2018年高考数学理江苏专用总复习教师用书:第九章 解析几何初步 第1讲 直线的斜率与方程 含答案 精品
江苏专用2018版高考数学大一轮复习平面解析几何9.9圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理

第九章平面解析几何 9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理苏教版1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c =0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“³”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( ³ ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( ³ )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( ³ )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是________.(填序号)答案 ④解析 将方程a 2x 2+b 2y 2=1变形为x 21a 2+y 21b 2=1,∵a >b >0,∴1a 2<1b2,∴椭圆焦点在y 轴上.将方程ax +by 2=0变形为y 2=-a bx ,∵a >b >0,∴-a b<0,∴抛物线焦点在x 轴负半轴上,开口向左. 故④符合题意.2.(2016²常州模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为________.答案 相交解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是__________________.答案 ⎝ ⎛⎭⎪⎫-23,23 解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝ ⎛⎭⎪⎫-23,23.4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB =________. 答案 16解析 直线l 的方程为y =3x +1, 由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=14,∴AB =y 1+y 2+p =14+2=16.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则AB 的最小值为______.答案 4解析 由题意可设直线l 的方程为y =m , 代入x 24-y 2=1,得x 2=4(1+m 2),所以x 1=4 1+m 2=21+m 2,x 2=-21+m 2,所以AB =|x 1-x 2|=41+m 2,所以AB =41+m 2≥4, 即当m =0时,AB 有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016²无锡模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4³9³(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016²全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (1)求OH ON;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t , 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =p t x ,代入y 2=2px 整理,得px2-2t 2x =0,解得x 1=0,x 2=2t2p ,因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即OH ON=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px ,得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点. 题型二 弦长问题例2 (2016²全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当AM =AN 时,求△AMN 的面积. (2)当2AM =AN 时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由AM =AN 及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2³12³127³127=14449.(2)证明 设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0,由x 1²(-2)=16k 2-123+4k 2,得x 1=2 3-4k 23+4k 2, 故AM =|x 1+2|1+k 2=121+k23+4k2.由题设,直线AN 的方程为y =-1k(x +2),故同理可得AN =12k 1+k23k 2+4. 由2AM =AN ,得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0,设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)上单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2. 思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2016²徐州模拟)设椭圆C 1:x 2a 2+y 2b 2=1 (a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,P 是椭圆上任意一点,且△PF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左,右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E (点D 与点A ,B 不重合),若C 点满足AB →⊥BC →,AD →∥OC →,连结AC 交DE 于点P ,求证:PD =PE .(1)解 由e =32,知c a =32,所以c =32a , 因为△PF 1F 2的周长是4+23,所以2a +2c =4+23, 所以a =2,c =3,所以b 2=a 2-c 2=1, 所以椭圆C 1的方程为x 24+y 2=1.(2)证明 由(1)得A (-2,0),B (2,0),设D (x 0,y 0), 所以E (x 0,0),因为AB →⊥BC →,所以可设C (2,y 1), 所以AD →=(x 0+2,y 0),OC →=(2,y 1),由AD →∥OC →可得(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为y 2y 0x 0+2=x +24, 整理得y =y 02 x 0+2(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得y =y 02,即点P 的坐标为(x 0,y 02),所以P为DE 的中点, 所以PD =PE . 题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为______________. (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.答案 (1)x 218+y 29=1 (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =3 2.所以E 的方程为x 218+y 29=1.(2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2), 则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24 y 1+y 2. 又x 1+x 2=8,y 1+y 2=4, 所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015²浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则AB =t 2+1²-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12²AB ²d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得AF =2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝ ⎛⎭⎪⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4.两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2³⎝ ⎛⎭⎪⎫-12=-1,y M +y N =2y 0,y M -y N x M -x N =-1k 代入上式,得k =-y 02.又点P ⎝ ⎛⎭⎪⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P (-12,y 0)在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.即m 的取值范围为(-334,0)∪(0,334).1.(2016²南京模拟)已知椭圆x 29+y 22=1的左,右焦点分别为F 1,F 2,点P 在椭圆上,若PF 1=4,则PF 2=______,∠F 1PF 2的大小为________. 答案 2 120°解析 由题意得PF 1+PF 2=2a =6,所以PF 2=2. 又F 1F 2=2c =27,在△PF 1F 2中,由余弦定理可得 cos∠F 1PF 2=4+16-282³2³4=-12,即∠F 1PF 2=120°.2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若AB =4,则弦AB 的中点到直线x +12=0的距离等于________. 答案 94解析 易知直线4kx -4y -k =0过抛物线y 2=x 的焦点(14,0),∴AB 为焦点弦.设A (x 1,y 1),B (x 2,y 2), 则AB 中点N (x 1+x 22,y 1+y 22), ∴AB =x 1+x 2+p =4.∴x 1+x 22=74. ∴AB 中点到直线x +12=0的距离为74+12=94.3.(2016²连云港一模)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为________. 答案4105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4 t 2-1 5.∴AB =1+k 2|x 1-x 2|=1+k 2² x 1+x 2 2-4x 1x 2 =2²-85t 2-4³4 t 2-1 5=425²5-t 2,当t =0时,(AB )max =4105.4.(2017²无锡月考)直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是________.答案 1解析 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.5.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为______. 答案5解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =ba x ,由方程组⎩⎪⎨⎪⎧y =b ax ,y =x 2+1消去y ,得x 2-b ax +1=0有唯一解, 所以Δ=(b a)2-4=0,ba=2,e =c a =a 2+b 2a= 1+ ba2= 5.6.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则|FA -FB |的值为________. 答案 8 2解析 依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程,得⎩⎪⎨⎪⎧y =x -2,y 2=8x ,消去y ,得x 2-12x +4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=4,x 1+x 2=12, 则|FA -FB |=|(x 1+2)-(x 2+2)| =|x 1-x 2|= x 1+x 2 2-4x 1x 2 =144-16=8 2.7.在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________. 答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b , 代入y =x 2中,整理得x 2+x -b =0, 令Δ=1+4b >0,∴b >-14.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1,y 1+y 22=-x 1+x 22+b =12+b ,由(-12,12+b )在直线y =x +3上,即12+b =-12+3,解得b =2,联立⎩⎪⎨⎪⎧y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1.8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则AB 的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4, 那么AF +BF =x 1+x 2+2,又AF +BF ≥AB ⇒AB ≤6,当AB 过焦点F 时取得最大值6.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________.答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上, 故x 2116+y 214=1,x 2216+y 224=1, 两式相减得x 1+x 2 x 1-x 2 16+ y 1+y 2 y 1-y 24=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B的上方),且与y 轴交于点M ,则MBMA的取值范围为________. 答案 (1,7+43)解析 由⎩⎪⎨⎪⎧y =-2x +m ,3x 2-y 2-3=0可得x 2-4mx +m 2+3=0,由题意得方程在[1,+∞)上有两个不相等的实根, 设f (x )=x 2-4mx +m 2+3,则⎩⎪⎨⎪⎧2m >1,f 1 ≥0,Δ>0,得m >1,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),得x 1=2m -3 m 2-1 ,x 2=2m +3 m 2-1 ,所以MB MA =x 2x 1=2m +3 m 2-1 2m -3 m 2-1=-1+42-3 1-1m2,由m >1得,MB MA的取值范围为(1,7+43).11.如图,定直线l 的方程为x =-4,定点F 的坐标为(-1,0),P (x ,y )为平面上一动点,作PQ ⊥l 于Q ,若PQ =2PF .(1)求动点P 的轨迹E 的方程;(2)过定点F 作直线交曲线E 于A 、B 两点,若曲线E 的中心为O ,且AO →+3OF →=2OB →,求三角形OAB 的面积.解 (1)由|x +4|=2 x +1 2+y 2, 化简得轨迹E 的方程为x 24+y 23=1.(2)设直线AB 的方程为ky =x +1,与椭圆方程联立消去x 得(3k 2+4)y 2-6ky -9=0. 设A (x 1,y 1),B (x 2,y 2).∵AO →+3OF →=2OB →,O (0,0),F (-1,0),∴y 1=-2y 2. ∴y 1=12k 3k 2+4,y 2=-6k3k 2+4,∴-72k 23k 2+4 2=-93k 2+4,∴k 2=45. ∴AB =1+k 2|y 1-y 2|=18|k |k 2+13k 2+4, 又点O 到直线AB 的距离d =1k 2+1,∴S △OAB =9|k |3k 2+4=9516.12. (2016²泰州模拟)设点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2=1(a >1)的左,右焦点,P 为椭圆C 上任意一点,且PF 1→²PF 2→的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线l :y =kx +m 与椭圆C 有且仅有一个公共点,作F 1M ⊥l ,F 2N ⊥l 分别交直线l 于M ,N 两点,求四边形F 1MNF 2面积S 的最大值.解 (1)设P (x ,y ),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),∴PF 1→²PF 2→=x 2+y 2-c 2=a 2-1a2x 2+1-c 2,x ∈[-a ,a ],由题意,得1-c 2=0,c =1,则a 2=2, ∴椭圆C 的方程为x 22+y 2=1.(2)将直线l 的方程l :y =kx +m 代入椭圆C 的方程x 22+y 2=1中,得(2k 2+1)x 2+4kmx +2m2-2=0,则Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0, 化简得m 2=2k 2+1.设d 1=F 1M =|-k +m |k 2+1,d 2=F 2N =|k +m |k 2+1. ①当k ≠0时,设直线l 的倾斜角为θ, 则|d 1-d 2|=MN ²|tan θ|, ∴MN =1|k |²|d 1-d 2|, ∴S =12²1|k |²|d 1-d 2|²(d 1+d 2)=2|m |k 2+1=4|m |m 2+1=4|m |+1|m |,∵m 2=2k 2+1,∴当k ≠0时,|m |>1,|m |+1|m |>2,即S <2. ②当k =0时,四边形F 1MNF 2是矩形,此时S =2. ∴四边形F 1MNF 2面积S 的最大值为2.13. (2015²江苏)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程, 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±2 1+k 21+2k2, 故C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB = x 2-x 1 2+ y 2-y 1 2= 1+k 2x 2-x 1 2=22 1+k 21+2k2. 若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为 y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k 1+2k 2 ,从而PC =2 3k 2+1 1+k2|k | 1+2k 2. 因为PC =2AB ,所以2 3k 2+1 1+k 2|k | 1+2k =42 1+k 21+2k 2, 解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.椭圆的概念平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M|MF1+MF2=2a},F1F2=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【知识拓展】点P (x 0,y 0)和椭圆的关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到两个定点F 1,F 2的距离的和等于常数的点的轨迹叫做椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)椭圆的离心率e 越大,椭圆就越圆.( × )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ ) (5)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( × ) (6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.( √ )1.(教材改编)椭圆x 210-m +y 2m -2=1的焦距为4,则m =________.答案 4或8 解析 由题意知⎩⎪⎨⎪⎧ 10-m >m -2>0,(10-m )-(m -2)=4或⎩⎪⎨⎪⎧m -2>10-m >0,(m -2)-(10-m )=4,解得m =4或m =8.2.(2016·苏州检测)在平面直角坐标系xOy 内,动点P 到定点F (-1,0)的距离与P 到定直线x =-4的距离的比值为12.则动点P 的轨迹C 的方程为______________.答案 x 24+y 23=1解析 设点P (x ,y ),由题意知(x +1)2+y 2|x +4|=12,化简得3x 2+4y 2=12,所以动点P 的轨迹C 的方程为x 24+y 23=1.3.(2016·全国乙卷改编)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为________.答案 12解析 如图,由题意得,BF =a ,OF =c ,OB =b , OD =14·2b =12b .在Rt △FOB 中,OF ·OB =BF ·OD ,即cb =a ·12b ,解得a =2c ,故椭圆离心率e =c a =12.4.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是________. 答案 (0,1)解析 将椭圆方程化为x 22+y 22k =1,因为焦点在y 轴上,则2k>2,即k <1,又k >0,所以0<k <1.5.(教材改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案 ⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,所以P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.题型一 椭圆的定义及标准方程 命题点1 利用定义求轨迹例1 (2016·徐州模拟)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是________.答案 椭圆解析 由条件知PM =PF , ∴PO +PF =PO +PM =OM =R >OF . ∴P 点的轨迹是以O ,F 为焦点的椭圆. 命题点2 利用待定系数法求椭圆方程例2 (1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为_________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为________________________________________. 答案 (1)x 29+y 2=1或y 281+x 29=1(2)x 29+y 23=1 解析 (1)若焦点在x 轴上, 设方程为x 2a 2+y 2b2=1(a >b >0).∵椭圆过P (3,0),∴32a 2+02b 2=1,即a =3,又2a =3×2b ,∴b =1,∴椭圆方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆过点P (3,0),∴02a 2+32b 2=1,即b =3.又2a =3×2b ,∴a =9,∴椭圆方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(2)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.即⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,② ①②两式联立,解得⎩⎨⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.命题点3 利用定义解决“焦点三角形”问题例3 已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 答案 3解析 设PF 1=r 1,PF 2=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 因为2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2, 又因为1221219,2PF F S rr b ===△ 所以b =3. 