纳米药物研究进展
纳米药物的研究进展与应用

纳米药物的研究进展与应用纳米药物(nanomedicine)是近年来热门的研究领域之一,它利用纳米技术将药物精确地制备成纳米级别的药物粒子,以便于更好地渗透到目标组织中,实现更好的治疗效果。
在细胞水平上治疗疾病的特点,使得纳米药物具有突出的优势,如增加药物的溶解度和生物利用率。
纳米药物的研究进展自20世纪80年代以来,纳米药物研究发展迅速,随着科学技术的不断创新,研究领域得到迅速扩展,研究方向多样化。
近年来,纳米药物在临床应用中逐渐占据主导地位,成为治疗肿瘤和其他疾病的重要方法之一。
1.基础研究纳米药物的核心是基于纳米尺度的分子自组织现象和生物相互作用机制。
这包括纳米材料的制备、表征和纳米技术的应用,可以准确控制药物的释放、分布和靶向特性。
2.药物递送在医学领域,纳米技术可用于药物递送,从而实现对充血组织的靶向治疗。
例如,细胞膜包裹的纳米粒子可作为靶向溶血性肿瘤细胞的药物,改善传统药物的毒性和生物利用率。
3.分子影像学纳米药物的发展也带动了分子成像技术的发展,纳米颗粒可作为靶向选项,通过分子影像学探究分子诊断和治疗的模式。
纳米药物的应用纳米药物应用范围广泛,在药品开发、药理学、生物学和医学等领域中发挥巨大作用,主要有以下几个方面。
1.肿瘤治疗纳米药物在肿瘤治疗领域的应用越来越受到关注。
它可以作为肿瘤靶向药物载体和外壳,克服肿瘤难以摄取药物、生物毒性和耐药性等问题。
目前已有一些纳米药物进入到临床研究阶段,如纳米包裹的抗肿瘤药物、靶向肿瘤的纳米药物等。
2.心血管疾病治疗纳米药物治疗心血管疾病也具有巨大潜力。
例如,靶向心脏的纳米药物被证明可以调节细胞抗凝和抗血小板作用,对心血管疾病有很好的治疗作用。
3.糖尿病治疗纳米药物也在糖尿病治疗中显示出巨大优势。
例如,表面功能化的纳米颗粒可用作胰岛素的递送工具,有研究表明可抑制胰岛素的吸收和降低胰岛素的生物降解率,提高胰岛素的生物利用率。
总而言之,纳米技术在医学领域中的应用将带来革命性的变化,纳米药物将成为医学领域的重要研究方向。
纳米抗肿瘤药物及其研究进展

纳米抗肿瘤药物及其研究进展随着科技的不断进步,纳米技术在医学领域的应用越来越广泛,其中纳米抗肿瘤药物成为了研究热点。
纳米技术的应用能够提高药物的稳定性、增加药物的载荷量、优化药物的释放特性,从而提高肿瘤治疗的疗效和减少副作用。
本文将对纳米抗肿瘤药物及其研究进展进行探讨。
一、纳米抗肿瘤药物的发展历程纳米抗肿瘤药物起源于20世纪60年代,当时科学家首次将抗癌药物包裹在脂质体中用于抗癌治疗。
随着技术的不断进步,纳米药物的研究逐渐深入,研究人员不断尝试不同的纳米材料和药物载体,如聚乙二醇(PEG)修饰的纳米粒子、脂质体、聚合物纳米粒子等。
这些载体能够增加药物的靶向性和稳定性,降低药物在体内的代谢速率,从而提高药物的疗效。
1. 增强肿瘤靶向性:纳米载体可以通过被动靶向和主动靶向等方式将药物直接输送到肿瘤组织,减少对正常组织的损伤,提高药物的局部浓度。
2. 增加载荷量:通过纳米技术,药物可以更充分地载入载体中,从而提高药物的有效浓度,降低药物剂量和给药频率。
3. 改善药物释放特性:纳米载体能够控制药物的释放速率和途径,实现药物的持续释放,降低药物在体内的代谢速率,延长药物的作用时间。
