武大数学建模培训:多目标决策模型:层次分析法(AHP)、代数模型、离散

合集下载

层次分析法(AHP法)

层次分析法(AHP法)

一致性检验是层次分析法 中非常重要的步骤,可以 保证分析结果的可靠性
04
CATALOGUE
层次单排序
特征向量法
总结词
通过计算判断矩阵的特征向量来确定各因素权重的方法。
详细描述
特征向量法是层次分析法中确定权重的一种常用方法。它基于线性代数原理,通过计算判断矩阵的特 征值和特征向量,得到各因素的权重值。这种方法能够反映各因素之间的相对重要性,广泛应用于决 策分析和多目标优化等领域。
要点一
总结词
通过计算判断矩阵的最大特征值对应的特征向量来确定各 因素权重的方法。
要点二
详细描述
最大特征值法也是层次分析法中确定权重的一种常用方法 。它基于矩阵论原理,通过计算判断矩阵的最大特征值和 对应的特征向量,得到各因素的权重值。这种方法能够反 映各因素之间的相对重要性,并且在判断矩阵一致性检验 中具有重要作用。最大特征值法在多目标决策、系统评价 等领域有广泛的应用。
03
CATALOGUE
构造判断矩阵
标度定义
标度2
两个元素相比,前者比后者稍 重要
标度4
两个元素相比,前者比后者强 烈重要
标度1
两个元素相比,具有相同的重 要性
标度3
两个元素相比,前者比后者明 显重要
标度5
两个元素相比,前者比后者极 端重要
判断矩阵的构造
01
通过专家咨询、比较等方法,对每一层次各元素相对重要性给 出判断
02
将判断结果整理成矩阵形式
判断矩阵的元素aij表示第i个元素与第j个元素相对重要性的比值
03
判断矩阵的一致性检验
一致性检验是检验各元素 重要性判断是否具有逻辑 一致性
当CR<0.1时,认为判断 矩阵的一致性是可以接受 的;否则,需要对判断矩 阵进行调整

多目标决策分析层次分析法多实例解析模型教案

多目标决策分析层次分析法多实例解析模型教案

四、多目标决策的求解过程
❖ 第一步,提出问题。 ❖ 第二步,阐明问题。 ❖ 第三步,构造模型。 ❖ 第四步,分析评价。 ❖ 第五步,择优实施。
1)提出问题
❖ 第一步,提出问题。目标高度概括。
2)阐明问题
❖ 第二步,阐明问题。使目标具体化,要确定 衡量各目标达到程度的标准。即属性以及属 性值的可获得性,清楚地说明问题的边界与 环境。
③ 具有最优化决策规则的连续型多目标决策 问题
3. 两类多目标决策问题的对照表
多属性决策问题
多目标决策问题
决策变量 方案集
属性集
离散型 X {x1, x2 ,, xm } Y {y1, y2 ,, yn } 或 F { f1, f2 ,, fn}
连续型,x (x1, x2,, xN )
X x | gi (x) 0, i 1,2,, m, x R N
(1) 层次分析法概述
❖ 层 次 分 析 法 ( Analytic Hierarchy Process,简称AHP)是20世纪70年代由 美国学者萨蒂最早提出的一种多目标评价 决策法。
❖ 将决策者对复杂系统的评价决策思维过程 数学化,保持决策者思维的一致性。
❖ 先分解后综合的系统思想
在决策中使用AHP法的优点:
❖ 适用性 选择和判断 反映了对问题的认识 ❖ 简洁性 应用只需掌握简单的数学工具
特征: 分解、判断、综合 ❖ 实用性 定性与定量结合
优化技术 应用范围广 ❖ 系统性 复杂问题
系统的各个组成部分与相互关系
(2) 层次分析法的基本步骤
❖ 建立层次结构模型; ❖ 构造判断矩阵; ❖ 层次单排序及一致性检验; ❖ 层次总排序及一致性检验。
3)构造模型
❖ 第三步,构造模型。选择决策模型的形式, 确定关键变量以及这些变量之间的逻辑,估 计各种参数,并在上述工作的基础上产生各 种备选方案。