引申探究1.在例3中,若增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解 由原题得b 2=a 2-c 2=9, 又2a +2c =18,所以a -c =1,解得a =5, 故椭圆方程为x 225+y 29=1.2.在例3中,若将条件“PF 1→⊥PF 2→”“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”“12PF F S =△,结果如何?解 PF 1+PF 2=2a ,又∠F 1PF 2=60°,所以PF 21+PF 22-2PF 1·PF 2cos 60°=F 1F 22,即(PF 1+PF 2)2-3PF 1·PF 2=4c 2, 所以3PF 1·PF 2=4a 2-4c 2=4b 2, 所以PF 1·PF 2=43b 2,又因为12121··sin 602PF F S PF PF =︒△ =12·43b 2·32 =33b 2=33, 所以b =3.思维升华 (1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式. (3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求PF 1·PF 2;通过整体代入可求其面积等.(1)(2016·盐城模拟)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为________________. (2)(2016·镇江模拟)设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP→+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是______. 答案 (1)x 264+y 248=1 (2)1解析 (1)设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且 2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.(2)∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0, ∴PF 1⊥PF 2,∠F 1PF 2=90°. 设PF 1=m ,PF 2=n ,则m +n =4,m 2+n 2=12,2mn =4,121= 1.2F PF S mn ∴=△题型二 椭圆的几何性质例4 (1)已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________.(2)(2016·全国丙卷改编)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________. 答案 (1)2 (2)13解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1, ∴当y 20=1时,|PF 1→+PF 2→|取最小值2.(2)设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.思维升华 (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系. ②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系. (2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎫32a ,b 2,又F (c,0),则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得 c 2-34a 2+b 24=0,①又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a =23=63. 题型三 直线与椭圆例5 (2016·天津)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1OF +1OA =3eF A ,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c,0),由1OF +1OA =3eF A ,即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0), 则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0, 解得x =2或x =8k 2-64k 2+3.由题意,得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔MA ≤MO ,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64∪⎣⎡⎭⎫64,+∞. 思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.如图,已知椭圆O :x 24+y 2=1的右焦点为F ,B ,C 分别为椭圆O 的上,下顶点,P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆O 于另一点M.(1)当直线PM 过椭圆的右焦点F 时,求△FBM 的面积; (2)①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1·k 2为定值; ②求PB →·PM →的取值范围.(1)解 由题意知B (0,1),C (0,-1),焦点F (3,0),当直线PM 过椭圆O 的右焦点F 时,直线PM 的方程为x 3+y -1=1,即y =33x -1.联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍去),即点M 的坐标为(837,17).连结BF ,则直线BF 的方程为x 3+y1=1, 即x +3y -3=0.又BF =a =2, 点M 到直线BF 的距离为d =|837+3×17-3|12+(3)2=2372=37, 故△FBM 的面积为S △MBF =12·BF ·d =12×2×37=37.(2)方法一 ①证明 设P (m ,-2),且m ≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m ,则直线PM 的方程为y =-1mx -1.联立⎩⎨⎧y =-1mx -1,x24+y 2=1,消去y ,得(1+4m 2)x 2+8mx =0,解得点M 的坐标为(-8mm 2+4,4-m 2m 2+4),所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m=-3m ,所以k 1·k 2=-3m ·14m =-34为定值.②解 由①知,PB →=(-m,3), PM →=(-8m m 2+4-m ,4-m 2m 2+4+2)=(-m 3-12m m 2+4,m 2+12m 2+4),所以PB →·PM →=(-m,3)·(-m 3+12m m 2+4,m 2+12m 2+4)=(m 2+12)(m 2+3)m 2+4.令m 2+4=t >4, 则PB →·PM →=(t +8)(t -1)t=t 2+7t -8t =t -8t+7.因为y =t -8t +7在t ∈(4,+∞)上单调递增,所以PB →·PM →=t -8t +7>4-84+7=9,故PB →·PM →的取值范围为(9,+∞).方法二 ①证明 设点M 的坐标为(x 0,y 0)(x 0≠0), 则直线PM 的方程为y =y 0+1x 0x -1,令y =-2,得点P 的坐标为(-x 0y 0+1,-2),所以k 1=y 0-1x 0,k 2=-2-1-x 0y 0+1=3(y 0+1)x 0,所以k 1·k 2=y 0-1x 0·3(y 0+1)x 0=3(y 20-1)x 20=3(y 20-1)4(1-y 20)=-34为定值. ②解 由①知,PB →=(x 0y 0+1,3),PM →=(x 0+x 0y 0+1,y 0+2),所以PB →·PM →=x 0y 0+1(x 0+x 0y 0+1)+3(y 0+2)=x 20(y 0+2)(y 0+1)2+3(y 0+2) =4(1-y 20)(y 0+2)(y 0+1)2+3(y 0+2)=(7-y 0)(y 0+2)y 0+1.令t =y 0+1∈(0,2),则PB →·PM →=(8-t )(t +1)t =-t +8t +7.因为y =-t +8t +7在t ∈(0,2)上单调递减,所以PB →·PM →=-t +8t +7>-2+82+7=9,故PB →·PM →的取值范围为(9,+∞).8.高考中求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.典例1 (2015·福建改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是__________.解析 左焦点F 0,连结F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵AF +BF =4, ∴AF +AF 0=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32. 答案 ⎝⎛⎦⎤0,32典例2 (14分)(2016·浙江)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 规范解答解 (1)设直线y =kx +1被椭圆截得的线段为AM , 由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0, 故x 1=0,x 2=-2a 2k 1+a 2k 2,因此AM =1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. [6分](2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP =AQ .记直线AP ,AQ 的斜率分别为k 1,k 2, 且k 1,k 2>0,k 1≠k 2.[8分]由(1)知AP =2a 2|k 1|1+k 211+a 2k 21,AQ =2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22,所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由k 1≠k 2,k 1,k 2>0,得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2), ①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2. [12分] 因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2, 由e =c a =a 2-1a ,得0<e ≤22.所以离心率的取值范围是(0,22].[14分]1.(2016·苏北四市联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为____________. 答案 x 24+y 23=1解析 依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.2.(2016·苏北四市一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点A 、B 1、B 2、F 依次为其左顶点、下顶点、上顶点和右焦点.若直线AB 2与直线B 1F 的交点恰在直线x =a 2c 上,则椭圆的离心率为________. 答案 12解析 由题意知直线AB 2:-x a +y b =1,直线B 1F :x c -y b =1,联立解得x =2aca -c ,若交点在椭圆的右准线上,则2ac a -c =a 2c,即2c 2+ac -a 2=0,所以2e 2+e -1=0,解得e =12.3.(2017·青岛月考)已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为________.答案53解析 设P (x 0,y 0),则y 0x 0+a ·y 0x 0-a=-49,化简得x 20a 2+y 204a29=1,则b 2a 2=49,e = 1-(b a )2=1-49=53. 4.(2016·南昌模拟)已知椭圆:y 29+x 2=1,过点P (12,12)的直线与椭圆相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为________________. 答案 9x +y -5=0解析 设A (x 1,y 1),B (x 2,y 2),因为A ,B 在椭圆y 29+x 2=1上,所以⎩⎨⎧y 219+x 21=1,y 229+x 22=1,两式相减,得y 21-y 229+x 21-x 22=0, 即(y 1-y 2)(y 1+y 2)9+(x 1-x 2)(x 1+x 2)=0,又弦AB 被点P (12,12)平分,所以x 1+x 2=1,y 1+y 2=1,将其代入上式,得y 1-y 29+x 1-x 2=0,得y 1-y 2x 1-x 2=-9, 即直线AB 的斜率为-9,所以直线AB 的方程为 y -12=-9(x -12), 即9x +y -5=0.5.(2016·宿迁模拟)已知F 1、F 2是椭圆x 24+y 2=1的两个焦点,P 为椭圆上一动点,则使PF 1·PF 2取得最大值的点P 为__________. 答案 (0,1)或(0,-1)解析 由椭圆定义得PF 1+PF 2=2a =4, ∴PF 1·PF 2≤(PF 1+PF 22)2=4,当且仅当PF 1=PF 2=2,即P (0,-1)或(0,1)时,PF 1·PF 2取得最大值.*6.(2016·苏州质检)设A 1,A 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右顶点,若在椭圆上存在异于A 1,A 2的点P ,使得PO →·P A 2→=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是____________. 答案 (22,1) 解析 A 1(-a,0),A 2(a,0),设P (x ,y ),则PO →=(-x ,-y ),P A 2→=(a -x ,-y ), ∵PO →·P A 2→=0,∴(a -x )(-x )+(-y )(-y )=0, ∴y 2=ax -x 2>0,∴0<x <a . 将y 2=ax -x 2代入x 2a 2+y 2b2=1,整理得(b 2-a 2)x 2+a 3x -a 2b 2=0,其在(0,a )上有解, 令f (x )=(b 2-a 2)x 2+a 3x -a 2b 2, ∵f (0)=-a 2b 2<0,f (a )=0, 如图,Δ=(a 3)2-4(b 2-a 2)·(-a 2b 2) =a 2(a 4-4a 2b 2+4b 4) =a 2(a 2-2b 2)2≥0,∴对称轴满足0<-a 32(b 2-a 2)<a ,即0<a 32(a 2-b 2)<a ,∴a 22c 2<1,∴c 2a 2>12. 又0<c a <1,∴22<c a<1.7.若椭圆x 2a 2+y 2b 2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________. 答案 x 220+y 216=1解析 设切点坐标为(m ,n ), 则n -1m -2·nm=-1,即m 2+n 2-n -2m =0.∵m 2+n 2=4,∴2m +n -4=0, 即直线AB 的方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点, ∴2c -4=0,b -4=0,解得c =2,b =4, ∴a 2=b 2+c 2=20, ∴椭圆方程为x 220+y 216=1.8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________. 答案 7解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.9.(2017·连云港质检)椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________. 答案 (-263,263)解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①,得x 2-3+1-x 24<0,34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263).10.已知过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A (-a ,0)作直线l 交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且PQ →=2QA →,则椭圆的离心率为________. 答案255解析 ∵△AOP 是等腰三角形,A (-a,0),∴P (0,a ). 设Q (x 0,y 0),∵PQ →=2QA →,∴(x 0,y 0-a )=2(-a -x 0,-y 0).∴⎩⎪⎨⎪⎧x 0=-2a -2x 0,y 0-a =-2y 0,解得⎩⎨⎧x 0=-23a ,y 0=a3,代入椭圆方程化简,可得b 2a 2=15,∴e =1-b 2a 2=255. 11.(2016·南京模拟)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且AB =52BF . (1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解 (1)由已知AB =52BF , 即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2, ∴e =c a =32.(2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0. 由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y , 得x 2+4(2x +2)2-4b 2=0, 即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而5(16-4b 2)17-12817+4=0,解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.12.(2015·安徽)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝⎛⎭⎫23a ,13b , 又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +yb=1,点N 的坐标为⎝⎛⎭⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝⎛⎭⎫x 1,72, 则线段NS 的中点T 的坐标为⎝⎛⎭⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b+-14b +74b =1,72+12b x 1-52b = 5.解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.13.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,上顶点为B ,O 为坐标原点,M 为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ). (1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.解 (1)设椭圆半焦距为c .由题意AF ,AB 的中垂线方程分别为x =a -c 2,y -b 2=a b (x -a2),于是圆心坐标为(a -c 2,b 2-ac2b ).所以p +q =a -c 2+b 2-ac2b≤0,整理得ab -bc +b 2-ac ≤0,即(a +b )(b -c )≤0, 所以b ≤c ,于是b 2≤c 2,即a 2=b 2+c 2≤2c 2. 所以e 2=c 2a 2≥12,即22≤e <1.(2)当e =22时,a =2b =2c , 此时椭圆的方程为x 22c 2+y 2c 2=1,设M (x ,y ),则-2c ≤x ≤2c ,MF →=(-c -x ,-y ),OD →=(b +1,0),MO →=(-x ,-y ), 所以(MF →+OD →)·MO →=12x 2-x +c 2=12(x -1)2+c 2-12.当c ≥22时,上式的最小值为c 2-12,即c 2-12=72,得c =2; 当0<c <22时,上式的最小值为12(2c )2-2c +c 2, 即12(2c )2-2c +c 2=72, 解得c =2+304,不合题意,舍去. 综上所述,椭圆的方程为x 28+y 24=1.。
江苏2018版高考数学复习圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理苏教版