4. 降低毒副作用:纳米载体可以减慢药物在体内的代谢速率,降低对正常组织的损伤,从而减少毒副作用。
1. 碳纳米管(CNTs)药物载体:碳纳米管具有良好的生物相容性和高强度的载荷能力,可以用于输送不同类型的抗肿瘤药物,如紫杉醇、多西紫杉醇等。
研究表明,基于碳纳米管的抗肿瘤药物可以有效提高药物的靶向性,增加药物的载荷量,并减少对正常组织的损伤。
2. 纳米脂质体药物载体:纳米脂质体是一种由脂质双分子层包裹的纳米级粒子,具有良好的生物相容性和高稳定性,可用于输送不同类型的水溶性和脂溶性抗肿瘤药物。
研究证实,基于纳米脂质体的抗肿瘤药物可提高药物的生物利用度和靶向性,从而提高药物的疗效。
3. 聚乙二醇修饰纳米颗粒(PEG-NPs):聚乙二醇修饰的纳米颗粒具有较长的血液循环时间和较高的细胞摄取效率,可用于输送不同类型的抗肿瘤药物。
纳米药物载体在医药领域应用的研究进展

纳米药物载体在医药领域应用的研究进展纳米药物载体是一种能够将药物分子包覆在其表面,并且能够将药物有效地输送到目标组织或细胞中的微纳米尺度材料。
在医药领域,纳米药物载体被广泛研究和应用,以解决传统药物的生物利用度低、药物作用时间短的问题。
本文将介绍近年来纳米药物载体在医药领域的研究进展。
脂质体是一种常用的有机纳米载体,其结构类似于细胞膜,能够有效地包裹药物分子,并且具有高度的生物相容性和可控性释放性能。
研究人员通过改变脂质体的组成、表面修饰以及尺寸等参数,可以调控药物的释放速率和靶向性,实现药物的精确输送。
例如,研究人员利用脂质体作为载体,成功地将疏水性药物包裹在其内部,并且通过改变脂质体的表面功能基团,使其能够选择性地靶向癌细胞,实现抗肿瘤药物的靶向治疗。
聚合物纳米粒子是一种具有高度可调性和多功能性的有机纳米载体。
研究人员通过调控聚合物的组成、结构以及分子量等参数,可以获得不同形状、尺寸和表面性质的纳米粒子。
聚合物纳米粒子既可以作为药物载体,还可以作为靶向剂、成像剂甚至治疗剂来使用。
例如,研究人员利用聚合物纳米粒子包裹了抗癌药物,并且通过表面修饰使其能够选择性地在肿瘤细胞表面释放药物,实现了肿瘤治疗的精确靶向。
金属纳米材料是一种常用的无机纳米载体,其特殊的光学、电学和磁性等性质使其具有广泛的应用前景。
研究人员利用金属纳米材料作为载体,可以实现药物的光热联合治疗、光动力治疗以及放射性治疗等。
例如,研究人员利用金属纳米粒子以及其表面修饰的抗体,成功地实现了免疫检测和治疗的一体化。
无机氧化物纳米材料是近年来备受关注的无机纳米载体,其具有良好的生物相容性、化学稳定性以及控制释放性能。
研究人员利用无机氧化物纳米材料作为载体,可以实现药物的缓释、靶向性和光热治疗等。
例如,研究人员发现,通过改变氧化钛纳米材料的尺寸和形状,可以调控其在人体内的行为,从而实现肿瘤诊疗的一体化。
总的来说,纳米药物载体在医药领域具有广阔的应用前景。
纳米抗肿瘤药物及其研究进展

纳米抗肿瘤药物及其研究进展纳米抗肿瘤药物是指以纳米技术为基础,将药物粒径控制在纳米尺度的药物制剂。
相较于传统的药物制剂,纳米抗肿瘤药物具有更高的药物负荷量、优良的药物释放动力学特性以及更好的针对性。
这些特点使得纳米抗肿瘤药物在肿瘤治疗领域具有广阔的应用前景。
以下是一些纳米抗肿瘤药物及其研究进展的例子。
1. 纳米脂质体药物载体:纳米脂质体是一种由人工合成的磷脂双层包裹的药物载体,具有较小的粒度和良好的稳定性,可用于输送肿瘤治疗药物。