AHP(层次分析法)方法、步骤

AHP(层次分析法)方法、步骤
ii. 层次单排序 计算判断矩阵A的最大特征根λmax和其对应的经
归一化后的特征向量W= (w1, w2, …,wn) T
AW= λ W max
由此得到的特征向量W= (w1, w2, …,wn) T 就作 为对应评价单元的权重向量。 λmax和W的计算一般采用幂法、和法和方根法
2009.11
方根法
m
bn aibni i 1
2009.11
(4)评价层次总排序计 算结果的一致性
设:CI为层次总排序一致性指标: RI为层次总排序随机一致性指标。
其计算公式为:CI m aiCIi i 1
CIi为Ai相应的B层次中判断矩阵的一致性指标。 m RI ai RIi i 1
RIi为Ai相对应的B层次中判断矩阵随机一致性指标 并取 CR CI
在单层次判断矩阵A中,当
aij
aik a jk
时,称判断矩阵为一致性矩阵。
进行一致性检验的步骤如下:
(a)计算一致性指标C.I.:C.I. max n ,式中n为判断矩阵阶数。
n 1 (b)计算平均随机一致性指标R.I.
R.I.是多次重复进行随机判断矩阵特征值的计算后取算术平均数得到的 ,下表给出1~15维矩阵重复计算1000次的平均随机一致性指标:
max 4
d3 W23
d4 w24
d5 w25
C.R.=0
C1
C2
C3
d1 d2 d3 d4 d5
2009.11
(3)计算各元素的总权重
准则 权重 方案 d1 d2 d3 d4 d5
C1
0.105
0.491 0.232 0.092 0.136 0.046
C2
0.637
0 0.055 0.564 0.118 0.265

层次分析法AHP课件

层次分析法AHP课件

同样求第3层 方案 对第2层每一元素 准则)的权向量 方案)对第 层每一元素(准则 同样求第 层(方案 对第 层每一元素 准则 的权向量 方案层对C 景色 景色) 方案层对 1(景色 的成对比较阵
1 B1 = 1 / 2 1 / 5 2 1 1/ 2 5 2 1
…Cn
…Bn … λn … wn(3)
-------能源系统分析、城市规划、经济管理、科研评价、决策 能源系统分析、城市规划、经济管理、科研评价、 能源系统分析
二、基本思路
先分解后综合的系统思想: 分解后综合的系统思想: 的系统思想 首先将所要分析的问题层次化:根据问题的性质和要达到的总目标, 首先将所要分析的问题层次化:根据问题的性质和要达到的总目标,将问题分解 成不同的组成因素,按照因素间的相互关系及隶属关系,按不同层次聚集组合, 成不同的组成因素,按照因素间的相互关系及隶属关系,按不同层次聚集组合, 形成一个多层分析结构模型,最终归结为最低层(方案、措施、指标等) 形成一个多层分析结构模型,最终归结为最低层(方案、措施、指标等)相对于 最高层(总目标)相对重要程度的权值或相对优劣次序的问题。 最高层(总目标)相对重要程度的权值或相对优劣次序的问题。
w 1 w 1 w 2 A = w 1 L L w n w 1
w w w w w w
1 2 2 2
L L
w w w w w w
1 n 2 n
n 2
L
n n

• A的秩为 ,A的唯一非零特征根为 的秩为1, 的唯一非零特征根为 的唯一非零特征根为n 的秩为 • A的任一列向量是对应于 的特征向量 的任一列向量是对应于n 的任一列向量是对应于 • A的归一化特征向量可作为权向量 的归一化特征向量可作为权向量

数学建模 四大模型总结

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

数学建模(层次分析法(AHP法))

数学建模(层次分析法(AHP法))

判断矩阵元素a 判断矩阵元素 ij的标度方法
标度 1 3 5 7 9 2 , 4 , 6, 8 倒数 含义 表示两个因素相比, 表示两个因素相比,具有同样重要性 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面的管理决策中都 有广泛的应用。 常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。 日常生活中有许多决策问题。决策是指 在面临多种方案时需要依据一定的标准选择 某一种方案。 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6 他对市场上的6种不同类型的电冰箱进行了解 选取一些中间指标进行考察。例如电冰 指标进行考察 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等 外界信誉、售后服务等。
目标层
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
要比较各准则C1,C2,… , Cn对目标O的重要性 要比较各准则 对目标 的重要性
Ci :Cj ⇒aij
选 择 C1 旅 C2 游 C 3 地
C4 C5 C1
层次分析法(AHP法 层次分析法(AHP法)
Analytic Hierarchy Process