第九章平面解析几何 9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理苏教版1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c =0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是________.(填序号)答案 ④解析 将方程a 2x 2+b 2y 2=1变形为x 21a 2+y 21b 2=1,∵a >b >0,∴1a 2<1b2,∴椭圆焦点在y 轴上.将方程ax +by 2=0变形为y 2=-a bx ,∵a >b >0,∴-a b<0,∴抛物线焦点在x 轴负半轴上,开口向左. 故④符合题意.2.(2016·常州模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为________.答案 相交解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是__________________.答案 ⎝ ⎛⎭⎪⎫-23,23 解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝ ⎛⎭⎪⎫-23,23.4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB =________. 答案 16解析 直线l 的方程为y =3x +1, 由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=14,∴AB =y 1+y 2+p =14+2=16.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则AB 的最小值为______.答案 4解析 由题意可设直线l 的方程为y =m , 代入x 24-y 2=1,得x 2=4(1+m 2),所以x 1=41+m2=21+m 2,x 2=-21+m 2,所以AB =|x 1-x 2|=41+m 2,所以AB =41+m 2≥4, 即当m =0时,AB 有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·无锡模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (1)求OH ON;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t , 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =p t x ,代入y 2=2px 整理,得px2-2t 2x =0,解得x 1=0,x 2=2t2p ,因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即OH ON=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px ,得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点. 题型二 弦长问题例2 (2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当AM =AN 时,求△AMN 的面积. (2)当2AM =AN 时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由AM =AN 及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0,由x 1·(-2)=16k 2-123+4k 2,得x 1=23-4k23+4k 2,故AM =|x 1+2|1+k 2=121+k23+4k2.由题设,直线AN 的方程为y =-1k(x +2),故同理可得AN =12k 1+k23k 2+4. 由2AM =AN ,得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0,设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)上单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2. 思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2016·徐州模拟)设椭圆C 1:x 2a 2+y 2b 2=1 (a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,P 是椭圆上任意一点,且△PF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左,右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E (点D 与点A ,B 不重合),若C 点满足AB →⊥BC →,AD →∥OC →,连结AC 交DE 于点P ,求证:PD =PE .(1)解 由e =32,知c a =32,所以c =32a , 因为△PF 1F 2的周长是4+23,所以2a +2c =4+23, 所以a =2,c =3,所以b 2=a 2-c 2=1, 所以椭圆C 1的方程为x 24+y 2=1.(2)证明 由(1)得A (-2,0),B (2,0),设D (x 0,y 0), 所以E (x 0,0),因为AB →⊥BC →,所以可设C (2,y 1), 所以AD →=(x 0+2,y 0),OC →=(2,y 1),由AD →∥OC →可得(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为y 2y 0x 0+2=x +24, 整理得y =y 02x 0+2(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得y =y 02,即点P 的坐标为(x 0,y 02),所以P为DE 的中点, 所以PD =PE . 题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为______________. (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.答案 (1)x 218+y 29=1 (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =3 2.所以E 的方程为x 218+y 29=1.(2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2), 则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24y 1+y 2. 又x 1+x 2=8,y 1+y 2=4, 所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则AB =t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12·AB ·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得AF =2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝ ⎛⎭⎪⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4.两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2×⎝ ⎛⎭⎪⎫-12=-1,y M +y N =2y 0,y M -y N x M -x N =-1k 代入上式,得k =-y 02.又点P ⎝ ⎛⎭⎪⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P (-12,y 0)在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.即m 的取值范围为(-334,0)∪(0,334).1.(2016·南京模拟)已知椭圆x 29+y 22=1的左,右焦点分别为F 1,F 2,点P 在椭圆上,若PF 1=4,则PF 2=______,∠F 1PF 2的大小为________. 答案 2 120°解析 由题意得PF 1+PF 2=2a =6,所以PF 2=2. 又F 1F 2=2c =27,在△PF 1F 2中,由余弦定理可得 cos∠F 1PF 2=4+16-282×2×4=-12,即∠F 1PF 2=120°.2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若AB =4,则弦AB 的中点到直线x +12=0的距离等于________. 答案 94解析 易知直线4kx -4y -k =0过抛物线y 2=x 的焦点(14,0),∴AB 为焦点弦.设A (x 1,y 1),B (x 2,y 2), 则AB 中点N (x 1+x 22,y 1+y 22), ∴AB =x 1+x 2+p =4.∴x 1+x 22=74. ∴AB 中点到直线x +12=0的距离为74+12=94.3.(2016·连云港一模)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为________. 答案4105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴AB =1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=2·-85t 2-4×4t 2-15=425·5-t 2,当t =0时,(AB )max =4105.4.(2017·无锡月考)直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是________.答案 1解析 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.5.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为______. 答案5解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =ba x ,由方程组⎩⎪⎨⎪⎧y =b ax ,y =x 2+1消去y ,得x 2-b ax +1=0有唯一解, 所以Δ=(b a)2-4=0,ba=2,e =c a =a 2+b 2a= 1+ba2= 5.6.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则|FA -FB |的值为________. 答案 8 2解析 依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程,得⎩⎪⎨⎪⎧y =x -2,y 2=8x ,消去y ,得x 2-12x +4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=4,x 1+x 2=12, 则|FA -FB |=|(x 1+2)-(x 2+2)| =|x 1-x 2|=x 1+x 22-4x 1x 2=144-16=8 2.7.在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________. 答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b , 代入y =x 2中,整理得x 2+x -b =0, 令Δ=1+4b >0,∴b >-14.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1,y 1+y 22=-x 1+x 22+b =12+b ,由(-12,12+b )在直线y =x +3上,即12+b =-12+3,解得b =2,联立⎩⎪⎨⎪⎧y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1.8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则AB 的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4, 那么AF +BF =x 1+x 2+2,又AF +BF ≥AB ⇒AB ≤6,当AB 过焦点F 时取得最大值6.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________.答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上, 故x 2116+y 214=1,x 2216+y 224=1, 两式相减得x 1+x 2x 1-x 216+y 1+y 2y 1-y 24=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B的上方),且与y 轴交于点M ,则MBMA的取值范围为________. 答案 (1,7+43)解析 由⎩⎪⎨⎪⎧y =-2x +m ,3x 2-y 2-3=0可得x 2-4mx +m 2+3=0,由题意得方程在[1,+∞)上有两个不相等的实根, 设f (x )=x 2-4mx +m 2+3,则⎩⎪⎨⎪⎧2m >1,f 1≥0,Δ>0,得m >1,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2), 得x 1=2m -3m 2-1,x 2=2m +3m 2-1,所以MBMA=x2x1=2m+3m2-12m-3m2-1=-1+42-31-1m2,由m>1得,MBMA的取值范围为(1,7+43).11.如图,定直线l的方程为x=-4,定点F的坐标为(-1,0),P(x,y)为平面上一动点,作PQ⊥l于Q,若PQ=2PF.(1)求动点P的轨迹E的方程;(2)过定点F作直线交曲线E于A、B两点,若曲线E的中心为O,且AO→+3OF→=2OB→,求三角形OAB的面积.解(1)由|x+4|=2x+12+y2,化简得轨迹E的方程为x24+y23=1.(2)设直线AB的方程为ky=x+1,与椭圆方程联立消去x得(3k2+4)y2-6ky-9=0.设A(x1,y1),B(x2,y2).∵AO→+3OF→=2OB→,O(0,0),F(-1,0),∴y1=-2y2.∴y1=12k3k2+4,y2=-6k3k2+4,∴-72k23k2+42=-93k2+4,∴k2=45.∴AB=1+k2|y1-y2|=18|k|k2+13k2+4,又点O到直线AB的距离d=1k2+1,∴S△OAB=9|k|3k2+4=9516.12. (2016·泰州模拟)设点F1(-c,0),F2(c,0)分别是椭圆C:x2a2+y2=1(a>1)的左,右焦点,P为椭圆C上任意一点,且PF1→·PF2→的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线l :y =kx +m 与椭圆C 有且仅有一个公共点,作F 1M ⊥l ,F 2N ⊥l 分别交直线l 于M ,N 两点,求四边形F 1MNF 2面积S 的最大值.解 (1)设P (x ,y ),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),∴PF 1→·PF 2→=x 2+y 2-c 2=a 2-1a2x 2+1-c 2,x ∈[-a ,a ],由题意,得1-c 2=0,c =1,则a 2=2, ∴椭圆C 的方程为x 22+y 2=1.(2)将直线l 的方程l :y =kx +m 代入椭圆C 的方程x 22+y 2=1中,得(2k 2+1)x 2+4kmx +2m2-2=0,则Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0, 化简得m 2=2k 2+1.设d 1=F 1M =|-k +m |k 2+1,d 2=F 2N =|k +m |k 2+1. ①当k ≠0时,设直线l 的倾斜角为θ, 则|d 1-d 2|=MN ·|tan θ|, ∴MN =1|k |·|d 1-d 2|, ∴S =12·1|k |·|d 1-d 2|·(d 1+d 2)=2|m |k 2+1=4|m |m 2+1=4|m |+1|m |,∵m 2=2k 2+1,∴当k ≠0时,|m |>1,|m |+1|m |>2,即S <2. ②当k =0时,四边形F 1MNF 2是矩形,此时S =2. ∴四边形F 1MNF 2面积S 的最大值为2.13. (2015·江苏)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程, 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±21+k21+2k2,故C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB =x 2-x 12+y 2-y 12=1+k2x 2-x 12=221+k 21+2k2.若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为 y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k 1+2k 2, 从而PC =23k 2+1 1+k2|k |1+2k2. 因为PC =2AB ,所以23k 2+1 1+k 2|k |1+2k 2=421+k21+2k2,解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.。
2018高考数学复习解析几何教师用书理

第九章⎪⎪⎪ 解析几何第一节 直线与方程突破点(一) 直线的倾斜角与斜率、两直线的位置关系1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α≠π2,则斜率k =tan_α.(2)两点式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.1.直线都有倾斜角,但不一定都有斜率,二者的关系具体如下:本节主要包括3个知识点:1.直线的倾斜角与斜率、两直线的位置关系; 2.直线的方程;3.直线的交点、距离与对称问题.倾斜角α锐角 0° 钝角 90°2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k =tan α的单调性,如图所示:当α取值在⎣⎢⎡⎭⎪⎫0,π2内,由0增大到π2⎝ ⎛⎭⎪⎫α≠π2时,k 由0增大并趋向于正无穷大;当α取值在⎝ ⎛⎭⎪⎫π2,π内,由π2⎝ ⎛⎭⎪⎫α≠π2增大到π(α≠π)时,k 由负无穷大增大并趋近于0.解决此类问题,常采用数形结合思想.[例1] (1)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π(2)已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.[解析] (1)因为直线x sin α+y +2=0的斜率k =-sin α,又-1≤sin α≤1,所以-1≤k ≤1.设直线x sin α+y +2=0的倾斜角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.(2)如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m .∴-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点.∴实数m 的取值范围为⎣⎢⎡⎦⎥⎤-23,12. [答案] (1)B (2)⎣⎢⎡⎦⎥⎤-23,12 [易错提醒]直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).两直线的位置关系两直线平行或垂直的判定方法 (1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合.(3)已知两直线的一般方程设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.该方法可避免对斜率是否存在进行讨论.[例2] (1)若直线ax +2y -6=0与x +(a -1)y +a 2-1=0平行,则a =________. (2)已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2互相垂直,则实数a 的值为________.[解析] (1)因为两直线平行,所以有a (a -1)-2=0,且2(a 2-1)+6(a -1)≠0,即a 2-a -2=0,且a 2+3a -4≠0,解得a =2或a =-1.(2)l 1的斜率k 1=3a -01--=a .当a ≠0时,l 2的斜率k 2=-2a --a -0=1-2aa.因为l 1⊥l 2,所以k 1k 2=-1,即a ·1-2aa=-1,解得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴,A (-2,0),B (1,0),直线l 1为x 轴,显然l 1⊥l 2.综上可知,实数a 的值为1或0. [答案] (1)2或-1 (2)1或0[易错提醒]当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.1.[考点一]直线2x cos α-y -3=0(α∈[π6,π3])的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3解析:选B 直线2x cos α-y -3=0的斜率k =2cos α,因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3. 2.[考点一]直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.3.[考点二]若直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,则实数m 的值为( )A .-1B .0C .1D .2解析:选 C ∵直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,∴⎩⎪⎨⎪⎧-m +-m =0,m +-m,解得m =1.故选C.4.[考点二]已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( )A .2或12B.13或-1 C.13D .-1解析:选B 因为直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或a =-1.故选B.5.[考点一]直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析:如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞). 答案:(-∞,- 3 ]∪[1,+∞)6.[考点二](2016·苏北四市一模)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)-2b =0, 即2b +3a =ab ,2a +3b=1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b =13+6a b +6b a≥13+26a b ·6ba=25,当且仅当a =b =5时取等号, 故2a +3b 的最小值为25. 答案:25突破点(二) 直线的方程基础联通 抓主干知识的“源”与“流”直线方程的五种形式两点式 过两点(x 1,y 1),(x 2,y 2)y -y 1y 2-y 1=x -x 1x 2-x 1与x 轴、y 轴均不垂直的直线 截距式 横截距a ,纵截距bx a +y b =1 不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0,A 2+B 2≠0平面直角坐标系内所有直线考点贯通 抓高考命题的“形”与“神”求直线方程[例1] (1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. (3)求过A (2,1),B (m,3)两点的直线l 的方程.[解] (1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a=-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (3)①当m =2时,直线l 的方程为x =2;②当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,代入方程2x -(m -2)y +m -6=0,即为x =2, 所以直线l 的方程为2x -(m -2)y +m -6=0.[易错提醒](1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零).与直线方程有关的最值问题[例2] 过点P (4,1)作直线l 分别交x ,y 轴正半轴于A ,B 两点. (1)当△AOB 面积最小时,求直线l 的方程. (2)当|OA |+|OB |取最小值时,求直线l 的方程. [解] 设直线l :x a +y b=1(a >0,b >0), 因为直线l 经过点P (4,1), 所以4a +1b=1.(1)4a +1b =1≥24a ·1b=4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立,所以当a =8,b =2时,S △AOB =12ab 最小,此时直线l 的方程为x 8+y2=1,即x +4y -8=0.(2)因为4a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫4a +1b =5+a b +4b a≥5+2a b ·4ba=9, 当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y -6=0.[方法技巧]1.给定条件求直线方程的思路(1)考虑问题的特殊情况,如斜率不存在的情况,截距等于零的情况. (2)在一般情况下准确选定直线方程的形式,用待定系数法求出直线方程. (3)重视直线方程一般形式的应用,因为它具有广泛的适用性. 2.与直线有关的最值问题的解题思路 (1)借助直线方程,用y 表示x 或用x 表示y . (2)将问题转化成关于x (或y )的函数. (3)利用函数的单调性或基本不等式求最值.1.[考点一]倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0D .x +y +1=0解析:选D 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0.2.[考点一]已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A .4x -3y -3=0B .3x -4y -3=0C .3x -4y -4=0D .4x -3y -4=0解析:选D 由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0.3.[考点二]若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b=1,∴a +b =(a +b )⎝⎛⎭⎪⎫1a +1b=2+b a +a b ≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.4.[考点二]若ab >0,且A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 解析:根据A (a,0),B (0,b )确定直线的方程为x a +y b=1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.答案:165.[考点一]△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 所在直线的方程. 解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.