文献报道了一种利用纳米脂质体输送顺铂(一种常用的抗肿瘤药物)的方法,该方法通过调节脂质体的成分和药物的包封率,实现了顺铂的高负荷量输送和减少了非肿瘤组织的毒性。
2. 纳米金属颗粒药物载体:纳米金属颗粒是一种应用最广泛的纳米药物载体。
纳米金属颗粒可以作为基于光热效应的抗肿瘤治疗药物载体。
研究者们利用纳米金颗粒在近红外光下的光热转换特性,将其用于肿瘤热疗。
在此方法中,纳米金颗粒被注入到肿瘤细胞中,然后通过激发近红外光,使颗粒发热,并破坏肿瘤细胞。
该方法具有高效和可控性的特点。
3. 肽类纳米药物载体:肽类纳米药物载体是利用肽分子的特异性靶向性质,来改善肿瘤药物的输送效果。
一种名为Arg-Gly-Asp(RGD)的短肽被发现可以高度特异性地结合于肿瘤细胞表面的整合素受体,这为研究人员设计并合成了一类RGD修饰的纳米载体。
这些载体在输送抗肿瘤药物时,可以通过与肿瘤细胞表面的整合素受体结合,实现对肿瘤细胞的高度针对性。
纳米抗肿瘤药物在肿瘤治疗领域具有广泛的应用前景。
通过纳米技术,研究人员可以精确地控制药物的释放动力学特性,并提高药物的载荷量。
通过利用纳米载体的靶向性质,可以提高药物的针对性。
尽管在药物设计和合成方面取得了显著进展,纳米抗肿瘤药物仍然面临一些挑战,例如生产工艺复杂、价格昂贵以及未来需要进行更多的临床研究证明其效果和安全性。
对纳米抗肿瘤药物的进一步研究和发展具有重要意义。
纳米抗肿瘤药物及其研究进展

纳米抗肿瘤药物及其研究进展随着医学科技的不断进步,纳米技术在药物领域的应用也得到了广泛的关注。
纳米技术可以将药物粒子缩小到纳米级别,使药物能够更好地靶向肿瘤细胞,提高药物的生物利用度和降低副作用。
纳米抗肿瘤药物成为当前肿瘤治疗领域的热点研究之一,为肿瘤治疗带来了新的希望。
一、纳米技术在抗肿瘤药物中的应用纳米技术将传统的抗肿瘤药物通过纳米尺度的技术转变为纳米颗粒,提高了药物的生物利用度。
将药物包裹在纳米颗粒中,可以使药物更容易穿过血脑屏障,集中于肿瘤组织,减少对正常组织的伤害。
纳米技术还可以通过改变药物的释放动力学,延长药物在体内的半衰期,提高药物在体内的稳定性,从而达到更好的治疗效果。
在临床应用上,纳米技术还可以提高患者对药物的耐受性,减少药物的毒副作用,改善患者的生活质量。
1. 脂质纳米载体脂质纳米载体是目前应用最为广泛的一种纳米抗肿瘤药物载体。
脂质纳米载体可以通过包裹药物的方式提高药物的稳定性和溶解度,使药物更容易渗入肿瘤细胞内。
脂质纳米载体还可以通过改变其粒径和表面电荷,实现对药物的控释,提高药物的药效和降低毒副作用。
近年来,一些新型的脂质纳米载体如固体脂质纳米颗粒(SLN)、脂质体(Liposome)、微乳(Microemulsion)等也逐渐得到了重视,并在肿瘤治疗领域取得了一些突破性的进展。
除了脂质纳米载体,蛋白质纳米载体也成为了近年来研究的热点之一。
相比于脂质纳米载体,蛋白质纳米载体更具有生物相容性和生物降解性,对人体的毒副作用更小,因此备受科研人员的关注。
蛋白质纳米载体常常是利用一些具有特定亲和性的蛋白质如白蛋白、珍珠素等作为药物的载体。
这些药物载体可以通过改变化学修饰或表面修饰来实现对药物的靶向输送,从而提高药物的靶向性和治疗效果。
