、故障记录,以及通信借口,实现配电装置及系统集中监控管理。 但也存在很多问题:①价格很高,因此只宜在配电线路首端和特别重要场所的分干线使用;②尺寸较大。 2 低压熔断器和低压断路器的选择 以下位置应选用选择型的断路器:①变电所低压配电屏引出的母干线,或引出的电流容量较大(如500A以上)的树干式线路的保护;②重要场所的低压配电屏引出的电流容量较大(如300A以上)的放射式线路保护。 以下位置可选用非选择型断路器:①末端回路的保护;②靠近末端回路的上一级分干线的保护,当供给用电设备不多,且偶然停电影响不太大时。 以下位置宜选用熔断器:①配电线路中间各级分干线的保护;②变电所低压配电屏引出的电流容量较小(如300A以下)的主干线的保护;③有条件时也可用作电动机末端回路的保护,但此处不宜选用gG型熔断器(即全范围分断、一般用途的熔断器),而应选用aM型熔断器(即部分范围分断、电动机保护用熔断器)。因aM型熔断器选用的熔断体额定电流比gG型小得多,有利于提高保护灵敏性,也避免了使上级保护电器选得过大。 3 低压断路器和熔断器的级差配合 级差配合是指网络中上端与下端的保护电器之间在电气量动作值的设定上应有一定的落差,在网络中某一点发生短路或过电流故障时,无论保护电器是断路器还是熔断器,保护电器均能按预先规定的动作次序有选择性地动作,不允许越级动作,把事故停电限制在最小范围。(l)低压主开关柜内保护电器的级差配合。低压主开关柜内的保护电器应把供电可靠性放在主要位置,以确保连续供电,由于低压保护电器接近配电变压器,因此要求它既要与配电变压器一次侧的高压熔断器的保护特性配合,又要与下级电器实现全选择性保护配合。(2)终端配电箱内保护电器的级差配合。终端配电箱直接连接用电设备,短路或接地故障时要求尽快甚至瞬时切断电路,无选择性要求。终端配电箱内的低压保护电器应设短路和接地故障保护,而线路末端则不必设短路保护,而是根据所接用电设备需要装设控制电器或为其装设过载保护电器。 4 选择注意事项 在低压供配电系统中,常见的故障主要有以下几个方面:过载、短路、冲击电流、接地故障、电压降及瞬时断电出现的暂态电流等。当故障发生时,为保证无故障部分能正常供电,就必须考虑保护装置之间的协调与配合。在低压配电系统中,过载和短路最常见,一般把电流1.1-10倍的工作电流称为过载,高于10倍时称短路。应区别不同类别的故障,采用带瞬动或短时脱水器的保护装置,切除短路或过电流故障。在做选型时应注意以下几点:①过载区域和短路区域②短路选择性技术a、电流的选择性。上下级断路器保护整定电流具有一定的级差。b、时间的选择性。上级断路器带有短路短延时动能,并与下级有动作时间差。c、逻辑的选择性。通过上下级断路器的区域选择性联锁功能实现完全的选择性d、能量的选择性。上下级断路器额定电流具有一定的级差,利用断路器的脱扣能量不同来实现选择性脱扣。 5 对压熔断器与低压断路器的分析 5.1 压熔断器与低压断路器性能比较