突破点(三) 直线的交点、距离与对称问题1.两条直线的交点2.三种距离|P 1P 2|=x 2-x 12+y 2-y 12[例1] (1)当0<k <2时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)已知直线l 经过点P (3,1),且被两条平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段长为5,则直线l 的方程为________.[解析] (1)由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =kk -1<0,y =2k -1k -1>0, 故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.(2)若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1,l 2的交点分别为A ′(3,-4),B ′(3,-9),截得的线段A ′B ′的长|A ′B ′|=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组⎩⎪⎨⎪⎧y =k x -+1,x +y +1=0,得A ⎝⎛⎭⎪⎫3k -2k +1,-4k -1k +1,解方程组⎩⎪⎨⎪⎧y =k x -+1,x +y +6=0,得B ⎝⎛⎭⎪⎫3k -7k +1,-9k -1k +1. 由|AB |=5,得⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫-4k -1k +1+9k -1k +12=52.解得k =0,即所求的直线方程为y =1.综上可知,所求直线l 的方程为x =3或y =1. [答案] (1)B (2)x =3或y =1 [方法技巧]1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.2.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.距离问题[例2] (1)若P ,Q =0上任意一点,则|PQ |的最小值为( )A.95B.185C.2910D.295(2)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P 点坐标为________.[解析] (1)因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910,所以|PQ |的最小值为2910. (2)设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.① 又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,② 由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎪⎨⎪⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝ ⎛⎭⎪⎫277,-87.[答案] (1)C (2)(1,-4)或⎝ ⎛⎭⎪⎫277,-87[易错提醒](1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; (2)利用两平行线间的距离公式要先把两直线方程中x ,y 的系数化为相等.对称问题1.中心对称问题的两种类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的两种类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:①若直线与对称轴平行,则在直线上取一点,求出该点关于轴的对称点,然后用点斜式求解.②若直线与对称轴相交,则先求出交点,然后再取直线上一点,求该点关于轴的对称点,最后由两点式求解.[例3] (1)点P (3,2)关于点Q (1,4)的对称点M 为( ) A .(1,6) B .(6,1) C .(1,-6)D .(-1,6)(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0(3)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.[解析] (1)设M (x ,y ),则⎩⎪⎨⎪⎧3+x2=1,2+y2=4,∴x =-1,y =6, ∴M (-1,6).(2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0.(3)设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.[答案] (1)D (2)A (3)6x -y -6=0[方法技巧]解决两类对称问题的关键点解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.能力练通 抓应用体验的“得”与“失”1.[考点三](2016·东城期末)如果平面直角坐标系内的两点A (a -1,a +1),B (a ,a )关于直线l 对称,那么直线l 的方程为( )A .x -y +1=0B .x +y +1=0C .x -y -1=0D .x +y -1=0解析:选A 因为直线AB 的斜率为a +1-aa -1-a=-1,所以直线l 的斜率为1,设直线l 的方程为y =x +b ,由题意知直线l 过点⎝⎛⎭⎪⎫2a -12,2a +12,所以2a +12=2a -12+b ,解得b =1,所以直线l 的方程为y =x +1,即x -y +1=0.选A.2.[考点二]若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A ∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去).∴m +n =0.3.[考点一]已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是( )A.⎝ ⎛⎭⎪⎫12,12 B.⎝ ⎛⎭⎪⎫22,22 C.⎝⎛⎭⎪⎫32,32 D.⎝⎛⎭⎪⎫52,52 解析:选A 因为定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,设直线AB 的方程为x +y +m =0,将A 点代入,解得m =-1,所以直线AB 的方程为x +y -1=0,它与x -y =0联立解得x =12,y =12,所以B 的坐标是⎝ ⎛⎭⎪⎫12,12.4.[考点三]若m >0,n >0,点(-m ,n )关于直线x +y -1=0的对称点在直线x -y +2=0上,那么1m +4n的最小值等于________.解析:由题意知(-m ,n )关于直线x +y -1=0的对称点为(1-n,1+m ).则1-n -(1+m )+2=0,即m +n =2.于是1m +4n =12(m +n )⎝ ⎛⎭⎪⎫1m +4n =12×⎝ ⎛⎭⎪⎫5+n m +4m n ≥12×(5+2×2)=92,当且仅当m =23,n =43时等号成立.答案:925.[考点一]经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________________.解析:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2).∵l ⊥l 3,直线l 3的斜率为34,∴直线l 的斜率k 1=-43,∴直线l 的方程为y -2=-43x ,即4x +3y -6=0. 答案:4x +3y -6=06.[考点二]已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程.(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0. 由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO垂直的直线,如图.由l ⊥OP ,得k l k OP =-1,因为k OP =-12,所以k l =-1k OP =2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.2.(2013·新课标全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D.⎣⎢⎡⎭⎪⎫13,12 解析:选B 法一:(1)当直线y =ax +b 与AB ,BC 相交时,如图①所示.易求得:x M =-b a,y N =a +b a +1.由已知条件得:⎝ ⎛⎭⎪⎫1+b a ·a +ba +1=1,∴a =b 21-2b .∵点M 在线段OA 上,∴-1<-ba <0,∴0<b <a .∵点N 在线段BC 上,∴0<a +ba +1<1,∴b <1.由⎩⎪⎨⎪⎧b 21-2b >b ,b21-2b >0,b >0,解得13<b <12. (2)当直线y =ax +b 与AC ,BC 相交时,如图②所示.设MC =m ,NC =n ,则S △MCN =12mn=12,∴mn =1.显然,0<n <2,∴m =1n >22.又0<m ≤2且m ≠n .∴22<m ≤2且m ≠1.设D 到AC ,BC 的距离为t ,则t m =DN MN ,t n =DM MN ,∴t m +t n =DN MN +DM MN =1.∴t =mn m +n ,∴1t =1m +1n =1m+m .而f (m )=m +1m ⎝ ⎛⎭⎪⎫22<m ≤2且m ≠1的值域为⎝ ⎛⎦⎥⎤2,322,即2<1t ≤322,∴23≤t <12.∵b =1-CD =1-2t ,∴1-22<b ≤13.综合(1)、(2)可得:1-22<b <12. 法二:由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝ ⎛⎭⎪⎫-b a ,0,结合图形知12×a +b a +1×⎝ ⎛⎭⎪⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为B.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.直线x +3y +1=0的倾斜角是( ) A.π6 B.π3 C.2π3 D.5π6 解析:选D 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,所以α=5π6.2.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32B .m ≠0C .m ≠0且m ≠1D .m ≠1解析:选D 由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.4.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710 B.175C .8D .2解析:选D ∵63=m 4≠14-3,∴m =8,直线6x +8y +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2. 5.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析:由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.答案:-9[练常考题点——检验高考能力]一、选择题1.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:选D 由题意可知a ≠0.当x =0时,y =a +2.当y =0时,x =a +2a .故a +2a=a +2,解得a =-2或a =1.2.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <0解析:选A 由于直线ax +by +c =0同时经过第一、第二、第四象限,所以直线斜率存在,将方程变形为y =-ab x -c b .易知-a b <0且-c b>0,故ab >0,bc <0.3.两直线x m -y n =a 与x n -y m=a (其中a 是不为零的常数)的图象可能是( )解析:选B 直线方程x m -yn =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =m nx -ma ,由此可知两条直线的斜率同号,故选B.4.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则P 1P 2的中点P 到原点的距离的最小值是( )A.522 B .5 2 C.1522D .15 2 解析:选B 由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d =|-10|2=52,即P 到原点距离的最小值为5 2.5.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎪⎫0,10a ,则线段AB 的长为( )A .11B .10C .9D .8解析:选B 依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎪⎨⎪⎧x -2y2=0,2x +y2=5,解得⎩⎪⎨⎪⎧x =4,y =2,所以A (4,8),B (-4,2),∴|AB |=+2+-2=10.6.设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .x +y -7=0解析:选D 由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,所以直线PB 的方程为x +y -7=0.二、填空题7.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为________. 解析:因为l 1,l 2关于直线y =-x 对称,所以l 2的方程为-x =-2y +3,即y =12x +32,即直线l 2的斜率为12.答案:128.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是__________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=09.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]10.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.解析:从特殊位置考虑.如图,∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4), ∴kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,∴k FD >kA 1F ,即k FD ∈(4,+∞).答案:(4,+∞) 三、解答题11.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0.设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 12.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)由已知可得l 2的斜率存在, ∴k 2=1-a .若k 2=0,则1-a =0,a =1. ∵l 1⊥l 2,直线l 1的斜率k 1必不存在,∴b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在. ∵k 2=1-a ,k 1=a b,l 1⊥l 2,∴k 1k 2=-1, 即a b(1-a )=-1.① 又∵l 1过点(-3,-1), ∴-3a +b +4=0.②由①②联立,解得a =2,b =2. (2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即a b=1-a .③ 又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.第二节 圆的方程突破点(一) 圆的方程1.圆的定义及方程2.点与圆的位置关系点M (x 0,y 0),圆的标准方程(x -a )2+(y -b )2=r 2.1.求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择设圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的三种方法本节主要包括2个知识点: 1.圆的方程;2.与圆的方程有关的综合问题.(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.[例1] (1)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.(2)已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.(3)经过三点(2,-1),(5,0),(6,1)的圆的一般方程为________________. [解析] (1)依题意,设圆心坐标为C (a,0), 则|CA |=|CB |, 即a -2+-2=a -2+-2,则a =2.故圆心为(2,0),半径为10, 所以圆C 的方程为(x -2)2+y 2=10.(2)过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =-2+-2+2=22,故所求圆的方程为(x -1)2+(y +4)2=8.(3)设所求圆的一般方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧22+-2+2D -E +F =0,52+02+5D +0+F =0,62+12+6D +E +F =0,解得⎩⎪⎨⎪⎧D =-4,E =-8,F =-5,故所求圆的一般方程为x 2+y 2-4x -8y -5=0.[答案] (1)(x -2)2+y 2=10 (2)(x -1)2+(y +4)2=8 (3)x 2+y 2-4x -8y -5=0 [方法技巧]1.确定圆的方程必须有三个独立条件不论圆的标准方程还是一般方程,都有三个字母(a ,b ,r 或D ,E ,F )的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a ,b ,r (或D ,E ,F )的三个方程组成的方程组,解之得到待定字母系数的值,从而确定圆的方程.2.几何法在圆中的应用在一些问题中借助平面几何中关于圆的知识可以简化计算,如已知一个圆经过两点时,其圆心一定在这两点连线的垂直平分线上,解题时要注意平面几何知识的应用.3.A (x 1,y 1),B (x 2,y 2),以AB 为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.与圆有关的对称问题1.圆的轴对称性圆关于直径所在的直线对称. 2.圆关于点对称(1)求已知圆关于某点对称的圆,只需确定所求圆的圆心位置. (2)两圆关于某点对称,则此点为两圆圆心连线的中点. 3.圆关于直线对称(1)求已知圆关于某条直线对称的圆,只需确定所求圆的圆心位置. (2)两圆关于某条直线对称,则此直线为两圆圆心连线的垂直平分线.[例2] 已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1 D .(x -2)2+(y -2)2=1[解析] 圆C 1的圆心坐标为(-1,1),半径为1, 设圆C 2的圆心坐标为(a ,b ),由题意得⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,所以圆C 2的圆心坐标为(2,-2),又两圆的半径相等,故圆C 2的方程为(x -2)2+(y +2)2=1. [答案] B能力练通 抓应用体验的“得”与“失”1.[考点一]已知点A (-1,3),B (1,-3),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析:选D 由题意知,AB 的中点为(0,0),即所求圆的圆心坐标为(0,0), 设圆的方程为x 2+y 2=r 2, 因为|AB |=[1--2+-3-32=4,所以圆的半径为2, 所以圆的方程为x 2+y 2=4.2.[考点一]若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1 C .(x +2)2+(y -1)2=1D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1.3.[考点二]已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R)对称,则ab 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,14 B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫-14,0D.⎣⎢⎡⎭⎪⎫-14,+∞ 解析:选A 将圆的方程化成标准形式得(x +1)2+(y -2)2=4,若圆关于已知直线对称,则圆心(-1,2)在直线上,代入整理得a +b =1,故ab =a (1-a )=-⎝ ⎛⎭⎪⎫a -122+14≤14,故选A.4.[考点二]若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得,点(1,0)关于直线y =x 对称的点(0,1)为圆心,又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=15.[考点二]若圆(x +1)2+(y -3)2=9上的相异两点P ,Q 关于直线kx +2y -4=0对称,则k 的值为________.解析:圆是轴对称图形,过圆心的直线都是它的对称轴.已知圆的圆心为(-1,3),由题设知,直线kx +2y -4=0过圆心,则k ×(-1)+2×3-4=0,解得k =2.答案:26.[考点一]求圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程. 解:设点C 为圆心,因为点C 在直线x -2y -3=0上, 所以可设点C 的坐标为(2a +3,a ). 又该圆经过A ,B 两点,所以|CA|=|CB|,即a+3-2+a+2=a+3+2+a+2,解得a=-2,所以圆心C的坐标为(-1,-2),半径r=10.故所求圆的方程为(x+1)2+(y+2)2=10.突破点(二) 与圆的方程有关的综合问题圆的方程是高中数学的一个重要知识点,高考中,除了圆的方程的求法外,圆的方程与其他知识的综合问题也是高考考查的热点,常涉及轨迹问题和最值问题.解决此类问题的关键是数形结合思想的运用.考点贯通抓高考命题的“形”与“神”与圆有关的轨迹问题[例1] 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.[解] (1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.[方法技巧] 求与圆有关的轨迹问题的四种方法助数形结合思想求解.与圆有关的最值问题,常见的有以下几种类型:(1)形如μ=y -bx -a的最值问题,可转化为动直线斜率的最值问题. (2)形如t =ax +by 的最值问题,可转化为动直线截距的最值问题,也可用三角代换求解. (3)形如m =(x -a )2+(y -b )2的最值问题,可转化为动点与定点的距离的平方的最值问题.[例2] 已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. [解] (1)法一:因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22, 设m +2n =t ,将m +2n =t 看成直线方程, 因为该直线与圆有公共点, 所以圆心到直线的距离d =|1×2+2×7-t |12+22≤22, 解上式得:16-210≤t ≤16+210, 所以m +2n 的最大值为16+210.法二:由x 2+y 2-4x -14y +45=0,得(x -2)2+(y -7)2=8. 因为点M (m ,n )为圆上任意一点, 故可设⎩⎨⎧m -2=22cos θ,n -7=22sin θ,即⎩⎨⎧m =2+22cos θn =7+22sin θ∴m +2n =2+22cos θ+2(7+22sin θ) =16+22cos θ+42sin θ =16+8+32sin(θ+φ)=16+210sin(θ+φ),⎝⎛⎭⎪⎫其中tan φ=12 故m +2n 的最大值为16+210. (2)记点Q (-2,3). 因为n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有公共点, 所以|2k -7+2k +3|k 2+1≤2 2.可得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3.1.[考点一]设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解:如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分, 所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,因为O ,M ,P 三点不共线,所以应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.2.[考点二]已知实数x ,y 满足方程x 2+y 2-4x +1=0, (1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.。
