第三章 33机理模型——微分方程
微分方程模型介绍

微分方程模型介绍在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。
求解微分方程有三种方法:1)求解析解;2)求数值解(近似解);3)定性理论方法。
建立微分方程模型的方法:1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。
2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型1. 马尔萨斯(Malthus)模型假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为()()()00d ,d (1)t t N t rN t t N t N =⎧=⎪⎨⎪=⎩不难得到其解为()0()0r t t N t N e-=.2. 密度制约模型由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。
()()()d (1)(2)d N t N t rN t tK=-其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。
这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的1K,在t 时刻个体共消耗了总资源的()N t K此时资源剩余()1N t K-,因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。
【实用资料】机理分析模型PPT

对某地区时刻t的人口总数P(t),除考虑个 体的出生、死亡,再进一步考虑迁入与迁出的 影响.
在很短的时间段Δt 内,关于P(t)变化的一个 最简单的模型是:
{Δt时间内的人口增长量}= {Δt内出生人口数}-{Δt内死亡人口数} + {Δt内迁入人口数}-{Δt内迁出人口数}
更般 一化
2)Y方军队的一个士兵在单位时间内杀死X 方军队 a 名士兵; 3)X 方军队的一个士兵在单位时间内杀死Y 方军队 b 名士兵;
{Δt 时间内X军队减少的士兵数 } = {Δt 时间内Y军队消灭对方的士兵数}
平衡式
即有
Δx =-ayΔt,
同理
Δy =-bxΔt,
令Δt 0, 得到微分方程组:
分析 广告的效果, 可做如下的条件假设:
关键词“速率”、“增长” “衰变” ,“边 际的” ,常涉及到导数.
常 用建 微立 分方 方法 程
运用已知物理定律 利用平衡与增长式
运用微元法 应用分析法
机理分 析法
一. 运用已知物理定律
建立微分方程模型时
应用已知物理定律, 可事半功倍
例5.1.1 一个较热的物体置于室温为180c的 房间内,该物体最初的温度是600c,3分钟以后 降到500c .想知道它的温度降到300c 需要多少时 间?10分钟以后它的温度是多少?
实际问题需寻求某个变量y 随另一变量 t 的 量Q为通过“孔口横截面的水的体积V对时间t 的
d x (Δh<0), 容器中水的体积的改变量为 a y,a 0 这场战斗建立一个数学模型,应用这个模型达到
d t 想知道它的温度降到300c 需要多少时
高的物体时,室内温度基本不受影响,即室温分
微分方程模型1基础知识

油画中的放射性物质
白铅(铅的氧化物)是油画中的颜料之一,应 用已有2000余年,白铅中含有少量的铅(Pb210)和更 少量的镭(Ra226)。白铅是由铅金属产生的,而铅金 属是经过熔炼从铅矿中提取来出的。当白铅从处 于放射性平衡状态的矿中提取出来时, Pb210的绝 大多数来源被切断,因而要迅速衰变,直到Pb210 与少量的镭再度处于放射平衡,这时Pb210的衰变 正好等于镭衰变所补足的为止。
--理学院--
原理
著名物理学家卢瑟夫(Rutherford)指出: 物质的放射性正比于现存物质的原子数。
设 t 时刻的原子数为N (t) ,则有
dN N
dt
为物质的衰变常数。
初始条件
N t t0
N0
N (t)
N e (tt0 ) 0
t
t0
1
ln
N0 N
--理学院--
Van.Meegren被捕后宣称他从未出卖过荷兰的利益,所有 的油画都是自己伪造的,为了证实这一切,在狱中开始伪造 Vermeer的画《耶稣在学者中间》。当他的工作快完成时,又 获悉他可能以伪造罪被判刑,于是拒绝将画老化,以免留下 罪证。
--理学院--
为了审理这一案件,法庭组织了一个由化学家、物理 学家、艺术史学家等参加的国际专门小组,采用了当时最 先进的科学方法,动用了X-光线透视等,对颜料成份进行 分析,终于在几幅画中发现了现代物质诸如现代颜料钴蓝 的痕迹。
Ah Bs
s是水在 t 时间内从小孔流出保持水平前进时所经过的距离。
Ah Bs
Alim h B lim s
t
t
A dh B ds dt dt
dh B 2gh 初始条件 h(0) H dt A
机理模型