低压熔断器

低压熔断器 学习目标 (1)能正确识别、选择、安装、使用低压熔断器。 (2)掌握其功能、基本结构、工作原理及型号含义。 (3)熟悉其图形符号和文字符号。 学习要点 熔断器的选择。 小思考: 低压熔断器在电路中起什么作用? 熔断器是低压配电系统和电力拖动系统中的保护电器。在使用中,熔断器串接在所保护的电路中,当该电路发生过载或短路故障时,通过熔断器的电流达到或超过了某一规定值,以其自身产生的热量使熔体熔断而自动切断电路,起到保护作用。这样,利用熔体的局部损坏,可以保护整个线路中的电气设备不因遭受过多的热量或过大的电动力而损坏。如图1—1所示为几种常用熔断器的外形。 熔断器的结构 熔断器主要由熔体、安装熔体的熔管和熔座三部分组成,其中熔体是控制熔断特性的关键元件。熔体的材料、尺寸和形状决定了熔断特性。熔体是用一种熔点低(低熔点材料包括铅、锡、锌及铅锡合金)、易熔断,导电性能良好的合金金属丝或金属片制成的,串接在被保护的电路中。在正常情况下,熔体温度低于熔断所必需的温度,熔体不会熔断,相当于普通导线;当发生短路或严重过载时,熔体产生过量的热而熔化,从而切断电路,达到保护的目的。 在机床控制线路中,多选用RL系列螺旋式熔断器。RL1系列螺旋式熔断器,它的结构如图1—5所示,由底座、瓷帽、瓷套、熔断管和上、下接线端组成。熔断管内装有熔体、石英砂填料和熔断指示器(红色)。当熔体熔断时,指示器跳出,可以通过瓷帽的圆形玻璃窗口进行观察。石英砂导热性好、热容量大,填充在熔体周围,能使电弧迅速熄灭。熔体熔断后无法单独更换,只能更换整个熔芯。因此,为了安全工作,电源进线应接在熔断器的下接线端。RL1系列螺旋式熔断器的额定电压为500V。如表1—6所示为RL1系列螺旋式熔断器的主要技术数据。(在熔断管装有石英砂,熔体埋于其中,熔体熔断时,电弧喷向石英砂及其缝隙,可迅速降温而熄灭。为了便于监视,熔断器一端装有色点,不同的颜色表示不同的熔体电流,熔体熔断时,色点跳出,示意熔体已熔断。螺旋式熔断器额定电流为5~200A,主要用于短路电流大的分支电路或有易燃气体的场所。)

熔断器选择原则

熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路. (2)I N熔断器≥IN 线路. (3)熔断器的最大分断能力应大于被保护线路上的最大短路电流。 熔断器在工矿企业的生产过程中和日常生活中主要用于保护低压电器设备,由于使用于不同的电气设备,其容量、大小的选择原则差别很大,在实践中必须严格按照规程规定选择配置。否则,将失去其应有的保护作用。

低压熔断器和断路器的比较和应用实用版

YF-ED-J9013 可按资料类型定义编号 低压熔断器和断路器的比较和应用实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

低压熔断器和断路器的比较和应 用实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1.问题的提出 “都什么年代了,还使用熔断器!”“熔 断器已经过时了!”这话似乎很有道理,但又 是一个实际面对的技术问题。真的,近十多年 来,无论是工业建筑、民用建筑和户外装置的 低压配电系统设计中,使用低压熔断器越来越 少,大多数甚至千篇一律地使用低压断路器; 与之相对应的是低压配电箱中装设熔断器的也 大大减少。在低压配电系统保护电器的应用

中,笔者认为这是一个不正确的或不全面的认识。因此,有必要对熔断器和断路器(以下均指低压)进行一些比较和分析,以能更正确、合理地选用这两种保护电器。 2.配电线路保护和保护电器的发展 2.1配电线路保护要求 低压配电线路,为了防护在发生故障(如过载、短路和接地故障)时危及人身安全(间接接触导致的电击),或是线路过热而导致损坏甚至引起电气火灾,配电线路应有必要的防护措施,以保护线路安全和用电安全。由于低压配电线路遍布各种建筑以致户外各处,发生