江苏专用2018版高考数学大一轮复习第九章平面解析几何9.8曲线与方程教师用书理

第九章平面解析几何 9.8 曲线与方程教师用书理苏教版1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点的轨迹方程的基本步骤【知识拓展】1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系:(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( √)(2)方程x2+xy=x的曲线是一个点和一条直线.( ×)(3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (4)方程y =x 与x =y 2表示同一曲线.( × ) (5)y =kx 与x =1ky 表示同一直线.( × )1.(教材改编)已知点F (14,0),直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是________. 答案 抛物线解析 由已知MF =MB ,根据抛物线的定义知, 点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2016·苏州模拟)方程(2x +3y -1)(x -3-1)=0表示的曲线是________________. 答案 一条直线和一条射线解析 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条射线和一条直线.3.(2016·南通模拟)已知A (-2,0),B (1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则P 点的轨迹方程是________________. 答案 (x -2)2+y 2=4(y ≠0)解析 由角的平分线性质定理得PA =2PB ,设P (x ,y ),则 x +2 2+y 2=2 x -1 2+y 2, 整理得(x -2)2+y 2=4(y ≠0).4.过椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点M 作x 轴的垂线,垂足为N ,则线段MN 中点的轨迹方程是________________.答案 x 2a 2+4y 2b2=1解析 设MN 的中点为P (x ,y ),则点M (x,2y )在椭圆上,∴x 2a 2+ 2y 2b 2=1,即x 2a 2+4y 2b2=1(a >b >0). 5.(2016·镇江模拟)若点P 在椭圆x 29+y 2=1上,F 1,F 2分别为椭圆的左,右焦点,且满足PF 1→·PF 2→=t ,则实数t 的取值范围是____________.答案 [-7,1]解析 设P (x ,y ),F 1(-22,0),F 2(22,0),PF 1→=(-22-x ,-y ),PF 2→=(22-x ,-y ),PF 1→·PF 2→=(-22-x )(22-x )+(-y )2=x 2+y 2-8.∵P 在椭圆x 29+y 2=1上,∴y 2=1-x 29,∴t =PF 1→·PF 2→=x 2+y 2-8 =89x 2-7,∵0≤x 2≤9, ∴-7≤t ≤1,故实数t 的取值范围为[-7,1].题型一 定义法求轨迹方程例1 如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0), 由曲线的对称性,得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).思维升华 应用定义法求曲线方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解.已知两个定圆O 1和O 2,它们的半径分别是1和2,且O 1O 2=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线. 解 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系. 由O 1O 2=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有MO 1=r -1;由动圆M 与圆O 2外切,有MO 2=r +2. ∴MO 2-MO 1=3<4=O 1O 2.∴点M 的轨迹是以O 1、O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a2=74. ∴点M 的轨迹方程为4x 29-4y 27=1(x ≤-32).题型二 直接法求轨迹方程例2 (2016·常州模拟)已知圆O :x 2+y 2=4,点A (3,0),以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程. 解 (1)设AB 的中点为M ,切点为N ,连结OM ,ON ,则OM +MN =ON =2,取A 关于y 轴的对称点A ′,连结A ′B ,故A ′B +AB =2(OM +MN )=4.所以点B 的轨迹是以A ′,A 为焦点,长轴长为4的椭圆. 其中,a =2,c =3,b =1,则 曲线Γ的方程为x 24+y 2=1.(2)因为B 为CD 的中点,所以OB ⊥CD ,则OB →⊥AB →. 设B (x 0,y 0),则AB →=(x 0-3,y 0), 所以x 0(x 0-3)+y 20=0.又x 204+y 20=1,解得x 0=23,y 0=±23. 则k OB =±22,k AB =∓2, 则直线AB 的方程为y =±2(x -3), 即2x -y -6=0或2x +y -6=0.思维升华 直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程的纯粹性和完备性.在平面直角坐标系xOy 中,点P (a ,b )为动点,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.解 (1)设F 1(-c,0),F 2(c,0)(c >0).由题意,可得PF 2=F 1F 2,即 a -c 2+b 2=2c , 整理得2⎝ ⎛⎭⎪⎫c a2+c a-1=0,得c a =-1(舍去)或c a =12.所以e =12.(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2的方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3 x -c ,消去y 并整理,得5x 2-8cx =0. 解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎪⎨⎪⎧x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85c ,335c ,B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝ ⎛⎭⎪⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y . 于是AM →=⎝ ⎛⎭⎪⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2,即⎝⎛⎭⎪⎫8315y -35x ·x +⎝ ⎛⎭⎪⎫85y -335x ·3x =-2, 化简得18x 2-163xy -15=0. 将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0.所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0). 题型三 相关点法求轨迹方程例3 (2016·盐城模拟)如图所示,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12, 所以点A 的坐标为(-1,14),故切线MA 的方程为y =-12(x +1)+14.因为点M (1-2,y 0)在切线MA 及抛物线C 2上, 所以y 0=-12×(2-2)+14=-3-224,①y 0=- 1-2 22p =-3-222p .②由①②得p =2.(2)设N (x ,y ),A (x 1,x 214),B (x 2,x 224),x 1≠x 2.由N 为线段AB 的中点,知x =x 1+x 22,③y =x 21+x 228.④所以切线MA ,MB 的方程分别为y =x 12(x -x 1)+x 214,⑤y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 的中点N 为点O ,坐标满足x 2=43y .因此AB 的中点N 的轨迹方程是x 2=43y .思维升华 “相关点法”的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1). (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f x ,y ,y 1=g x ,y .(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.设直线x -y =4a 与抛物线y 2=4ax 交于两点A ,B (a 为定值),C 为抛物线上任意一点,求△ABC 的重心的轨迹方程. 解 设△ABC 的重心为G (x ,y ),点C 的坐标为(x 0,y 0),A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x -y =4a ,y 2=4ax ,消去y 并整理得x 2-12ax +16a 2=0.∴x 1+x 2=12a ,y 1+y 2=(x 1-4a )+(x 2-4a )=(x 1+x 2)-8a =4a .∵G (x ,y )为△ABC 的重心,∴⎩⎪⎨⎪⎧x =x 0+x 1+x 23=x 0+12a 3,y =y 0+y 1+y 23=y 0+4a3,∴⎩⎪⎨⎪⎧x 0=3x -12a ,y 0=3y -4a .又点C (x 0,y 0)在抛物线上,∴将点C 的坐标代入抛物线的方程得 (3y -4a )2=4a (3x -12a ), 即(y -4a 3)2=4a3(x -4a ).又点C 与A ,B 不重合,∴x 0≠(6±25)a , ∴△ABC 的重心的轨迹方程为(y -4a 3)2=4a 3(x -4a )(x ≠(6±253)a ).分类讨论思想在曲线方程中的应用典例 (16分)已知抛物线y 2=2px 经过点M (2,-22),椭圆x 2a 2+y 2b2=1的右焦点恰为抛物线的焦点,且椭圆的离心率为12.(1)求抛物线与椭圆的方程;(2)若P 为椭圆上一个动点,Q 为过点P 且垂直于x 轴的直线上的一点,OP OQ=λ(λ≠0),试求Q 的轨迹.思想方法指导 (1)由含参数的方程讨论曲线类型时,关键是确定分类标准,一般情况下,根据x 2,y 2的系数与0的关系及两者之间的大小关系进行分类讨论. (2)等价变换是解题的关键:即必须分三种情况讨论轨迹方程. (3)区分求轨迹方程与求轨迹问题. 规范解答解 (1)因为抛物线y 2=2px 经过点M (2,-22), 所以(-22)2=4p ,解得p =2.[2分] 所以抛物线的方程为y 2=4x ,其焦点为F (1,0),即椭圆的右焦点为F (1,0),得c =1. 又椭圆的离心率为12,所以a =2,可得b 2=4-1=3,[4分] 故椭圆的方程为x 24+y 23=1.[5分](2)设Q (x ,y ),其中x ∈[-2,2], 设P (x ,y 0),因为P 为椭圆上一点,所以x 24+y 203=1,解得y 20=3-34x 2.[7分]由OP OQ =λ可得OP 2OQ 2=λ2, 故x 2+3-34x 2x 2+y2=λ2,得(λ2-14)x 2+λ2y 2=3,x ∈[-2,2].[10分]当λ2=14,即λ=12时,得y 2=12,点Q 的轨迹方程为y =±23,x ∈[-2,2], 此轨迹是两条平行于x 轴的线段;[12分] 当λ2<14,即0<λ<12时,得到x 23λ2-14+y 23λ2=1,此轨迹表示实轴在y 轴上的双曲线满足x ∈[-2,2]的部分;[14分] 当λ2>14,即λ>12时,得到x 23λ2-14+y 23λ2=1.此轨迹表示长轴在x 轴上的椭圆满足x ∈[-2,2]的部分.[16分]1.(2016·无锡质检)设定点M 1(0,-3),M 2(0,3),动点P 满足条件PM 1+PM 2=a +9a(其中a是正常数),则点P 的轨迹是__________. 答案 椭圆或线段解析 ∵a 是正常数,∴a +9a≥29=6.当PM 1+PM 2=6时,点P 的轨迹是线段M 1M 2;当a +9a>6时,点P 的轨迹是椭圆.2.(2016·南京模拟)已知点M 与双曲线x 216-y 29=1的左,右焦点F 1,F 2的距离之比为2∶3,则点M 的轨迹方程为________________. 答案 x 2+y 2+26x +25=0解析 F 1(-5,0),F 2(5,0),设M (x ,y ),则 x +5 2+y 2x -5 2+y 2=49,化简得x 2+y 2+26x +25=0.3.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且PM =MQ ,则Q 点的轨迹方程是____________. 答案 2x -y +5=0解析 由题意知,M 为PQ 中点, 设Q (x ,y ),则P 为(-2-x,4-y ), 代入2x -y +3=0,得2x -y +5=0.4.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为________. 答案 3解析 ∵e 是方程2x 2-5x +2=0的根, ∴e =2或e =12.mx 2+4y 2=4m 可化为x 24+y 2m=1,当它表示焦点在x 轴上的椭圆时, 有4-m 2=12,∴m =3; 当它表示焦点在y 轴上的椭圆时, 有m -4m=12,∴m =163; 当它表示焦点在x 轴上的双曲线时,可化为x 24-y 2-m=1,有4-m2=2,∴m =-12. ∴满足条件的圆锥曲线有3个.5.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为____________.答案 y =2x解析 设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎪⎨⎪⎧x +x12=1,y +y12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .∵点R (x 1,y 1)在直线y =2x -4上,∴y 1=2x 1-4,∴-y =2(2-x )-4,即y =2x .6.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是________. 答案 直线解析 设C (x ,y ),则OC →=(x ,y ),OA →=(3,1),OB →=(-1,3),∵OC →=λ1OA →+λ2OB →,∴⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线.7.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论: ①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________. 答案 ②③解析 因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,且a >1,所以曲线C 不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,所以PF 1·PF 2=a 2对应的轨迹关于原点对称,即②正确;因为12F PF S ∆=12PF 1·PF 2·sin∠F 1PF 2≤12PF 1·PF 2=12a 2,即△F 1PF 2的面积不大于12a 2,所以③正确.8.(2017·南通月考)已知△ABC 的顶点A ,B 坐标分别为(-4,0),(4,0),C 为动点,且满足sin B +sin A =54sin C ,则C 点的轨迹方程为______ __________.答案x 225+y 29=1(x ≠±5)解析 由sin B +sin A =54sin C 可知b +a =54c =10,则AC +BC =10>8=AB ,∴满足椭圆定义.令椭圆方程为x 2a ′2+y 2b ′2=1,则a ′=5,c ′=4,b ′=3,则轨迹方程为x 225+y 29=1(x ≠±5). 9.如图,P 是椭圆x 2a 2+y 2b2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.答案 x 24a 2+y 24b2=1解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP →=-12OQ →=(-x 2,-y 2),即P 点坐标为(-x 2,-y2),又P 在椭圆上,则有 -x2 2a 2+ -y22b 2=1,即x 24a 2+y 24b2=1.10.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线焦点的轨迹方程是________________. 答案x 24+y 23=1(y ≠0) 解析 设抛物线的焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则AA 1+BB 1=2OO 1=4, 由抛物线定义得AA 1+BB 1=FA +FB ,∴FA +FB =4>2=AB ,故F 点的轨迹是以A ,B 为焦点, 长轴长为4的椭圆(去掉长轴两端点). ∴轨迹方程为x 24+y 23=1(y ≠0).11.过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =12x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.解 由e =c a =22,得a 2-b 2a 2=12,从而a 2=2b 2,c =b .设椭圆C 的方程为x 2+2y 2=2b 2,A (x 1,y 1)、B (x 2,y 2),∵A 、B 在椭圆C 上,∴x 21+2y 21=2b 2,x 22+2y 22=2b 2, 两式相减得(x 21-x 22)+2(y 21-y 22)=0, 即y 1-y 2x 1-x 2=-x 1+x 22 y 1+y 2. 设AB 中点坐标为(x 0,y 0),则k AB =-x 02y 0,又(x 0,y 0)在直线y =12x 上,故y 0=12x 0,于是-x 02y 0=-1,即k AB =-1,故直线l 的方程为y =-x +1.右焦点(b,0)关于直线l 的对称点设为(x ′,y ′),则⎩⎪⎨⎪⎧y ′x ′-b =1,y ′2=-x ′+b2+1, 解得⎩⎪⎨⎪⎧x ′=1,y ′=1-b .由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2, ∴b =34,∴b 2=916,a 2=98.∴所求椭圆C 的方程为x 298+y 2916=1.12.(2016·连云港模拟)定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E . (1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且AC =BC ,当△ABC 的面积最小时,求直线AB 的方程.解 (1)∵F (3,0)在圆M :(x +3)2+y 2=16内, ∴圆N 内切于圆M .∵NM +NF =4>FM ,∴点N 的轨迹E 为椭圆,且2a =4,c =3,∴b =1, ∴轨迹E 的方程为x 24+y 2=1.(2)①当AB 为长轴(或短轴)时,S △ABC =12OC ·AB =2.②当直线AB 的斜率存在且不为0时, 设直线AB 的方程为y =kx ,A (x A ,y A ),联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx ,得x 2A =41+4k 2,y 2A =4k 21+4k2,∴OA 2=x 2A +y 2A =4 1+k 21+4k2. 将上式中的k 替换为-1k ,可得OC 2=4 1+k 2k 2+4.∴S △ABC =2S △AOC =OA ·OC =4 1+k 21+4k2·4 1+k 2 k 2+4=4 1+k 21+4k 2 k 2+4. ∵ 1+4k 2k 2+4 ≤ 1+4k 2+ k 2+42=5 1+k 22,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .*13. (2016·河北衡水中学三调)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于点Q .(1)求动点Q 的轨迹Γ的方程;(2)设直线l 与(1)中轨迹Γ相交于A ,B 两点,直线OA ,l ,OB 的斜率分别为k 1,k ,k 2(其中k >0),△OAB 的面积为S ,以OA ,OB 为直径的圆的面积分别为S 1,S 2,若k 1,k ,k 2恰好构成等比数列,求S 1+S 2S的取值范围. 解 (1)连结QF ,根据题意,QP =QF ,则QE +QF =QE +QP =4>EF =23,故动点Q 的轨迹Γ是以E ,F 为焦点,长轴长为4的椭圆.设其方程为x 2a 2+y 2b2=1(a >b >0),可知a =2,c =3,∴b =1, ∴点Q 的轨迹Γ的方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得,(1+4k 2)x 2+8kmx +4m 2-4=0, Δ=16(1+4k 2-m 2)>0,x 1+x 2=-8km 1+4k 2,x 1x 2=4 m 2-11+4k 2. ∵k 1,k ,k 2构成等比数列, ∴k 2=k 1k 2= kx 1+m kx 2+m x 1x 2,整理得km (x 1+x 2)+m 2=0, ∴-8k 2m 21+4k 2+m 2=0,解得k 2=14. ∵k >0,∴k =12.此时Δ=16(2-m 2)>0,解得m ∈(-2,2).又由A ,O ,B 三点不共线得m ≠0, 从而m ∈(-2,0)∪(0,2).故S =12·AB ·d =121+k 2|x 1-x 2|·|m |1+k 2=12x 1+x 2 2-4x 1x 2·|m | =2-m 2|m |. 又x 214+y 21=x 224+y 22=1, 则S 1+S 2=π4(x 21+y 21+x 22+y 22)=π4(34x 21+34x 22+2) =3π16[(x 1+x 2)2-2x 1x 2]+π2=5π4为定值. ∴S 1+S 2S =5π4×1 2-m 2 m2≥5π4, 当且仅当m =±1时等号成立. 综上,S 1+S 2S ∈[5π4,+∞).。
2018版高考数学大一轮复习第九章平面解析几何9.5椭圆教师用书理苏教版