多目标决策模型:层次分析法(AHP)、代数模型、离散模型

多目标决策模型:层次分析法(AHP)、代数模型、离散模型
2
程中常是定性的。 例如:经济好,身体好的人:会将景色好作为第一选择; 中老年人:会将居住、饮食好作为第一选择; 经济不好的人:会把费用低作为第一选择。 而层次分析方法则应给出确定权重的定量分析方法。 (S3)将方案后对准则层的权重,及准则后对目标层的权重进行综合。 (S4)最终得出方案层对目标层的权重,从而作出决策。 以上步骤和方法即是 AHP 的决策分析方法。 三、确定各层次互相比较的方法——成对比较矩阵和权向量 在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因 而 Santy 等人提出:一致矩阵法 ..... 即:1. 不把所有因素放在一起比较,而是两两相互比较 2. 对此时採用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,提高准确度。 因素比较方法 —— 成对比较矩阵法: 目的是,要比较某一层 n 个因素 C1 , C 2 , , C n 对上一层因素 O 的影响(例如:旅游决策解 中,比较景色等 5 个准则在选择旅游地这个目标中的重要性) 。 採用的方法是:每次取两个因素 C i 和 C j 比较其对目标因素 O 的影响,并用 aij 表示,全部 比较的结果用成对比较矩阵表示,即:
分析:
W1 W2 若重量向量 W 未知时, 则可由决策者对物体 M 1 , M 2 , , M n 之间两两相比关系, W n 主观作出比值的判断,或用Delphi(调查法)来确定这些比值,使 A 矩阵(不一定有一致性)
为已知的,并记此主观判断作出的矩阵为(主观)判断矩阵 A ,并且此 A (不一致)在不一致 的容许范围内,再依据: A 的特征根或和特征向量 W 连续地依赖于矩阵的元素 aij ,即当 aij 离 一致性的要求不太远时, A 的特征根 i 和特征值(向量)W 与一致矩阵 A 的特征根 和特征向 量 W 也相差不大的道理:由特征向量 W 求权向量 W 的方法即为特征向量法,并由此引出一致 性检查的方法。 问题:Remark 以上讨论的用求特征根来求权向量 W 的方法和思路,在理论上应解决以下问题: 1. 一致阵的性质 1 是说:一致阵的最大特征根为 n (即必要条件) ,但用特征根来求特征向量 时, 应回答充分条件: 即正互反矩阵是否存在正的最大特征根和正的特征向量?且如果正互 反矩阵 A 的最大特征根 max n 时, A 是否为一致阵? 2. 用主观判断矩阵 A 的特征根 和特征向量 W 连续逼近一致阵 A 的特征根 和特征向量 W 时,即: 由 lim k

层次分析法分析(AHP)及实例教程

层次分析法分析(AHP)及实例教程
02
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

层次分析法建模层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。

吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。

传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、社会现象)现象的规律。

基本内容:(1)多目标决策问题举例AHP建模方法(2)AHP建模方法基本步骤(3)AHP建模方法基本算法(3)AHP建模方法理论算法应用的若干问题。

参考书: 1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社2、程理民等,运筹学模型与方法教程,(第10章),清华大学出版社3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社一、问题举例:A.大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。

就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉-Reputation);⑤工作环境好(人际关系和谐等)⑥发展晋升(promote, promotion)机会多(如新单位或单位发展有后劲)等。

问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?B.假期旅游地点选择工作选择贡献收入发展声誉工作环境生活环境可供选择的单位P1’P2 ‘----- P n暑假有3个旅游胜地可供选择。