快速熔断器的应用

关于快速熔断器的选型应用 熔断器额定电压的选择熔断件额定电流的选择 熔断器的额定电压与电网电压相符,限流熔断器一般不宜降低电压使用,以避免熔体截断电流时,产生的过电压超过电网允许的2。5倍工作电压 ?一般用三相电路的熔断器其额定电压按相应额定线电压选择: 用于单相系统熔断器,其额定电压按最高相电压的115%选择; ?用于三相中性点绝缘系统或谐振接地系统时,因系统可能发生所谓双接地故障,即一个故障点在电源侧而另一个在负载侧,且不同相,此时熔断器的额定电压应按最高线电压选择; ?用于三相中性点直接接地或经阻抗中性点接地系统时,按最高线电压选择?熔断件熔管的额定电流应大于或等于熔体的额定电流: ?熔断件的额定电流应为负载长期工作电流的1.25倍。 ?熔断器安装在三相封闭的柜体中,或单只装在绝缘浇注 的筒内,或三相装在不封闭的柜体中时,皆要考虑适 当降低容量使用。 熔断器开断电流的选择 根据熔断器的保护作用,其量大开断电流应不小于被保护电器电路的最大短路电流;最小熔化电流应不大于被保护电路的最小短路电流. 熔断器的保存和检查熔断器的安装及更换 ?熔断器应储存在干燥合适的场所。 ?对摔落过的或受振动的熔断器在使用前应进行检验(直流电阻,零部件是否完好) ?放置久的熔断器出厂/出库时应进行再次检查其电阻值。 ?安装熔断器时,应紧固所有的零部件,防止接触部分在正常运行时过热. ?对三相安装的熔断件,即使一支动作,其他两支均应更换,因为其它两支虽未损坏,但已接近动作点,已到了易损坏的程度。 ?在更换动作过的熔断件时,应在动作10分钟后更换.如果在熔断件动作后发现管内有烟雾泄出或有噪声现象时,不应更换熔断件,需特熔断件与电源隔离后才

常用电气设备熔断器选择

熔断器的额定电流选择 由于各种电气设备都具有一定的过载能力,允许在一定条件下较长时间运行;而当负载超过允许值时,就要求保护熔体在一定时间内熔断。还有一些设备起动电流很大,但起动时间很短,所以要求这些设备的保护特性要适应设备运行的需要,要求熔断器在电机起动时不熔断,在短路电流作用下和超过允许过负荷电流时,能可靠熔断,起到保护作用。熔体额定电流选择偏大,负载在短路或长期过负荷时不能及时熔断;选择过小,可能在正常负载电流作用下就会熔断,影响正常运行,为保证设备正常运行,必须根据负载性质合理地选择熔体额定电流。 (1) 照明电路 熔体额定电流≥被保护电路上所有照明电器工作电流之和。 (2) 电动机: ①单台直接起动电动机 熔体额定电流=(1.5~2.5)×电动机额定电流。 ②多台直接起动电动机 总保护熔体额定电流=(1.5~2.5)×各台电动机电流之和。 ③降压起动电动机 熔体额定电流=(1.5~2)×电动机额定电流。 ④绕线式电动机 熔体额定电流=(1.2~1.5)×电动机额定电流。 (3) 配电变压器低压侧 熔体额定电流=(1.0~1.5)×变压器低压侧额定电流。 (4) 并联电容器组 熔体额定电流=(1.3~1.8)×电容器组额定电流。 (5) 电焊机 熔体额定电流=(1.5~2.5)×负荷电流。 (6) 电子整流元件 熔体额定电流≥1.57×整流元件额定电流。 说明:熔体额定电流的数值范围是为了适应熔体的标准件额定值。