第九章平面解析几何 9.5 椭圆教师用书理苏教版1.椭圆的概念平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M|MF1+MF2=2a},F1F2=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【知识拓展】点P (x 0,y 0)和椭圆的关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到两个定点F 1,F 2的距离的和等于常数的点的轨迹叫做椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)椭圆的离心率e 越大,椭圆就越圆.( × )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ )(5)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( × ) (6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b2=1(a >b >0)的焦距相等.( √ )1.(教材改编)椭圆x 210-m +y 2m -2=1的焦距为4,则m =________.答案 4或8 解析 由题意知⎩⎪⎨⎪⎧10-m >m -2>0,-m -m -=4或⎩⎪⎨⎪⎧m -2>10-m >0,m ---m =4,解得m =4或m =8.2.(2016·苏州检测)在平面直角坐标系xOy 内,动点P 到定点F (-1,0)的距离与P 到定直线x =-4的距离的比值为12.则动点P 的轨迹C 的方程为______________.答案x 24+y 23=1 解析 设点P (x ,y ),由题意知x +2+y 2|x +4|=12,化简得3x 2+4y 2=12,所以动点P 的轨迹C 的方程为x 24+y 23=1.3.(2016·全国乙卷改编)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为________.答案 12解析 如图,由题意得,BF =a ,OF =c ,OB =b ,OD =14·2b =12b .在Rt△FOB 中,OF ·OB =BF ·OD ,即cb =a ·12b ,解得a =2c ,故椭圆离心率e =c a =12.4.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是________. 答案 (0,1)解析 将椭圆方程化为x 22+y 22k=1,因为焦点在y 轴上,则2k>2,即k <1,又k >0,所以0<k <1.5.(教材改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案 ⎝⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,所以P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1.题型一 椭圆的定义及标准方程 命题点1 利用定义求轨迹例1 (2016·徐州模拟)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是________.答案 椭圆解析 由条件知PM =PF , ∴PO +PF =PO +PM =OM =R >OF . ∴P 点的轨迹是以O ,F 为焦点的椭圆. 命题点2 利用待定系数法求椭圆方程例2 (1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为_________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为________________________________________. 答案 (1)x 29+y 2=1或y 281+x 29=1(2)x 29+y 23=1 解析 (1)若焦点在x 轴上,设方程为x 2a 2+y 2b2=1(a >b >0).∵椭圆过P (3,0),∴32a 2+02b2=1,即a =3,又2a =3×2b ,∴b =1,∴椭圆方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b2=1(a >b >0).∵椭圆过点P (3,0),∴02a 2+32b2=1,即b =3.又2a =3×2b ,∴a =9,∴椭圆方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(2)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.即⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,②①②两式联立,解得⎩⎪⎨⎪⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1. 命题点3 利用定义解决“焦点三角形”问题例3 已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 答案 3解析 设PF 1=r 1,PF 2=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2,因为2r 1r 2=(r 1+r 2)2-(r 21+r 22) =4a 2-4c 2=4b 2, 又因为1221219,2PF F S rr b ===△ 所以b =3. 引申探究1.在例3中,若增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解 由原题得b 2=a 2-c 2=9, 又2a +2c =18,所以a -c =1,解得a =5, 故椭圆方程为x 225+y 29=1.2.在例3中,若将条件“PF 1→⊥PF 2→”“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”“12PF F S =△ 解 PF 1+PF 2=2a ,又∠F 1PF 2=60°, 所以PF 21+PF 22-2PF 1·PF 2cos 60° =F 1F 22,即(PF 1+PF 2)2-3PF 1·PF 2=4c 2, 所以3PF 1·PF 2=4a 2-4c 2=4b 2, 所以PF 1·PF 2=43b 2,又因为12121··sin 602PF F S PF PF =︒△ =12·43b 2·32 =33b 2=33, 所以b =3.思维升华 (1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式. (3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求PF 1·PF 2;通过整体代入可求其面积等.(1)(2016·盐城模拟)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为________________.(2)(2016·镇江模拟)设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是______. 答案 (1)x 264+y 248=1 (2)1解析 (1)设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且 2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.(2)∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0, ∴PF 1⊥PF 2,∠F 1PF 2=90°. 设PF 1=m ,PF 2=n ,则m +n =4,m 2+n 2=12,2mn =4,121= 1.2F PF S mn ∴=△题型二 椭圆的几何性质例4 (1)已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________.(2)(2016·全国丙卷改编)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________.答案 (1)2 (2)13解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0),∴|PF 1→+PF 2→|=4x 20+4y 20 =22-2y 20+y 20 =2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1, ∴当y 20=1时,|PF 1→+PF 2→|取最小值2. (2)设M (-c ,m ),则E ⎝⎛⎭⎪⎫0,am a -c ,OE 的中点为D ,则D ⎝ ⎛⎭⎪⎫0,am a -c ,又B ,D ,M 三点共线,所以m 2a -c =m a +c ,a =3c ,e =13. 思维升华 (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系. ②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系. (2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c,0), 则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得 c 2-34a 2+b24=0,①又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 题型三 直线与椭圆例5 (2016·天津)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1OF +1OA =3eFA,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c,0),由1OF +1OA =3eFA,即1c +1a =3c aa -c,可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0), 则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k x -消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0, 解得x =2或x =8k 2-64k 2+3.由题意,得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ), 有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k 212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k x -,y =-1k x +9-4k212k 消去y ,解得x M =20k 2+9k 2+.在△MAO 中,∠MOA ≤∠MAO ⇔MA ≤MO , 即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+9k 2+≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为 ⎝ ⎛⎦⎥⎤-∞,-64∪⎣⎢⎡⎭⎪⎫64,+∞.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB =+k2x 1+x 22-4x 1x 2]=+1k2y 1+y 22-4y 1y 2](k为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.如图,已知椭圆O :x 24+y 2=1的右焦点为F ,B ,C 分别为椭圆O 的上,下顶点,P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC交椭圆O 于另一点M .(1)当直线PM 过椭圆的右焦点F 时,求△FBM 的面积;(2)①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1·k 2为定值; ②求PB →·PM →的取值范围.(1)解 由题意知B (0,1),C (0,-1),焦点F (3,0),当直线PM 过椭圆O 的右焦点F 时,直线PM 的方程为x3+y-1=1,即y =33x -1. 联立⎩⎪⎨⎪⎧ x 24+y 2=1,y =33x -1,解得⎩⎪⎨⎪⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y=-1(舍去),即点M 的坐标为(837,17).连结BF ,则直线BF 的方程为x3+y1=1,即x +3y -3=0.又BF =a =2, 点M 到直线BF 的距离为d =|837+3×17-3|12+32=2372=37, 故△FBM 的面积为S △MBF =12·BF ·d =12×2×37=37.(2)方法一 ①证明 设P (m ,-2),且m ≠0,则直线PM 的斜率为k =-1--0-m =-1m,则直线PM 的方程为y =-1mx -1.联立⎩⎪⎨⎪⎧y =-1m x -1,x24+y 2=1,消去y ,得(1+4m 2)x 2+8mx =0,解得点M 的坐标为(-8m m 2+4,4-m2m 2+4),所以k 1=4-m2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1--0-m=-3m,所以k 1·k 2=-3m ·14m =-34为定值.②解 由①知,PB →=(-m,3), PM →=(-8m m 2+4-m ,4-m2m 2+4+2)=(-m 3-12m m 2+4,m 2+12m 2+4),所以PB →·PM →=(-m,3)·(-m 3+12m m 2+4,m 2+12m 2+4)=m 2+m 2+m 2+4.令m 2+4=t >4, 则PB →·PM →=t +t -t=t 2+7t -8t =t -8t+7.因为y =t -8t+7在t ∈(4,+∞)上单调递增,所以PB →·PM →=t -8t +7>4-84+7=9,故PB →·PM →的取值范围为(9,+∞).方法二 ①证明 设点M 的坐标为(x 0,y 0)(x 0≠0), 则直线PM 的方程为y =y 0+1x 0x -1, 令y =-2,得点P 的坐标为(-x 0y 0+1,-2),所以k 1=y 0-1x 0,k 2=-2-1-x 0y 0+1=y 0+x 0,所以k 1·k 2=y 0-1x 0·y 0+x 0=y 20-x 20=y 20--y 20=-34为定值. ②解 由①知,PB →=(x 0y 0+1,3),PM →=(x 0+x 0y 0+1,y 0+2),所以PB →·PM →=x 0y 0+1(x 0+x 0y 0+1)+3(y 0+2)=x 20y 0+2y 0+12+3(y 0+2)=41-y 2y 0+2y 0+12+3(y 0+2) =7-y 0y 0+2y 0+1.令t =y 0+1∈(0,2), 则PB →·PM →=-tt +t=-t +8t+7.因为y =-t +8t+7在t ∈(0,2)上单调递减,所以PB →·PM →=-t +8t +7>-2+82+7=9,故PB →·PM →的取值范围为(9,+∞).8.高考中求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.典例1 (2015·福建改编)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是__________.解析 左焦点F 0,连结F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵AF +BF =4, ∴AF +AF 0=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca=c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎥⎤0,32. 答案 ⎝ ⎛⎦⎥⎤0,32 典例2 (14分)(2016·浙江)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 规范解答解 (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0,故x 1=0,x 2=-2a 2k1+a 2k2,因此AM =1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. [6分](2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP =AQ .记直线AP ,AQ 的斜率分别为k 1,k 2, 且k 1,k 2>0,k 1≠k 2.[8分]由(1)知AP =2a 2|k 1|1+k 211+a 2k 21,AQ =2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由k 1≠k 2,k 1,k 2>0,得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2),①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2. [12分] 因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,由e =c a =a 2-1a ,得0<e ≤22.所以离心率的取值范围是(0,22].[14分]1.(2016·苏北四市联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y2=-4x 的焦点重合,则此椭圆方程为____________. 答案x 24+y 23=1 解析 依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.2.(2016·苏北四市一模)已知椭圆x 2a 2+y 2b2=1(a >b >0),点A 、B 1、B 2、F 依次为其左顶点、下顶点、上顶点和右焦点.若直线AB 2与直线B 1F 的交点恰在直线x =a 2c上,则椭圆的离心率为________. 答案 12解析 由题意知直线AB 2:-x a +y b =1,直线B 1F :x c -y b =1,联立解得x =2aca -c,若交点在椭圆的右准线上,则2ac a -c =a 2c ,即2c 2+ac -a 2=0,所以2e 2+e -1=0,解得e =12.3.(2017·青岛月考)已知A 1,A 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右顶点,P 是椭圆C上异于A 1,A 2的任意一点,若直线PA 1,PA 2的斜率的乘积为-49,则椭圆C 的离心率为________.答案53解析 设P (x 0,y 0),则y 0x 0+a ·y 0x 0-a =-49,化简得x 20a 2+y 204a29=1,则b 2a 2=49,e = 1-b a2=1-49=53. 4.(2016·南昌模拟)已知椭圆:y 29+x 2=1,过点P (12,12)的直线与椭圆相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为________________. 答案 9x +y -5=0解析 设A (x 1,y 1),B (x 2,y 2),因为A ,B 在椭圆y29+x 2=1上,所以⎩⎪⎨⎪⎧y 219+x 21=1,y229+x 22=1,两式相减,得y 21-y 229+x 21-x 22=0,即y 1-y 2y 1+y 29+(x 1-x 2)(x 1+x 2)=0,又弦AB 被点P (12,12)平分,所以x 1+x 2=1,y 1+y 2=1, 将其代入上式,得y 1-y 29+x 1-x 2=0,得y 1-y 2x 1-x 2=-9, 即直线AB 的斜率为-9,所以直线AB 的方程为y -12=-9(x -12),即9x +y -5=0.5.(2016·宿迁模拟)已知F 1、F 2是椭圆x 24+y 2=1的两个焦点,P 为椭圆上一动点,则使PF 1·PF 2取得最大值的点P 为__________. 答案 (0,1)或(0,-1)解析 由椭圆定义得PF 1+PF 2=2a =4, ∴PF 1·PF 2≤(PF 1+PF 22)2=4,当且仅当PF 1=PF 2=2,即P (0,-1)或(0,1)时,PF 1·PF 2取得最大值.*6.(2016·苏州质检)设A 1,A 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,若在椭圆上存在异于A 1,A 2的点P ,使得PO →·PA 2→=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是____________. 答案 (22,1) 解析 A 1(-a,0),A 2(a,0),设P (x ,y ),则PO →=(-x ,-y ),PA 2→=(a -x ,-y ), ∵PO →·PA 2→=0,∴(a -x )(-x )+(-y )(-y )=0, ∴y 2=ax -x 2>0,∴0<x <a .将y 2=ax -x 2代入x 2a 2+y 2b2=1,整理得(b 2-a 2)x 2+a 3x -a 2b 2=0,其在(0,a )上有解, 令f (x )=(b 2-a 2)x 2+a 3x -a 2b 2, ∵f (0)=-a 2b 2<0,f (a )=0, 如图,Δ=(a 3)2-4(b 2-a 2)·(-a 2b 2) =a 2(a 4-4a 2b 2+4b 4) =a 2(a 2-2b 2)2≥0, ∴对称轴满足0<-a 3b 2-a 2<a ,即0<a 3a 2-b 2<a ,∴a 22c 2<1,∴c 2a 2>12. 又0<c a <1,∴22<c a<1. 7.若椭圆x 2a 2+y 2b2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________. 答案x 220+y 216=1 解析 设切点坐标为(m ,n ), 则n -1m -2·nm=-1, 即m 2+n 2-n -2m =0.∵m 2+n 2=4,∴2m +n -4=0, 即直线AB 的方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点, ∴2c -4=0,b -4=0,解得c =2,b =4, ∴a 2=b 2+c 2=20, ∴椭圆方程为x 220+y 216=1.8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________. 答案 7解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.9.(2017·连云港质检)椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________. 答案 (-263,263)解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①,得x 2-3+1-x 24<0,34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263).10.已知过椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点A (-a ,0)作直线l 交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且PQ →=2QA →,则椭圆的离心率为________. 答案255解析 ∵△AOP 是等腰三角形,A (-a,0),∴P (0,a ). 设Q (x 0,y 0),∵PQ →=2QA →, ∴(x 0,y 0-a )=2(-a -x 0,-y 0).∴⎩⎪⎨⎪⎧x 0=-2a -2x 0,y 0-a =-2y 0,解得⎩⎪⎨⎪⎧x 0=-23a ,y 0=a3,代入椭圆方程化简,可得b 2a 2=15,∴e =1-b 2a 2=255. 11.(2016·南京模拟)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且AB =52BF .(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解 (1)由已知AB =52BF , 即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2, ∴e =c a =32. (2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0. 由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b2=1消去y ,得x 2+4(2x +2)2-4b 2=0, 即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b217.∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而-4b 217-12817+4=0, 解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.12.(2015·安徽)设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b , 又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x5b+yb=1,点N 的坐标为⎝ ⎛⎭⎪⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝ ⎛⎭⎪⎫x 1,72,则线段NS 的中点T 的坐标为⎝⎛⎭⎪⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b +-14b +74b=1,72+12b x 1-52b = 5.解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.13.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,上顶点为B ,O 为坐标原点,M 为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ). (1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.解 (1)设椭圆半焦距为c .由题意AF ,AB 的中垂线方程分别为x =a -c 2,y -b 2=a b (x -a 2), 于是圆心坐标为(a -c 2,b 2-ac 2b). 所以p +q =a -c 2+b 2-ac 2b≤0, 整理得ab -bc +b 2-ac ≤0,即(a +b )(b -c )≤0,所以b ≤c ,于是b 2≤c 2,即a 2=b 2+c 2≤2c 2. 所以e 2=c 2a 2≥12,即22≤e <1. (2)当e =22时,a =2b =2c , 此时椭圆的方程为x 22c 2+y 2c2=1, 设M (x ,y ),则-2c ≤x ≤2c ,MF →=(-c -x ,-y ),OD →=(b +1,0),MO →=(-x ,-y ),所以(MF →+OD →)·MO →=12x 2-x +c 2=12(x -1)2+c 2-12. 当c ≥22时,上式的最小值为c 2-12,即c 2-12=72,得c =2; 当0<c <22时,上式的最小值为12(2c )2-2c +c 2, 即12(2c )2-2c +c 2=72, 解得c =2+304,不合题意,舍去. 综上所述,椭圆的方程为x 28+y 24=1.。