例如:1P :苏州杭州,2P 北戴河,3P 桂林,到底到哪个地方去旅游最好?要作出决策和选择。

为此,要把三个旅游地的特点,例如:①景色;②费用;③居住;④环境;⑤旅途条件等作一些比较——建立一个决策的准则,最后综合评判确定出一个可选择的最优方案。

目标层准则层方案层C .资源开发的综合判断 7种金属可供开发,开发后对国家贡献可以通过两两比较得到,决定对哪种资源先开发,效用最用。

二、问题分析:例如旅游地选择问题:一般说来,此决策问题可按如下步骤进行: (S1)将决策解分解为三个层次,即:目标层:(选择旅游地)准则层:(景色、费用、居住、饮食、旅途等5个准则)方案层:(有1P ,2P ,3P 三个选择地点)并用直线连接各层次。

(S2)互相比较各准则对目标的权重,各方案对每一个准则的权重。

这些权限重在人的思维过程中常是定性的。

例如:经济好,身体好的人:会将景色好作为第一选择;中老年人:会将居住、饮食好作为第一选择; 经济不好的人:会把费用低作为第一选择。

而层次分析方法则应给出确定权重的定量分析方法。

选择旅游地 景色 费用 居住 饮食 旅途 P 1 P 2 P 3 对经济发展、贡献U 铜Co 铁In 磷酸盐 钿Ur 铝Al 金Go 经济价值开採费 风险费 要求量 战略重要性 交通条件(S3)将方案后对准则层的权重,及准则后对目标层的权重进行综合。

(S4)最终得出方案层对目标层的权重,从而作出决策。

以上步骤和方法即是AHP 的决策分析方法。

三、确定各层次互相比较的方法——成对比较矩阵和权向量在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy 等人提出:一致矩阵法即:1. 不把所有因素放在一起比较,而是两两相互比较2. 对此时採用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,提高准确度。

因素比较方法 —— 成对比较矩阵法:目的是,要比较某一层n 个因素nC C C , ,,21 对上一层因素O 的影响(例如:旅游决策解中,比较景色等5个准则在选择旅游地这个目标中的重要性)。

採用的方法是:每次取两个因素iC 和jC 比较其对目标因素O 的影响,并用ija 表示,全部比较的结果用成对比较矩阵表示,即:)1( 1,0 ,)(ij ij ijji ij nxn ij a a a a a a A 或 (1)由于上述成对比较矩阵有特点:jiij ij ij a a a a A 1 ,0 , )(故可称A 为正互反矩阵:显然,由 jiij a a 1,即:1ji ij a a ,故有:1ji a例如:在旅游决策问题中:2112 a =(费用)(景色)21C C 表示: 2O 1O 21的重要性为(费用)对目标的重要性为景色)对目标(C C故:),费用重要性为即景色重要性为21(2112 a14413 a =(居住条件)(景色)31C C 表示:1O C 4O (31的重要性为(居住条件)对目标的重要性为景色)对目标C即:景色为4,居住为1。

17723 a =(居住条件)(费用)32C C 表示:1O C 7O (32的重要性为(居住条件)对目标的重要性为费用)对目标C即:费用重要性为7,居住重要性为1。

因此有成对比较矩阵:1135131112513131211714155337412121A??问题:稍加分析就发现上述成对比较矩阵的问题: ① 即存在有各元素的不一致性,例如:既然:41114a ;22113313113212112a a C C a C C a所以应该有:188412131231213223C C C C a a C C a而不应为矩阵A 中的1723 a②成对比较矩阵比较的次数要求太 ,因:n 个元素比较次数为:!2)1(2n n C n 次,因此,问题是:如何改造成对比较矩阵,使由其能确定诸因素nC C , ,1 对上层因素O 的权重? 对此Saoty 提出了:在成对比较出现不一致情况下,计算各因素nC C , ,1 对因素(上层因素)O的权重方法,并确定了这种不一致的容许误差范围。

为此,先看成对比较矩阵的完全一致性——成对比较完全一致性四:一致性矩阵Def :设有正互反成对比较矩阵:1 a , , 1 , , 1 1nn 221122222212211121121111n n n n n n j iij n n nn W W W W a W W a W W a W W a W W a W W a W W a W W a W W a A(4)除满足:(i )正互反性:即)1 ( 1ji ij jiij ij a a a a a 或而且还满足:(ii )一致性:即i, j 1, 2, n i ik ij ik kj j j ka aa a a a aL则称满足上述条件的正互反对称矩阵A 为一致性矩阵,简称一致阵。