在3~66kV的电站和变电所常用的高压熔断器有两大类:一类是户内高压限流熔断器, 额定电压等级分3、6、10、20、35、66kV,常用的型号有RN 1、RN 3、RN 5、XRNM 1、XRN T 1、XRN T 2、XRN T3 型, 主要用于保护电力线路、电力变压器和电力电容器等设备的过载和短路;RN2和RN 4型额定电流均为0.5~10A , 为保护电压互感器的专用熔断器。另一类是户外高压喷射式熔断器,此类熔断器在熔体熔断产生电弧时,电弧烧损反白纸产气吹拉长电弧,弧感抗改变相位, 正好电流过零时产生零休,才能开断电路,限流作用不明显。常用的为跌落式熔断器,型号有RW 3、RW 4、RW 7、RW 9、RW 10、RW 11、RW 12、RW 13和PRW系列型等, 其作用除与RN 1 型相同外, 在一定条件下还可以分断和关合空载架空线路、空载变压器和小负荷电流。户外瓷套式限流熔断器RW 10- 35/0.5~50-2000MVA 型中RW10-35/0.5~1-2000MVA为保护35kV电压互感器专用的户外产品。所以根据熔断器的型式和不同的保护对象来选择。 2.2 按工作电压选择 (1) 一般条件: U e≥Uwe 式中: U e——熔断器额定电压 Uwe——安装处电网额定电压 即熔断器的额定电压(kV ) 应不小于熔断器安装处电网额定电压(kV )。 (2) 对于限流型熔断器: 以石英砂作为熔断器填充物的限流型熔断器只能按Ue=Uwe的条件选择, 这种情况下此类熔断器熔断产生的最大过电压倍数限制在规定的2.5 倍相电压之内, 此值并未超过同一电压等级电器的绝缘水平。如果熔断器使用在工作电压低于其额定电压的电网中, 过电压倍数造成威胁可能增大3.5~4。 2.3 按工作电流及保护特性选择 (1) 一般条件: I e≥Ije≥Ig·zd 式中: I e——熔断器熔管的额定电流,A I je——熔断器熔体的额定电流,A I g·zd——回路最大持续工作电流,A 此条件为选择熔断器额定电流的总体要求, 其中熔体额定电流的选择最为重要, 它的选择与其熔断特性有关, 应能满足保护的可靠性、选择性和灵敏度要求。 (2) 具体情况: ①保护配电设备(即35kV 及以下电力变压器) : Ije= K Ie 式中

SF6全绝缘环网柜及负荷开关——熔断器特点通用版

安全管理编号:YTO-FS-PD419 SF6全绝缘环网柜及负荷开关——熔 断器特点通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

SF6全绝缘环网柜及负荷开关—— 熔断器特点通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 SF6全绝缘环网柜或多回路配电柜的技术特点 SF6全绝缘环网柜或多回路配电柜的技术特点主要表现在以下几个方面: (1)模块化设计,各单元模块可任意组合和扩展而无需充放气,便于方案组合及高压计量的设计,适应范围广。SF6全绝缘断路器进出线柜(真空或SF6灭弧)、负荷开关进出线柜、母联柜、计量柜、负荷开关一熔断器组合电器柜,以及TV柜(带开关或不带开关),组合方案可为单单元、两单元、三单元、四单元等紧凑组合,为SF6全绝缘环网柜或多回路配电柜提供了广阔的应用前景。 (2)柜体采用铠装结构,母线室与开关室之间,开关室与电缆室之间均有金属隔板,全绝缘结构的一次部分防护等级可达IP67。

熔断器的选择规范

电流1.2-2倍。 追问: 能说详细点吗 回答: 熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN ≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路.

低压无功补偿回路保护熔断器选择

低压无功补偿回路保护熔断器选择 低压无功补偿柜中补偿回路的熔断器作用,是为了保证整个回路安全可靠的运行,以达到无功补偿的目的,那么电容器(和串联电抗器)作为补偿回路的核心元件,熔断器对它提供可靠的保护性能是非常必要的。由于现行相关标准里对补偿回路保护熔断器的选择没有特别详细的要求,所以在实际应用中大家的选择也不尽一致,有时差别甚至相当悬殊。 在低压配电系统中的负载类型变得越来越复杂的情况下,补偿回路熔断器的选择不能一概而论,要视低压无功补偿的具体类型进行科学的分析和选择。 下面我们根据相关的国家标准和低压无功补偿类型两方面来分析如何合理正确的选择补偿回路的熔断器。 一、相关的国家标准 1、在低压并联电容器标准GB/T12747.1-2004中,对有关电容器最大电流和保护的相关要求和说明如下: 21 最大允许电流 电容器单元应适用于在线路电流方均根值为1.3倍该单元在额定正弦电压和额定频率下产