3. 多功能复合纳米系统近年来,研究人员还着力开发多功能复合纳米系统来应对肿瘤的复杂性。
这种多功能复合纳米系统常常是将多种纳米技术如脂质纳米载体、蛋白质纳米载体等进行有机的组合,通过不同的机制共同作用于肿瘤组织,实现对肿瘤的多重攻击。
纳米药物制剂的研究进展

纳米药物制剂的研究进展近年来,生物医学领域的科技不断进步,纳米材料作为一种新兴材料逐渐受到科研工作者的重视,大量的研究表明,纳米药物制剂在临床应用上具有很大的潜力,可望成为治疗疾病的重要手段之一。
一、纳米药物制剂的定义及研究背景所谓纳米药物制剂,即把药物包裹到纳米粒子内,形成一种新型的药物传输系统,能够突破传统药物分子的限制,达到更好的药效和安全性。
而纳米粒子的制备大致分为物理、化学和生物法三种,其中物理法包括球形凝胶、超声波制备等,化学法包括共沉淀、乳液法等,生物法包括胶体溶胶法、纳米乳状药物等。
当前,纳米药物制剂的研究已经成为全球生物医学领域的热点之一,主要原因在于其具有以下几个方面的优势:1. 提高药物的生物利用度:纳米粒子具有大比表面积、高稳定性和可控性等特点,可通过改善药物的生物利用度,提高药效。
2. 实现针对性治疗:通过规定纳米粒子的大小、形状和表面性质,可以实现对靶细胞的有选择的选择性输送,从而提高治疗效果,减少副作用。
3. 提高药物的溶解度和稳定性:通过改变纳米粒子的溶解度和稳定性,可以防止药物在体内沉淀和失活,从而进一步提高药效。
4. 实现药物的联合治疗:通过将不同的药物共同包装到纳米粒子内,可以实现对多种疾病的联合治疗。
二、纳米药物制剂的应用领域基于其出色的性能和广阔的应用前景,纳米药物制剂的应用领域非常广泛,主要包括以下几个方面:1. 肿瘤治疗:通过实现靶向药物输送、提高药物生物利用度和降低药物副作用,纳米药物制剂在肿瘤治疗领域具有很大的应用前景。
比如说,纳米粒子可传递光敏剂等药物,能够在肿瘤中发挥特定治疗作用,可以充当肿瘤光热治疗的一种有力手段。
2. 心血管疾病:纳米粒子在心血管疾病治疗中应用广泛。
比如说,纳米粒子可以制造一种新型的药物释放系统,能够在心肌缺血再灌注时释放药物,从而进一步减轻心脏受损。
3. 治疗神经疾病:纳米药物为治疗神经疾病提供了一种新的选择。
通过包装神经生长因子等药物,纳米粒子可以实现对神经细胞的有选择的输送,从而促进神经细胞的生长和再生。
纳米药物的研究进展

可进一步制成适于口服、注射或其它给药
途径的制剂。
载 药 材 料
载药材料分为两大类: I. 天然材料,如脂类、糖类、
蛋白质等; II. 合成的高分子材料,如聚
氰基丙烯酸烷酯PACA、 聚酯及其衍生物与共聚物。
第7页/共38页
1.2 纳米药物的特点
药 物 以 溶 解 、 分 散 、 包 裹 、 吸 附 、 偶 联 等 方 式 成 为 纳 米 分散体;
根据超临界流体在结晶过程中发挥作用的不同,超临界流体结晶法主要分 为超临界溶液的快速膨胀技术和超临界反溶剂技术。
当药物在超临界流体中溶解较差时,可加入乙醇、丙酮等夹带剂提高其溶 解度,并调节粒子间的相互作用。
第25页/共38页
与高压均质法结合的方法
1沉淀 • 通过剪切、碰撞或空穴效应“巩固”其晶体形态。
无机纳米载体(例如, 纳米硅球、碳纳米管 等);
树状大分子 SiO2介孔型纳米粒的形貌TEM
纳米磁球等。
第15页/共38页
2 纳米药物的制备方法