(人教a版)2018版高考数学(理科)一轮设计:第9_10章教师用书(word版,有答案)AlAKAA
第1讲直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识梳理1.直线的倾斜角与斜率(1)直线的倾斜角①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角;②规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π).(2)直线的斜率①定义:当直线l的倾斜角α≠π2时,其倾斜角α的正切值tanα叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tan__α;②斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=y2-y1x2-x1.2.直线方程的五种形式名称几何条件方程适用条件斜截式纵截距、斜率y=kx+b与x轴不垂直的直线点斜式过一点、斜率y-y0=k(x-x0)两点式过两点y-y1y2-y1=x-x1x2-x1与两坐标轴均不垂直的直线截距式纵、横截距xa+yb=1不过原点且与两坐标轴均不垂直的直线一般式Ax+By+C=0(A2+B2≠0)所有直线3.若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式. 诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等.(4)当直线的斜率不存在时,不可以用方程y -y 0=k (x -x 0)表示. 答案 (1)× (2)× (3)× (4)× (5)√2.(2017·衡水金卷)直线x -y +1=0的倾斜角为( ) A.30° B.45° C.120°D.150°解析 由题得,直线y =x +1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°故α=45°,故选B. 答案 B3.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限. 答案 C4.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =______.解析 ∵A ,B ,C 三点共线,∴k AB =k AC ,∴7-54-3=x -5-1-3,∴x =-3.答案 -35.(必修2P100A9改编)过点P (2,3)且在两轴上截距相等的直线方程为________. 解析 当纵、横截距为0时,直线方程为3x -2y =0;当截距不为0时,设直线方程为x a +y a =1,则2a +3a =1,解得a =5.所以直线方程为x +y -5=0.答案 3x -2y =0或x +y -5=0考点一 直线的倾斜角与斜率【例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴直线l 的斜率k ∈(-∞,-3]∪[1,+∞). 答案 (1)B (2)(-∞,-3]∪[1,+∞)规律方法 (1)①任一直线都有倾斜角,但斜率不一定都存在;直线倾斜角的范围是[0,π),斜率的取值范围是R .②正切函数在[0,π)不单调,借助图象或单位圆数形结合,确定倾斜角α的取值范围. (2)第(2)问求解要注意两点:①斜率公式的正确计算;②数形结合写出斜率的范围,切莫错误想当然认为-3≤k ≤1.【训练1】 (1)(2017·惠州质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( ) A.-1<k <15 B.-1<k <12 C.k >15或k <-1D.k >12或k <-1(2)直线l 经过点A (3,1),B (2,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是________. 解析 (1)设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k . 令-3<1-2k <3,解不等式得k <-1或k >12.(2)直线l 的斜率k =1+m 23-2=1+m 2≥1,∴k =tan α≥1.又y =tan α在⎝ ⎛⎭⎪⎫0,π2上是增函数,因此π4≤α<π2.答案 (1)D (2)⎣⎢⎡⎭⎪⎫π4,π2考点二 直线方程的求法【例2】 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π), 从而cos α=±31010,则k =tan α=±13. 故所求直线方程为y =±13(x +4).即x+3y+4=0或x-3y+4=0.(2)由题设知纵横截距不为0,设直线方程为xa+y12-a=1,又直线过点(-3,4),从而-3a+412-a=1,解得a=-4或a=9.故所求直线方程为4x-y+16=0或x+3y-9=0.(3)当斜率不存在时,所求直线方程为x-5=0满足题意;当斜率存在时,设其为k,则所求直线方程为y-10=k(x-5),即kx-y+10-5k=0.由点线距离公式,得|10-5k|k2+1=5,解得k=34.故所求直线方程为3x-4y+25=0.综上知,所求直线方程为x-5=0或3x-4y+25=0.规律方法根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性.【训练2】求适合下列条件的直线方程:(1)经过点P(4,1),且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍;(3)经过点B(3,4),且与两坐标轴围成一个等腰直角三角形.解(1)设直线l在x,y轴上的截距均为a,若a=0,即l过点(0,0)和(4,1),∴l的方程为y=14x,即x-4y=0.若a≠0,则设l的方程为xa+ya=1,∵l过点(4,1),∴4a+1a=1,∴a=5,∴l的方程为x+y-5=0.综上可知,直线l的方程为x-4y=0或x+y-5=0.(2)由已知:设直线y=3x的倾斜角为α,则所求直线的倾斜角为2α.∵tan α=3,∴tan 2α=2tan α1-tan2α=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1), 即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0. 考点三 直线方程的综合应用【例3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0, 令⎩⎨⎧x +2=0,1-y =0,解得⎩⎨⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4 ≥12×(2×2+4)=4,“=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.规律方法 在求直线方程的过程中,若有以直线为载体的求面积、距离的最值问题,则可先设出直线方程,建立目标函数,再利用基本不等式求解最值.【训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 解 法一 设直线方程为x a +yb =1(a >0,b >0), 点P (3,2)代入得3a +2b =1≥26ab,得ab ≥24, 从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23, 从而所求直线方程为2x +3y -12=0.法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝ ⎛⎭⎪⎫3-2k ,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k=12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k )≥12⎣⎢⎡⎦⎥⎤12+2(-9k )·4(-k ) =12×(12+12)=12.当且仅当-9k =4-k ,即k =-23时,等号成立,即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.[思想方法]1.直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率. (2)直线的倾斜角α和斜率k 之间的对应关系:α 0° 0°<α<90° 90° 90°<α<180°kk >0不存在k <02..用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. [易错防范]1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.基础巩固题组 (建议用时:30分钟)一、选择题1.直线3x -y +a =0(a 为常数)的倾斜角为( ) A.30°B.60°C.120°D.150°解析 直线的斜率为k =tan α=3,又因为0°≤α<180°,所以α=60°. 答案 B2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0D.x -y +3=0解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0. 答案 D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πD.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π解析 ∵直线的斜率k =-1a 2+1,∴-1≤k <0,则倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π.4.(2017·高安市期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( )A.6x -4y -3=0B.3x -2y -3=0C.2x +3y -2=0D.2x +3y -1=0解析 因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 A5.(2016·广州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13B.-13C.-32D.23解析 依题意,设点P (a ,1),Q (7,b ),则有⎩⎨⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13. 答案 B6.(2017·深圳调研)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0.选项B 符合. 答案 B7.(2016·衡水一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A.8.(2017·福州模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( ) A.1B.2C.4D.8解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2b a ·ab =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4. 答案 C 二、填空题9.已知三角形的三个顶点A (-5,0,),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y+5=0.答案 x +13y +5=010.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________. 解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1. 当2π3≤α<π时,-3≤tan α<0, 即-3≤k <0,∴k ∈⎣⎢⎡⎭⎪⎫33,1∪[-3,0).答案 [-3,0)∪⎣⎢⎡⎭⎪⎫33,111.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________. 解析 ①若直线过原点,则k =-43, 所以y =-43x ,即4x +3y =0.②若直线不过原点,设直线方程为x a +ya =1, 即x +y =a .则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案 4x +3y =0或x +y +1=012.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. 解析 直线l 的方程变形为a (x +y )-2x +y +6=0, 由⎩⎨⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2). 答案 (2,-2)能力提升题组 (建议用时:15分钟)13.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A.4x -3y -3=0B.3x -4y -3=0C.3x -4y -4=0D.4x -3y -4=0解析 由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1), 即4x -3y -4=0. 答案 D14.(2017·成都诊断)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12B.[-1,0]C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1 解析 由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A15.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.解析 设直线l 与线段2x +y =8(2≤x ≤3)的公共点为P (x ,y ). 则点P (x ,y )在线段AB 上移动,且A (2,4),B (3,2), 设直线l 的斜率为k . 又k OA =2,k OB =23. 如图所示,可知23≤k ≤2.∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2.答案 ⎣⎢⎡⎦⎥⎤23,216.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是________.解析 直线OA 的方程为y =x , 代入半圆方程得A (1,1),∴H (1,0),直线HB 的方程为y =x -1, 代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32. 所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案3x +y -3-1=0第2讲 两直线的位置关系最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式(1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)点到直线的距离公式平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.诊 断 自 测1.判断正误(在括号内打“√”或“×”)精彩PPT 展示(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( )(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.()(3)若两直线的方程组成的方程组有唯一解,则两直线相交.()(4)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.()(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.()解析(1)两直线l1,l2有可能重合.(2)如果l1⊥l2,若l1的斜率k1=0,则l2的斜率不存在.答案(1)×(2)×(3)√(4)√(5)√2.(2016·北京卷)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C. 2D.2 2解析圆(x+1)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=|-1-0+3|12+(-1)2= 2.答案 C3.(2017·郑州调研)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3D.-2或-3解析直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则有2m=m+13≠4-2,故m=2或-3.故选C.答案 C4.直线2x+2y+1=0,x+y+2=0之间的距离是________.解析先将2x+2y+1=0化为x+y+12=0,则两平行线间的距离为d=|2-12|2=324.答案32 45.(必修2P89练习2改编)已知P(-2,m),Q(m,4),且直线PQ垂直于直线x+y+1=0,则m=________.解析由题意知m-4-2-m=1,所以m-4=-2-m,所以m=1.答案 1考点一 两直线的平行与垂直【例1】 (1)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a 等于( ) A.-1 B.2 C.0或-2D.-1或2(2)已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =________.解析 (1)若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,两直线平行,则有a -11=2a ≠13,解得a =-1或2. (2)因为l 1⊥l 2,所以k 1k 2=-1. 即(-1)·⎝ ⎛⎭⎪⎫-a 2=-1,解得a =-2. 答案 (1)D (2)-2规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)(2017·重庆一中检测)若直线l 1:(a -1)x +y -1=0和直线l 2:3x +ay +2=0垂直,则实数a 的值为( ) A.12B.32C.14D.34(2)(2017·西安模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析 (1)由已知得3(a -1)+a =0,解得a =34.(2)由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b =13+6a b +6b a ≥13+26a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25. 答案 (1)D (2)25考点二 两直线的交点与距离问题【例2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析 (1)法一 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2, 解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限, ∴⎩⎪⎨⎪⎧2-4k 2k +1>0,6k +12k +1>0,解得-16<k <12.法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12.∴-16<k <12.(2)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1, 即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1), 即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 答案 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1规律方法 (1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等. 【训练2】 (1)曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722B.922C.1122D.91010(2)(2017·河北省“五个一名校联盟”质检)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2B.823C. 3D.833解析 (1)曲线y =2x -x 3上横坐标为-1的点的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×[x -(-1)],整理得x +y +2=0.由点到直线的距离公式,得点P (3,2)到直线l 的距离为|3+2+2|12+12=722.(2)因为l 1∥l 2,所以1a -2=a 3≠62a ,所以⎩⎨⎧a (a -2)=3,2a 2≠18,a ≠2,a ≠0,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823,故选B.答案 (1)A (2)B 考点三 对称问题【例3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解(1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0. (3)法一 在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ), ∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.规律方法 (1)解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.(2)如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.(3)若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.【训练3】 光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 法一 由⎩⎨⎧x -2y +5=0,3x -2y +7=0,得⎩⎨⎧x =-1,y =2.∴反射点M 的坐标为(-1,2). 又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0), 由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上,∴3·x 0-52-2·y 02+7=0.由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0.