一致性矩阵(一致阵)性质: 性质1:A 的秩 Rank(A)=1A 有唯一的非0的最大特征根为n性质2:A 的任一列(行)向量都是对应特征根n 的特征向量:即有(特征向量、特征值):nn n n n n W W W W W W W W W W WW W W W W W W A212221212111,则向量321W W W W 满足:W n nW nW nW W WW W W WW W W W W W W W W W A n n n n n n n21212112111即: 0)( nI A启发与思考:既然一致矩阵有以上性质,即n 个元素W 1, W 2, W 3 , …W n 构成的向量n W W W W 21 是一致矩阵A 的特征向量,则对一致矩阵A 来说,可以把一致矩阵A 的特征向量W 求出之后,再把一致矩阵A 的特征向量W 归一化后得到的向量,看成是诸元素W 1, W 2, W 3 , …W n目标O 的权向量。

因此,可以用求一致矩阵的特征根和特征向量的办法,求出元素W 1, W 2, W 3 , …W n 相对于目标O 的权向量。

解释:一致矩阵即:n 件物体nM M M , , ,21 ,它们重量分别为nW W W , , ,21 ,将他们两比较重量,其比值构成一致矩阵,若用重量向量nWWWW21右乘A,则:称特征根法,求权向量的方法量权向量,此种用特征向为即对上层因素O的权重,,C,,CC,就表示诸因素=W=则归一化后的特征向量,=:重量向量 为特征根的特征向量为以的特征根为n211WWWW,121inWWWnnA分析:若重量向量nWWWW21未知时,则可由决策者对物体nMMM,,,21之间两两相比关系,主观作出比值的判断,或用Delphi(调查法)来确定这些比值,使A矩阵(不一定有一致性)为已知的,并记此主观判断作出的矩阵为(主观)判断矩阵A,并且此A(不一致)在不一致的容许范围内,再依据:A的特征根或和特征向量W连续地依赖于矩阵的元素ij a,即当ij a离一致性的要求不太远时,A的特征根i和特征值(向量)W与一致矩阵A的特征根和特征向量W也相差不大的道理:由特征向量W求权向量W的方法即为特征向量法,并由此引出一致性检查的方法。

问题:Remark以上讨论的用求特征根来求权向量W的方法和思路,在理论上应解决以下问题:1.一致阵的性质1是说:一致阵的最大特征根为n(即必要条件),但用特征根来求特征向量时,应回答充分条件:即正互反矩阵是否存在正的最大特征根和正的特征向量?且如果正互反矩阵A的最大特征根nmax时,A是否为一致阵?2.用主观判断矩阵A的特征根和特征向量W连续逼近一致阵A的特征根 和特征向量W时,即:由kkklim得到:W W k k lim即:AA k klim是否在理论上有依据。

3.一般情况下,主观判断矩阵A 在逼近于一致阵A 的过程中,用与A 接近的*A 来代替A ,即有A A *,这种近似的替代一致性矩阵A 的作法,就导致了产生的偏差估计问题,即一致性检验问题,即要确定一种一致性检验判断指标,由此指标来确定在什么样的允许范围内,主观判断矩阵是可以接受的,否则,要重新两两比较构造主观判断矩阵。

此问题即一致性检验问题的内容。

以上三个问题:前两个问题由数学严格比较可获得(见教材P325,定理1、定理2)。

第3个问题:Satty 给出一致性指标(Th1,Th2介绍如下:) 附:Th1:(教材P326,perronTh 比隆 1970 )对于正矩阵A (A 的所有元素为正数) (1)A 的最大特征根是正单根 ;(2) 对应正特征向量W (W 的所有分量为正数)(3)W e A e eA k T k k lim 其中:111 e 为半径向量,W 是对应 的归一化特征向量证明:(3)可以通过将A 化为标准形证明Th2:n 阶正互反阵A 的最大特征根n ;当n 时,A 是一致阵五、一致性检验——一致性指标:1.一致性检验指标的定义和确定——I C 的定义:当人们对复杂事件的各因素,采用两两比较时,所得到的主观判断矩阵A ,一般不可直接保证正互反矩阵A 就是一致正互反矩阵A ,因而存在误差(及误差估计问题)。

相关文档
最新文档