2.1 纳米药物晶体的制备方法 2.2 纳米载药粒子的制备方法 2.3 纳米粒载药和表面修饰
第16页/共38页
2.1 纳米药物晶体的制备方法
表 1 纳米药物晶体的制备方法
高压泵将一定粘度的药 物混悬液吸入泵体并加压, 根据混悬液粘度和均质压 力调节阀芯和阀座之间的 间隙;
药物粒子高速流动中经 过剪切、撞击、和空穴效 应实现超细粉碎。
高压均质法 第22页/共38页
乳化法和微乳化法
先将药物溶解于与水不混溶的有机溶剂中制成O/W型乳剂, 乳滴内相包裹难溶性药物,制备多相系统。
微粒尺寸: 1nm~1000nm; 纳米制剂技术的核心:
其核心是药物的纳米化技术,包括药物的直接纳米化和纳米载药系统。
纳米药物与靶向治疗的研究进展

纳米药物与靶向治疗的研究进展随着医学技术的进步与人们对健康的关注度的不断提升,纳米药物与靶向治疗的研究引起了越来越多的关注。
纳米材料的小尺寸、高表面积与尺寸可控性使得纳米药物在肿瘤治疗等领域有了不同于传统药物的独特的优势。
靶向治疗则是指将药物作用于癌细胞特异性表面受体、分子靶点等,减轻病人的痛苦、提高治疗效果。
本文将介绍近几年纳米药物与靶向治疗的研究进展。
一、纳米药物的制备纳米材料经过改性可以使它们更适合药物载体的应用。
研究者对纳米粒子进行表面修饰以增强它们的生物相关性,从而在体内具有更好的稳定性和通透性。
其中最常见的修饰方法是聚乙二醇化(PEG)和细胞膜包被技术(CBP)。
PEG的引入可以减少药物的清除率,增加药物在体内的半衰期,延长药物的作用时间。
而CBP则是利用细胞膜来包覆纳米粒子,使其在药物传递中具有与人体更加相近的表面性质,避免机体免疫系统的攻击。
二、纳米药物的应用1. 抗癌治疗纳米药物在癌症治疗方面的研究是人们最为熟知的。
纳米颗粒可以通过靶向治疗作用于癌症细胞,同时也可以通过其他机制协同抗癌。
例如传统药物由于药物粘度的限制并不能到达它们应该治疗的部位,而纳米药物的尺寸可以使药物穿过血液-脑屏障,协同抗癌。
2. 造影剂纳米药物作为一种比其他物质更好的造影剂,被广泛应用于磁共振成像(MRI)和荧光成像等。
与光学材料不同,纳米材料可以增强医学成像的效果,同时也可以很好地在细胞水平上进行研究。
三、靶向治疗的原理靶向治疗是利用特定的抗体、多肽和小分子等物质作为靶向物,发掘癌细胞上相应的受体和分子靶点,达到准确治疗的目的。
靶向治疗是仅作用于有病细胞,不对正常细胞造成伤害的一种治疗方式,因此在治疗期间可以显著降低患者的痛苦。
靶向治疗常见与癌症的治疗,例如HER2阳性的乳腺癌、KRAS突变的结直肠癌等。
四、纳米药物与靶向治疗的结合由于纳米药物能够高效靶向并释放药物,抗癌治疗的效果也越来越重视。
近年来,新的纳米颗粒和靶向治疗方法被开发出来,以克服癌症治疗时面临的困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米药物研究进展徐州医学院药学院(徐州221000)李岩(068612077)[摘要]纳米科学与技术是近年来迅速发展起来的前沿科技领域,并已在各学科的研究中产生了巨大的影响。
目前,纳米科学与技术在医药领域的应用也取得了令人瞩目的成绩,有力地推动了医药科技的发展;其在医学和药学方面为疾病的诊断与治疗开辟了一个崭新的领域。