假设 1. 2. 3 同上 假设4. 兔子在三个月 假设 兔子在三个月 后生完一对幼兔就离开 群体。 群体。 参量、 参量、变量 成兔: 老兔: 月份: 幼兔: 月份 n, 幼兔 a0(n), 成兔 a1(n), 老兔 a2(n) 平衡关系 本月初的幼兔是上月成兔老兔繁殖的后代。 本月初的幼兔是上月成兔老兔繁殖的后代。 本月初的成兔是上月幼兔发育的结果。 本月初的成兔是上月幼兔发育的结果。 本月初的老兔是上月成兔发育的结果。 本月初的老兔是上月成兔发育的结果。
关于平衡关系 1.平衡关系是数学模型的核心,建 模的关键。 2.有些平衡关系是明显的。 有些平衡关系隐藏在问题的背后 需要在化简之后逐渐明确出来。 3.有些平衡关系本身就直接构成了 模型。 有些平衡关系还需要经过数学上 的加工整理才能得到理想的模型。
三. 模型举例
买房贷款: 例1 买房贷款:银行可以向购房人提供个人住房 贷款的业务。 贷款的业务。 偿还贷款时要求借款人在借款期间内每月以相 偿还贷款时要求借款人在借款期间内每月以相 等的月均还款额偿还银行贷款本金和利息。 等的月均还款额偿还银行贷款本金和利息。 试组建计算月均还款额的数学模型。 试组建计算月均还款额的数学模型。 假设: 假设: 每月月底还款; 1. 每月月底还款; 每月还款金额相等; 2. 每月还款金额相等; 按月计算利息; 3. 按月计算利息; 到期欠款全部还清。 4. 到期欠款全部还清。
模型 a0(n+1)=a1(n)+a2(n) a1(n+1)=a0(n) a2(n+1)=a1(n) 令 a(n) = (a0(n), a1(n), a2(n))’, 则 a(n) = A a(n-1) 其中
0 A = 1 0 1 0 1 1 0 0
微分方程的建模原理及应用

微分方程的建模原理及应用引言微分方程是数学中重要的一门学科,它是描述自然界和工程领域中许多现象和过程的数学工具之一。
本文将介绍微分方程的建模原理及其应用,并使用Markdown格式进行编写。
微分方程的定义微分方程是描述变量之间关系的方程,其中包含了变量的导数。
一般形式的微分方程可以写作:$$f(x, y, y', y'', \\ldots, y^n) = 0$$其中,x是自变量,y是因变量,$y', y'', \\ldots, y^n$ 是y的导数,n是方程的阶数。
微分方程的建模原理微分方程的建模原理是将现实世界中的问题转化为数学模型,通过建立微分方程来描述问题的变化规律。
建模的过程需要以下几个步骤:1.问题理解:全面理解实际问题的背景、目标和限制条件。
明确要研究的变量和参数。
2.数学模型的建立:根据问题理解,确定数学函数和变量之间的关系,并找到恰当的微分方程。
3.模型求解:利用数学方法求解微分方程,得到问题的解析解或数值解。
4.模型分析:对模型求解结果进行分析和解释,评估模型的适用性和可靠性。
微分方程的应用领域微分方程在各个科学领域和工程技术中都有广泛的应用。
以下是一些常见的应用领域:物理学•力学:描述物体的运动和力学性质。
•电磁学:描述电荷和电磁场的关系。
•光学:描述光的传播和折射。
经济学•经济增长模型:描述经济产出和经济变量之间的关系。
•消费与储蓄模型:描述个体和国家的消费和储蓄行为。
生物学•生物种群动力学:描述物种数量和环境因素之间的关系。
•神经科学:描述神经元的电信号传递和网络行为。
工程学•电路分析:描述电路中电流和电压之间的关系。
•控制系统:描述系统的稳定性和动态响应。
微分方程的求解方法微分方程的求解方法分为解析解和数值解两种。
解析解解析解是指通过数学方法直接求解微分方程得到的精确解。
常见的求解方法包括:•可分离变量法:将微分方程转化为可分离变量的形式,通过积分求解。
微分方程建模理论概要课件