生的电流下连续运行,过渡过程除外。考虑到电容偏差,最大电容可达1.10CN,故其最大电流可达1.43IN。 这些过电流因素是考虑到谐波、过电流和电压偏差共同作用的结果。 33 过电流 电容器决不可在电流超过第21章中规定的最大值下运行。 34 开关、保护装置及连接件 开关、保护装置及连接件均应设计成能连续承受在额定频率和方均根值等于额定电压的正弦电压下得到的电流的1.3倍的电流。因为电容器的电容可能为额定值的 1.10倍,故这一电流最大值为 1.3×1.10倍额定电流,即为1.43IN 2、在中低压电容器及其成套装置标准GB7251中,有关电容保护熔断器的选择要求如下: 5.3.5 b) 熔断器额定工作电流(方均根值)应按2~3倍单组电容器额定电流选取。 3、在并联电容器装置设计规范GB50227-2008中,有关电容保护熔断器是这样要求的: 5.4 熔断器 5.4.2 用于单台电容器保护的外熔断器的熔丝额

浅析快速熔断器的选型与应用

浅析快速熔断器的选型与应用 本文论述了快速熔断器的选型的原则,并对应用中的需要注意的问题进行了分析。 1,概述 在地铁列车中,牵引和辅助系统主电路的保护是由快速熔断器和高速开关共同承担的。这种设计是基于以下几个方面的考虑: ⑴高速开关具有短路保护、过流保护、过载保护和欠压保护等功能,且具有可频繁操作的优点。但高速开关短路保护的性能不理想,不能将短路电流和分断过电压限制在电路可以承受的范围内。 ⑵快速熔断器具有分断能力强、分断时间短、限流特性好、I2T值小、分断过电压低等优点,可以将短路电流和分断过电压限制在电路可以承受的范围内,是最理想的保护器件。然而熔断器不能重复使用,用一次就得更换。 ⑶电路出现短路故障的几率很小。 将高速开关和熔断器两者结合起来,使两者的优势互补,就能使电路得到有效的保护,又能避免经常更换熔断器麻烦。 在选择高速熔断器时,设计师既要根据被保护电路的特性,分别确定高速开关和快速熔断器参数,还要考虑高速开关与快速熔断器的匹配。如何正确的选择、使用快速熔断器,是系统开发、设计人员必须关注和解决的实际问题。 2,快速熔断器的结构、工作原理和特性 2.1,快速熔断器的结构 熔断器由磁壳、导电板、熔体、石英砂、消弧剂、指示器六部分组成。 熔体的材质为纯银,形状为矩形薄片,且具有圆孔狭颈。如图所示: 图1 快速熔断器熔体的几何形状 2.2,快速熔断器的灭弧原理 快速熔断器的熔体是由纯银制成的,由于纯银的电阻率低、延展性好、化学稳定性好,因此快速熔断器的熔体可做成薄片,且具有圆孔狭颈结构。发生短路故障时,狭颈处电流密度大,故狭颈处首先熔断,并被石英砂分隔成许多小段。这样,由于熔体熔断而形成的电弧就被石英砂分隔成许多小段,电弧电流较小,分布的空间小,易被消弧剂吸收。又由于石英砂是绝缘的,电弧熄灭后立即形成一个绝缘体,将电路分断。 2.3,快速熔断器的特性 2.3.1反时限电流保护特性 熔断器具有反时延特性,即过载电流小时,熔断时间长;过载电流大时,熔断时间短。所以,在一定过载电流和过载时间范围内,熔断器是不会熔断的,可连续使用。