本文就纳米药物的概念和特点、制备方法和应用等作一综述,对相关技术和方法进行评价和展望,并简要介绍我国近年来纳米中药的研究与进展。
[关键词]纳米药物研究进展1引言纳米技术自21世纪80年代被提出之后,在材料、冶金、化学化工、医药、卫生、环境及其交叉领域表现出空前的应用潜力。
纳米药物则是医药研究领域的新热点。
美国、日本、德国等发达国家都斥巨资进行研究,有的已制成药物并申请专利,且开始了药物的临床实验。
纳米药物是以纳米级高分子毫微粒(N P)或微球(N S)、微囊(N C)为载体,与药物以一定方式结合在一起后制成的药物。
与常规药物相比,纳米药物具有颗粒小、比表面积大、表面反应活性高、活性中心多、催化效率高、吸附能力强等特点,因此它有许多常规药物所不具有的优点:缓释药物,改变药物在体内的半衰期,延长药物的作用时间;制成导向药物后作为“生物导弹”达到靶向输药至特定器官的目的;在保证药效的前提下,减少药用量,减轻或消除毒副作用;提高药物的稳定性,有利于存储;改变膜运转机制,增加药物对生物膜的透过性,有利于药物透皮吸收及细胞内药效的发挥;增加药物溶解度。
正是如此,本文对纳米药物的研究进展方面进行了叙述。
2纳米药物的种类及制备方法2.1纳米脂质体(nanoliposome)脂质体(脂质小囊)是近年研究较多的一种剂型,它制备简单,应用方便,可多用途给药,是一种具有同生物膜性质类似的磷脂双分子层结构载体。
脂质体作为药物载体有其独特的优势,包括可保护药物免受降解、达到靶向部位和减少毒副作用。
但是它也存在许多缺陷,如包封率低、脂质体膜易破裂、药物易渗漏、重复性差、体内不稳定和释药快等。
纳米脂质体的制备方法主要有超声分散法、逆相蒸发法等,张磊等[1]用逆相蒸发-超声法制备了胰岛素纳米脂质体,平均粒径为83.3nm,包封率78.5%。
2.2固体脂质纳米粒(solid lipid nanoparticles,SLN)SLN是以多种类脂材料如脂肪酸、脂肪醇及磷脂等为载体,将药物包裹于类脂材料中制成固体颗粒。
SLN具有一定的缓释作用,主要适合于难溶性药物的包裹,被用作静脉注射或局部给药达到靶向定位和控释作用的载体,能避免药物的降解和泄漏。
SLN主要适用于亲脂性药物,用于亲水性药物时存在包封率较低的缺陷。
2.3纳米囊和纳米球主要由聚乳酸、聚丙交酯-乙交酯、壳聚糖和明胶等能够生物降解的高分子材料制备,可用于包裹亲水性或疏水性药物。
不同材料的性能适合于不同的给药途径,如静脉注射的靶向作用、肌内或皮下注射的缓控释作用,口服给药的纳米囊和纳米球也可用非降解性材料,如乙基纤维素、丙烯酸树脂等[2]。
此类载体的制备方法主要有沉淀法、乳化-溶剂挥发法等[3]。
2.4聚合物胶束这是近几年正在发展的一类新型的纳米载体,它同时具有亲水性基团及疏水性基团,在水中溶解后自发形成高分子胶束,并完成对药物的增溶和包裹。
它具有亲水性外壳及疏水性内核,适合于携带不同性质的药物,且可使药物能逃避单核巨噬细胞的吞噬,即具有“隐形”性[4]。
3纳米药物的应用纳米药物的粒径使它具有特殊的表面效应和小尺寸效应等,与常规药物相比,它颗粒小、表面反应活性高、活性中心多、催化效率高、吸附能力强,因此它具有许多常规药物不具备的优点,它的应用主要在如下方面。