04
CATALOGUE
微分方程稳定性分析
稳定性定义与分类
稳定性定义
01
对于一个微分方程的解,如果其导数在所有时间上都为非正,
则该解被称为稳定。
局部稳定性
02
如果存在一个有限的初始时间,当时间超过此初始时间时,解
的导数恒为非正,则该解被称为局部稳定。
全局稳定性
03
如果对于所有时间,解的导数都恒为非正,则该解被称为全局
电磁学中的微分方程
电场和磁场
描述电荷在电场和磁场中的运动和相互作用, 可以通过微分方程求解电场和磁场的变化规 律。
电磁波
电磁波的传播和反射等现象可以通过微分方 程描述,进而研究电磁波的特性和应用。
热力学中的微分方程
要点一
热传导
描述热量在物体中的传播和变化,可以通过微分方程求解 温度随时间和空间的变化规律。
有广泛的应用。
线性常微分方程
定义
线性常微分方程是指导数与变量之间为线性关系的常 微分方程。
解法
线性常微分方程的解法通常采用分离变量法、积分因 子法等。
应用
线性常微分方程在描述物理、工程和社会科学等领域 的问题时具有广泛的应用。
03
CATALOGUE
偏微分方程模型
一阶偏微分方程
01
定义
一阶偏微分方程是一阶微分方程或常微分方程的统称,它 的一般形式为F(x,y,y',…,y^(n)) = 0,其中F为给定的函数, x,y,y',…,y^(n)为未知函数及其各阶导数。
稳定。
线性稳定性分析
线性化
通过将非线性微分方程线性化来分析稳定性,即将非线性微分方程的解的线性 部分视为新的微分方程。
《微分方程模型》PPT课件

房室具有以下特征:它由考察对象均匀分布而成, (注:考察对象一般并非均匀分布,这里采用了一种简 化方法一集中参数法);房室中考察对象的数量或浓度 (密度)的变化率与外部环境有关,这种关系被称为 “交换”且交换满足着总量守衡。在本节中,我们将用 房室系统的方法来研究药物在体内的分布。在下一节中, 我们将用多房室系统的方法来研究另一问题。两者都很 环境 简单,意图在于介绍建模方法。
器倾翻,图中X点处注入湖中。在采取紧急
措施后,于11:35事故得到控制,但数量不详
B
的化学物质Z已泻入湖中,初步估计Z的量在5~20m3之间。 建立一个模型,通过它来估计湖水污染程度随时间的变化
并估计:
(1)湖水何时到达污染高峰;
(2)何时污染程度可降至安全水平(<0.05%)
湖泊污染问题分析
设湖水在t时的污染程度为C(t), X
0t 3 3t 4 t4
现回答上述问题
(1)t 6 代入对应方程,求得
W (6) 57.48247kg
(2)要满足体重不增,即dW (b 16W ) /10000 0
dt
所以b 16W 1657.1256 914 (cal)
因此每天总卡路里摄取量是1200+914=2114cal
因污染源被截断,故微分方程变为 2000 dC 6C
dt
: 它的特解为
630
C(t) C(30)e 2000
当达到安全水平,即C(t)=0.0005时,可求出 此时的t=T,即
T 30 (2000 / 6) ln(0.0005 / C(30))
解得
T 30 (2000 / 6) ln(0.9564Z)
引例一
《微分方程模型》课件

即 f (x) 2xdx C x2 C.
又由条件: 曲线过(1,3), 即 f (1) 3,
于是得 C 2. 故所求的曲线方程为:
y x2 2.
第一章 绪论
常微分方程是现代数学的一个重要分支,是人们解决各 种实际问题的有效工具,它在几何,力学,物理,电子技术,自 动控制,航天,生命科学,经济等领域都有着广泛的应用,本 章将通过几个具体例子,粗略地介绍常微分方程的应用,并 讲述一些最基本概念.
§1.1 微分方程模型
微分方程:
联系着自变量,未知函数及其导数的关系式.
解: 设t时刻时镭元素的量为R(t),
由于镭元素的衰变律就是R(t)对时间的变化律dR(t) , dt
依题目中给出镭元素的衰变律可得:
dR kR, dt
R(0) R0
这里k 0,是由于R(t)随时间的增加而减少 .
解之得: R(t) R0ekt
即镭元素的存量是指数规律衰减的.
例2 物理冷却过程的数学模型
物体的温度与其所在的介质的温度之差成正比.
解: 设物体在时刻 t 的温度为 u(t). 根据导数的物理意义, 则
温度的变化速度为 du . 由Newton冷却定律, 得到 dt
du dt
k (u
ua ),
其中 k 0 为比例系数. 此数学关系式就是物体冷却过程的数
学模型.
注意:此式子并不是直接给出u 和 t 之间的函数关系,而只是
(3.2)
(3.2)的解为: θ(t)= θ0cosωt
当 t T 时,θ(t)=0 4
故有
g T
l4 2
其中 g
l
由此即可得出
T 2 gБайду номын сангаас