断路器、负荷开关、隔离开关、熔断器、开关柜

1.1 定义 (3) 1.2断路器分类 (3) 1.3 内部附件内部附件 (4) 1.3.1 辅助触头 (4) 1.3.2 报警触头 (4) 1.3.3 分励脱扣器 (5) 1.3.4 欠电压脱扣器 (5) 1.4 外部附件 (5) 1.4.1 断路器电动操作机构 (5) 1.4.2 转动操作手柄 (6) 1.4.3 手柄闭锁装置 (6) 1.5 接线方式 (6) 1.6 基本参数特性 (7) 1.6.1 断路器的基本特性有 (7) 1.6.2 额定运行短路分断能力(Ics) (8) 1.6.3 断路器自由脱扣 (8) 1.7 接线方式 (9) 1.8 控制回路 (9) 1.9 发展状况 (10) 2 隔离开关 (11) 2.1 定义 (11) 2.2 基本介绍 (11) 2.3 主要作用 (11) 2.4 特点 (12) 2.5 应用 (13) 2.6 类型 (13) 2.6.1 低压隔离开关 (13) 2.6.3 高压隔离开关 (14) 2.6.4 高压断路器 (14) 2.7 隔离功能 (15) 2.7.1 隔离开关的选择 (15) 2.7.2 隔离开关的配置 (15) 2.7.3 隔离开关选型 (16) 2.8 改进 (16) 2.9 维护 (17) 2.10 使用过程常见问题 (17) 3 负荷开关 (19) 3.1 定义 (19) 3.3 开关分类 (19) 3.3.1 高压负荷开关 (20) 3.3.2 工作原理 (20) 3.3.3 低压负荷开关 (20) 3.4 主要技术参数 (21)

4.1 定义 (22) 4.2 基本介绍 (22) 4.2.1 简介 (22) 4.3 工作原理 (23) 4.4 特点 (23) 4.5 选择 (23) 4.5.1 分类 (23) 4.5.2 低压管装熔断器分类 (25) 4.6 熔体额定电流的选择 (26) 4.7 熔断器的安秒特性 (27) 4.8 熔断器的级间配合 (28) 4.9 注意事项 (28) 4.10 与断路器的区别 (29) 5 开关柜 (30) 5.1五防 (30) 5.2 开关柜常见分类 (30) 5.2.1 按照电压等级分类 (30) 5.2.2 按照电压波形分类 (30) 5.2.3 按照内部结构分类 (31) 5.2.4 按照用途分类 (31) 5.3 开关柜送电操作程序 (31) 5.3.1 送电操作 (31) 5.3.2 停电(检修)操作 (31) 5.4 开关柜型号及用途 (31) 5.4.1 GGD系列: (31) 5.4.2 GCK系列 (32) 5.4.3 GCS系列: (32) 5.4.4 MNS系列: (33) 5.5.5 MCS系列: (34) 5.6 各种型号开关柜的区别 (35) 5.6.1 GCS,GCK,MNS,GGD开关柜区别 (35) 5.6.2 各种型号开关柜优缺点 (35) 5.7开关柜绝缘缺陷及对策 (37) 5.7.1 常见缺陷及原因 (37) 5.7.2 两点建议 (38) 6 负荷开关、隔离开关和断路器的区别 (38)