3.1作为生物大分子的载体,改善难溶性药物的口服吸收纳米技术的应用则更好地解决了口服吸收的问题,如将VitB12或叶酸修饰过的纳米粒再与药物结合[5],不仅能避免药物在肠道中发生蛋白水解,还能使药物在体内循环时间增加,从而大大增加了药物的吸收度。
纳米载体可携带各种大分子药物,可有口服、注射、吸入等多种给药途径。
3.2提高生物利用度,减少用药量,减轻或消除毒副作用当药物颗粒粒径达到纳米水平时,药物的总表面积大大增加,药物的溶出速率随之提高,与给药部位接触面积增大,提高了单位面积药物浓度。
同时由于载药纳米粒较好的黏附性及小粒径,药物与吸收部位的接触时间延长,增加了药物在吸收部位上皮组织黏液层中的浓度,并延长了药物的半衰期,因此提高了药物的生物利用度。
载药纳米粒子还可以改变膜运转机制,增加药物对生物膜的通透性,药物有可能通过简单扩散或渗透形式进入生物膜,使溶解度增加。
此外,可对药物进行靶向引导,目标攻击效率的提高会使用药量减少,有可能使得人体对药物的副反应减少到忽略不计的程度,从而在保证药效的条件下有效减少药物的毒副作用。
众所周知,阿霉素(DXR)作为一常用抗肿瘤药因其较大的心脏毒性和骨髓抑制作用而限制了其应用。
为了减轻这种毒副作用,常将其与一些大分子物质如右旋糖酐(DEX)相偶联,但又因这种偶联剂半衰期很短而使疗效大为降低。
Mitra等[6]用微乳液法制备了DEX-DXR壳聚糖纳米粒,直径约为(100±10)nm,壳聚糖纳米粒在体内具有较好的长循环特征,利用EPR效应(enhanced permeability and retention effect)可提高药物对肿瘤组织的选择性。
将此纳米粒对J774A.1鼠巨噬细胞移植瘤鼠进行体外实验,结果显示DEX-DXR壳聚糖纳米粒的毒副作用明显小于单纯的DXR(鼠最大耐受剂量为16mg·kg-1,单纯DEX为8mg·kg-1),且有效增加了DXR的抗肿瘤效应[肿瘤大小由(514±6) mm3减小到(170±7.3)mm3,而单纯DEX-DXR仅从(453.6±19.99)mm3减小到(284±11.5)mm3],存活率升高(移植90d后为50%,单纯DEX-DXR为25%)。
3.3靶向和定位释药(targeting drug system,TDS)药物靶向性是指药物能高选择地分布于作用对象,从而增强疗效,减少副作用。
根据靶向机制的不同,靶向制剂包括被动靶向、主动靶向、物理化学靶向三大类。
被动靶向是指通过减少药物在非靶向部位的积聚从而增加靶部位的药物浓度,即自然靶向。
载药纳米粒进入体内后作为异物而被巨噬细胞吞噬,到达网状内皮系统(RES)分布集中的肝、脾、肺、骨髓、淋巴等靶部位。
主动靶向的方法主要是利用抗原-抗体或配体-受体结合,从而使药物能到达特异性的部位。
主动靶向的方法很早就开始应用于抗肿瘤治疗,纳米技术的加入更增加了药物的主动靶向性。
3.4药物控释控制释放给药系统(controlled release drug delivery system,CRDDS)是指通过物理、化学等方法改变制剂结构,使药物在预定时间内主动按某一速度从制剂中恒速释放于作用器官或特定靶组织,并使药物浓度较长时间维持在有效浓度内的一类制剂,即具备缓释、控释两大特性。
这两种特性可克服普通制剂的“峰谷”现象,使体内药物浓度保持平稳,减少给药次数,提高药效和安全度[7]。
纳米药物要实现缓释,延长体内的循环时间,可通过表面修饰来改变微粒的表面性质,以达到长循环的效果。