熔断器额定电流的选择和使用须知

熔断器额定电流的选择和使用须知 虽说现在使用低压熔断器的越来越少。但笔者认为在农村低压配电装置中装设熔断器作为短路和严重过载保护是十分必要的。这是因为熔断器选择性好,上下级熔断器的熔断体额定电流只要符合IEC标准规定的过电流选择比为1.6:1的要求,即上级熔断体额定电流不小于下级的该值的1.6倍,就视为上下级能有选择性切断故障电流,限流特性好、分断能力高、结构简单、尺寸小、重量轻、使用方便、价格低廉。虽说故障熔断后必须更换熔断体,但对供电要求不高的农村用户,使用熔断器从价格与实用方面考虑,还是不错的选择。选择熔断器主要是选择其熔体的额定电流,熔体的额定电流要根据用电装置的额定电流和工作特点来选择,应做到在额定电流工作时熔体不熔断而在短路或严重过载时保证迅速熔断。笔者参考有关资料结合自己的实践经验就熔断器熔体额定电流的选择方法和使用注意事项介绍如下,希望对农村电工有所帮助。 一、熔断器熔体额定电流的选择 1、照明电路: 白炽灯,熔体额定电流=1.1×被保护电路上所有白炽灯工作电流之和;日光灯和高压水银荧光灯,熔体额定电流:1.5×被保护电路上所有日光灯和高压水银荧光灯工作电流之和。 2、家用电器过流或过负荷保护的熔断器: 通常家庭用电没有独立设置的过载保护,仅设置熔断器代替的,其配置原则是按家用电器全部使用时总电流的1.05~1.15倍来选择。 3、电动机: (1)单台直接起动电动机:熔体额定电流=(1.5~25)×电动机额定电流。注:对不频繁起动的电动机取较小的系数,频繁起动的电动机取较大的系数。 (2)多台小容量电动机共用线路:熔体额定电流=(1.5~2.5)×最大容量的电动机额定电流+所有电动机额定电流之和。 (3)降压起动电动机:熔体额定电流=(1.5~2)×电动机额定电流。 (4)绕线式电动机:熔体额定电流=(1.2~1.5)×电动机额定电流。 4、配电变压器: 低压侧熔体额定电流=(1.0~1.5)×变压器低压侧额定电流;高压侧熔体额定电流:(2~3)×变压器高压侧额定电流(当变压器容量为100~1000千伏安时系数取2,低于100千伏安时系数取大于2小于3的值。使用于高压的熔体必须安装在符合电压等级要求的熔断器中。 5、电力电容器:

快速熔断器的选择及应用

快速熔断器的选择及应用 整流变电是氯碱行业中的重要环节,而快速熔断器在半导体电力整流变电保护中的配置至关重要,一旦设备定型后,快速熔断器的选用会直接影响直流供电的质量和用电的效率等整流变电参数。 电力半导体器件热容量小,在故障状态下必须要有快速熔断器保护,而快速熔断器具有与半导体器件类似的热特性,是一种良好的保护器件。本文涉及的是封闭式有填料式快速熔断器,在运行中没有外部现象。 1 快速熔断器的配置 快速熔断器在半导体电力整流器保护中的配置一般分2类。 1.1 变流臂内部并联支路配置保护式 此类型主要用于大功率和超大功率整流器的保护。当变流臂中某一支路器件因某种原因损坏时(每一支路根据设备功率不同,一般并联几对快速熔断器和半导体整流元件串联而成,图1仅标出1对快速熔断器与半导体整流元件),导致与之串联的快速熔断器保护分断后,一般情况下仅1个器件出故障,并不影响整个整流器的正常运行。目前,唐山三友集团冀东化工有限公司的半导体电力整流器保护中的配置就属于变流臂内部并联支路配置保护式,运行效果很好,如图1所示。

1.2 分相配置总体保护式 此类型主要用于中、小功率整流器的保护。当某一变流臂中的器件因某种原因损坏时,导致该相快速熔断器保护分断后,整流器的保护将自动切断供电电源,停止向整流器供电,氯碱行业不常用该配置,如图2所示。 2 快速熔断器的选用 也称电压电流法。线路变流变压器的线电压应低于快速熔断器的额定电压。经电力半导体器件与快速熔断器串联短路实验验证,以半导体额定电流乘以系数,做为所选用的快速熔断器的额定电流。因快速熔断器的额定电流是有效值,而半导体器件的额定电流是平均值,针对上述第一类配置方案(图1),对第一代产品RS0、RS3系列(我国快速熔断器的发展史可分为4个阶段,第一代是全国联合设计的RS0、RS3系列,参数为480A、750V以下,分断能力为50kA,是一种体积较大、价格低廉、电寿命短的初级产品,目前尚有相当装机量)而言,该系数可按整流管为1.4、晶体管1.2、快速晶体管为1来选配,如ZP1000配1400A快速熔断器。针对上述第二类配置方案(图2),则可依据阀电流Iv以及变流装置的负载特性选择快速熔断器,再按整流器可能产生的最大故障电流,来选择有足够分断能力的快速熔断器,如50kA或 100kA,其中50kA为合格品,100kA为一级品。

相关文档
最新文档