纳米粒表面的亲水性与亲脂性将影响到纳米粒与调理蛋白的吸附结合力的大小,从而影响到吞噬细胞对其吞噬的快慢。
一般而言,纳米粒的表面亲脂性越大,其对调理蛋白的结合力越强,故要延长纳米粒在体内的循环时间需增加其表面的亲水性,这是对纳米粒进行表面修饰时选择材料的一个必要条件。
常用表面活性剂主要是poloxamer/ poloxamine、polysorbates(聚山梨醇酯)、polyoxyethyiencether等[8]。
纳米粒的表面电荷影响到纳米粒与体内物质如调理素等的静电作用力,负电荷表面往往使纳米粒相对于正电荷或中性表面在体内更易被清除,而中性表面更适合于延长纳米粒在体内的循环时间,故常用非离子表面活性剂。
这类非离子表面活性剂包衣纳米粒长循环的机制被认为是不带电荷,亲水表面的包衣层以及聚合物的立体排阻效应,有效地阻断了巨噬细胞对纳米粒的吞噬过程。
亲水性的包衣能减少纳米粒对血中成分的吸附,从而降低血浆蛋白的调理作用。
表面活性剂吸附层度增加使吞噬细胞的吞噬功能下降,一般认为表面层的厚度大于10nm能有效发挥空间位阻作用。
抗肿瘤药紫杉醇用于临床注射常很困难,因为它水溶性很差,故常需使用佐剂,但这样又会引起很大的副作用。
有学者[9]将紫杉醇制成两种硬脂酸SLN:Brij78SLN、F68-SLN,其直径分别在100nm和200nm左右。
测得其24h药物释放缓慢且呈线性,分别为总量的8%和24%,并且药物在血液循环中具长循环性。
亲水性材料用于控释药物运输之后,许多聚合物赋行物也被用来研究控制药物释放,如λ-爱兰苔胶能控制药物从亲水性材料中释放的速率。
4纳米中药的研究近年来,纳米技术在我国传统的中药研究和应用中已开始受到广泛重视,并诞生了纳米中药这一新概念,在采用纳米技术制造的中药有效成分、有效部位、原药、复方和新型制剂等方面已取得了一定的进展。
徐辉碧等[10]研究了不同粒径的石决明(纳米、微米、常态)的血清微量元素变化,结果显示处于纳米状态(≤100nm)的石决明其性质与微米粒径比较有极显著的差异。
他们还研究了不同粒径(≤100nm、200nm、500 nm)的雄黄颗粒对小鼠肉瘤S180的抑制作用,结果示100nm及200nm的雄黄对肿瘤细胞的毒杀作用明显强于500nm的雄黄,不同粒径(≤100nm、150nm、200nm、500nm)的雄黄颗粒对人脐静脉内皮细胞系EV-304的存活率及诱导凋亡作用也存在明显的尺寸效应。
张东生等[11]将中药砒霜(As2O3)制备成砒霜磁性纳米微球,微球粒径80~140nm,药物微球的中心为一磁性微载体,外有用明胶包覆的As2O3,此种新型中药运载系统可通过区域或介入途径对实体瘤进行治疗,因此克服了目前As2O3注射液不适宜治疗实体瘤的缺陷。
不仅如此,砒霜磁性纳米微球还具有磁导向功能及有待开发的磁感应控温加热治疗作用。
以上研究表明,纳米技术的发展已为我国传统中药的研究带来了新的契机和方法。
5问题与展望纳米药物是一具有巨大发展前景的新型药物,其在医药领域的发展必将引起疾病诊断和治疗的革命。
目前,纳米医药技术的基础理论及纳米药物的制备工艺等还很不完善,纳米技术应用于中药的研究和开发还仅是出现了一些苗头。
因此,纳米技术在医药领域中的研究还需做大量的工作,但纳米医药所具有的优越特性预示着它在临床疾病治疗中具有十分广泛的应用前景。