法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x =-23,又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0, 由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的横、纵坐标分别为 x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0.[思想方法]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法解决问题.[易错防范]1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数分别化为相同的形式.基础巩固题组 (建议用时:30分钟)一、选择题1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A.平行B.垂直C.相交但不垂直D.不能确定解析 直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率为k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C. 答案 C2.(2017·刑台模拟)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 依题意得,直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎨⎧a (a -2)=3×1,a ×1≠3×1,解得a =-1,因此选C. 答案 C3.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( )A.19x -9y =0B.9x +19y =0C.19x -3y =0D.3x +19y =0解析 法一由⎩⎨⎧x -3y +4=0,2x +y +5=0,得⎩⎪⎨⎪⎧x =-197,y =37,则所求直线方程为:y =37-197x =-319x ,即3x +19y =0.法二 设直线方程为x -3y +4+λ(2x +y +5)=0, 即(1+2λ)x -(3-λ)y +4+5λ=0,又直线过点(0,0), 所以(1+2λ)·0-(3-λ)·0+4+5λ=0, 解得λ=-45,故所求直线方程为3x +19y =0.答案 D4.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A.x +2y -1=0 B.2x +y -1=0 C.x +2y +3=0D.x +2y -3=0解析 设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0. 答案 D5.(2017·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( ) A.7B.172C.14D.17解析 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,求得m =172,故选B. 答案 B6.(2017·石家庄模拟)已知倾斜角为α的直线l 与直线x +2y -3=0垂直,则cos ⎝ ⎛⎭⎪⎫2 017π2-2α的值为( ) A.45B.-45C.2D.-12解析 依题设,直线l 的斜率k =2,∴tan α=2,且α∈[0,π),则sin α=255,cos α=55,则cos⎝ ⎛⎭⎪⎫2 0172π-2α=cos ⎝ ⎛⎭⎪⎫π2-2α=sin 2α=2sin αcos α=45. 答案 A7.(2017·成都调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( ) A.(3,3)B.(2,3)C.(1,3)D.⎝⎛⎭⎪⎫1,32解析 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).故选C. 答案 C8.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( ) A.x +2y -4=0B.2x +y -1=0C.x +6y -16=0D.6x +y -8=0解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确. 答案 A 二、填空题9.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 解析 由⎩⎨⎧y =2x ,x +y =3,得⎩⎨⎧x =1,y =2. ∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9. 答案 -910.(2017·沈阳检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析 显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案 2x +3y -18=0或2x -y -2=011.(2017·深圳模拟)直线l 1的斜率为2,l 1∥l 2,直线l 2过点(-1,1)且与y 轴交于点P ,则P 点坐标为________.解析 因为l 1∥l 2,且l 1的斜率为2,则直线l 2的斜率k =2,又直线l 2过点(-1,1),所以直线l 2的方程为y -1=2(x +1),整理得y =2x +3,令x =0,得y =3,所以P 点坐标为(0,3). 答案 (0,3)12.(2017·长沙一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6), 所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案 6x -y -6=0能力提升题组 (建议用时:15分钟)13.(2017·洛阳模拟)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( ) A.102B.10C.5D.10解析 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴M 位于以PQ 为直径的圆上,∵|PQ |=9+1=10,∴|MP |2+|MQ |2=|PQ |2=10,故选D. 答案 D14.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点( ) A.(0,4) B.(0,2) C.(-2,4)D.(4,-2)解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2). 答案 B15.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析 易知A (0,0),B (1,3)且两直线互相垂直, 即△APB 为直角三角形,∴|PA |·|PB |≤|PA |2+|PB |22=|AB |22=102=5.当且仅当|PA |=|PB |时,等号成立. 答案 516.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析 设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.∵k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1), 即2x -y =0.①又∵k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1), 即x +y -6=0.②由①②得⎩⎨⎧2x -y =0,x +y -6=0,解得⎩⎨⎧x =2,y =4,所以M (2,4).答案(2,4)第3讲圆的方程最新考纲掌握确定圆的几何要素,掌握圆的标准方程与一般方程.知识梳理1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要条件:D2+E2-4F>0圆心坐标:半径r=12D2+E2-4F2.平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()解析(2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.(3)当(4m)2+(-2)2-4×5m>0,即m<14或m>1时才表示圆.答案(1)√(2)×(3)×(4)√2.(2015·北京卷)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析由题意得圆的半径为2,故该圆的方程为(x-1)2+(y-1)2=2,故选D.答案 D3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是()A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析因为点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案 A4.(2016·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4) 55.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,所以圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.答案(x-2)2+y2=10考点一圆的方程【例1】(1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为________.解析 (1)法一 由已知k AB =0,所以AB 的中垂线方程为x =3.①过B 点且垂直于直线x -y -1=0的直线方程为y -1=-(x -2),即x +y -3=0,② 联立①②,解得⎩⎨⎧x =3,y =0,所以圆心坐标为(3,0),半径r =(4-3)2+(1-0)2=2,所以圆C 的方程为(x -3)2+y 2=2.法二 设圆的方程为(x -a )2+(y -b )2=r 2(r >0),∵点A (4,1),B (2,1)在圆上,故⎩⎨⎧(4-a )2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2, 又∵b -1a -2=-1,解得a =3,b =0,r =2, 故所求圆的方程为(x -3)2+y 2=2.(2)设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得 ⎩⎨⎧2D -4E -F =20,3D -E +F =-10.①② 又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6,得D 2-4F =36,④由①,②,④解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.答案 (1)(x -3)2+y 2=2 (2)x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0规律方法 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.【训练1】 (1)(2016·天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且。
2018版高考数学理江苏专用大一轮复习讲义课件第九章
2.圆与圆的位置关系的常用结论
(1) 两圆的位置关系与公切线的条数:①内含: 0 条;②内切: 1 条;
③相交:2条;④外切:3条;⑤外离:4条.
(2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在
直线的方程.
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × ) (3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所 在的直线方程.( × ) (4)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.( √ ) (5)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B, 则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.( √ )
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)
(x-a)+(y0-b)(y-b)=r2.
(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线 方程为x0x+y0y=r2.
3.(2016· 盐城模拟)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实 [-3,1] 数a的取值范围是________.
答案 解析
几何画板展示
由题意可得,圆的圆心为(a,0),半径为 2 ,
|a-0+1| ∴ 2 2≤ 2 , 1 +-1
即|a+1|≤2,解得-3≤a≤1.
2018版高考数学理江苏专用大一轮复习讲义课件第九章
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)
(1)确定圆的几何要素是圆心与半径.( √ )
(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)
+(y-y1)(y-y2)=0.( √ )
(3) 方程 Ax 2+ Bxy + Cy 2 + Dx + Ey + F = 0 表示圆的充要条件是 A = C ≠ 0 ,
B=0,D2+E2-4AF>0.( √ )
(4)方程x2+2ax+y2=0一定表示圆.( × )
2 (5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则 x2 + y 0 0+Dx0+Ey0+F>0.
( √ )
考点自测
1.( 教 材 改 编 ) 圆 心 是 ( - 2,3) , 且 经 过 原 点 的 圆 的 标 准 方 程 为
思维升华
(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出
方程. (2)待定系数法 ①若已知条件与圆心 (a,b)和半径r有关,则设圆的标准方程,依据已 知条件列出关于a,b,r的方程组,从而求出a,b,r的值; ②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据 已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
答案 解析
1 易知OP= AB=m. 2 要求m的最大值,
即求圆C上的点P到原点O的最大距离.
2 2 3 + 4 因为OC= =5,所以(OP)max=OC+r=6,即m的最大值为6.
3.(2016· 扬州检测)当a为任意实数时,直线(a-1)x-y+a+1=0恒过定
x2+y2+2x-4y=0 点C,则以点C为圆心, 5 为半径的圆的方程为__________________.
江苏2018版高考数学复习第九章平面解析几何9
9.5椭圆1.椭圆的概念平面内到两个定点F 1,F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做椭圆,两个定点F 1,F 2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M |MF 1+MF 2=2a },F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数:(1)若a >c ,则集合P 为椭圆;(2)若a =c ,则集合P 为线段;(3)若a <c ,则集合P 为空集.2.椭圆的标准方程和几何性质标准方程x 2y 2+=1(a >b >0)a 2b 2y 2x 2+=1(a >b >0)a 2b2图形范围对称性顶点轴焦距离心率-a ≤x ≤a -b ≤y ≤b -b ≤x ≤b -a ≤y ≤a 对称轴:坐标轴对称中心:原点A 1(-a,0),A 2(a,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)性质长轴A 1A 2的长为2a ;短轴B 1B 2的长为2bF 1F 2=2c ce =∈(0,1)a a 2=b 2+c 2a ,b ,c 的关系【知识拓展】点P (x 0,y 0)和椭圆的关系x 2y 200(1)点P (x 0,y 0)在椭圆内2+2<1.a bx2y200(2)点P(x,y)在椭圆上⇔2+2=1.a bx2y200(3)点P(x,y)在椭圆外⇔2+2>1.a b【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到两个定点F1,F2的距离的和等于常数的点的轨迹叫做椭圆.(×)(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c 为椭圆的半焦距).(√)(3)椭圆的离心率e越大,椭圆就越圆.(×)(4)方程mx+ny=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)22y2x2(5)2+2=1(a≠b)表示焦点在y轴上的椭圆.(×)a bx2y2y2x2(6)2+2=1(a>b>0)与2+2=1(a>b>0)的焦距相等.(√)a b a b1.(教材改编)椭圆+=1的焦距为4,则m=________.10-m m-2答案4或8⎧⎪10-m>m-2>0,解析由题意知⎨⎪⎩10-m-m-2x2y2=4⎧⎪m-2>10-m>0,或⎨⎪⎩m-2-10-m=4,解得m=4或m=8.2.(2016·苏州检测)在平面直角坐标系xOy内,动点P到定点F(-1,0)的距离与P到定直线x=-4的距离的比值为.则动点P的轨迹C的方程为__________.答案12x2y24+=13解析设点P(x,y),由题意知化简得3x+4y=12,22x+12+y21=,|x+4|2所以动点P的轨迹C的方程为+=1.433.(2016·全国乙卷改编)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为1其短轴长的,则该椭圆的离心率为________.4x2y21答案211解析如图,由题意得,BF=a,OF=c,OB=b,OD=·2b=b.421在Rt△FOB中,OF·OB=BF·OD,即cb=a·b,2c1解得a=2c,故椭圆离心率e==.a214.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是__________.2答案x2y24+=13c1x2y2222解析由题意知c=1,e==,所以a=2,b=a-c=3.故所求椭圆方程为+=1.a2435.(教材改编)已知点P是椭圆+=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的54三角形的面积等于1,则点P的坐标为__________________.答案x2y2⎛15⎫⎛15⎫,1⎪或 ,-1⎪⎝2⎭⎝2⎭222解析设P(x,y),由题意知c=a-b=5-4=1,所以c=1,则F1(-1,0),F2(1,0),由题意可得点P到x轴的距离为1,所以y=±1,把y1515⎛15⎫=±1代入+=1,得x=±,又x>0,所以x=,所以P点坐标为 ,1⎪或5422⎝2⎭x2y2⎛15⎫,-1⎪.⎝2⎭题型一椭圆的定义及标准方程命题点1利用定义求轨迹例1(2016·徐州模拟)如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P 的轨迹是________.答案椭圆解析由条件知PM =PF ,∴PO +PF =PO +PM =OM =R >OF .∴P 点的轨迹是以O ,F 为焦点的椭圆.命题点2利用待定系数法求椭圆方程例2(1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为___________________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为_____________________________________.答案(1)+y =1或+=19819(2)+=193解析(1)若焦点在x 轴上,x 22y 2x 2x 2y 2x 2y 2设方程为2+2=1(a >b >0).a b30∵椭圆过P (3,0),∴2+2=1,即a =3,22a b又2a =3×2b ,∴b =1,∴椭圆方程为+y =1.9x 22y 2x 2若焦点在y 轴上,设方程为2+2=1(a >b >0).a b03∵椭圆过点P (3,0),∴2+2=1,即b =3.22a b又2a =3×2b ,∴a =9,∴椭圆方程为+=1.819∴所求椭圆的方程为+y =1或+=1.9819(2)设椭圆方程为mx +ny =1(m >0,n >0且m ≠n ).∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.⎧6m +n =1,①⎪即⎨⎪⎩3m +2n =1,②22y 2x 2x 22y 2x 21m =,⎧⎪9①②两式联立,解得⎨1n =⎪⎩3.∴所求椭圆方程为+=1.93命题点3利用定义解决“焦点三角形”问题x 2y 2x 2y 2→→例3已知F 1,F 2是椭圆C :2+2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2.a b若△PF 1F 2的面积为9,则b =________.答案3解析设PF 1=r 1,PF 2=r 2,则⎨⎧r 1+r 2=2a ,⎪222⎪⎩r 1+r 2=4c ,222222因为2r 1r 2=(r 1+r 2)-(r 1+r 2)=4a -4c =4b ,又因为S△PF 1F 2=所以b =3.引申探究1.在例3中,若增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程.解由原题得b =a -c =9,又2a +2c =18,所以a -c =1,解得a =5,故椭圆方程为+=1.259→→2.在例3中,若将条件“PF 1⊥PF 2”“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”“S△PF 1F 2=33”,结果如何?解PF 1+PF 2=2a ,又∠F 1PF 2=60°,所以PF 1+PF 2-2PF 1·PF 2cos 60°=F 1F 2,即(PF 1+PF 2)-3PF 1·PF 2=4c ,所以3PF 1·PF 2=4a -4c =4b ,42所以PF 1·PF 2=b ,3又因为S△PF 1F 2=2222222222212rr 12=b =9,2x 2y 21PF 1·PF 2·sin 60︒2142332=·b ·=b =33,2323所以b =3.思维升华(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx +ny =1(m >0,n >0,m ≠n )的形式.(3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求PF 1·PF 2;通过整体代入可求其面积等.(1)(2016·盐城模拟)已知两圆C 1:(x -4)+y =169,C 2:(x +4)+y =9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为_________.(2)(2016·镇江模拟)设F 1、F 2分别是椭圆+y =1的左、右焦点,若椭圆上存在一点P ,使4→→→(OP +OF 2)·PF 2=0(O 为坐标原点),则△F 1PF 2的面积是______.答案(1)+=1(2)16448解析(1)设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2,所以M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,故所求的轨迹方程为+=1.6448→→→→→→→→(2)∵(OP +OF 2)·PF 2=(OP +F 1O )·PF 2=F 1P ·PF 2=0,∴PF 1⊥PF 2,∠F 1PF 2=90°.设PF 1=m ,PF 2=n ,则m +n =4,m +n =12,2mn =4,22222222x 22x 2y 2x 2y 21∴S △F 1PF 2=mn =1.2题型二椭圆的几何性质例4(1)已知点F 1,F 2是椭圆x +2y =2的左,右焦点,点P 是该椭圆上的一个动点,那么→→|PF 1+PF 2|的最小值是________.22x 2y 2(2)(2016·全国丙卷改编)已知O 为坐标原点,F 是椭圆C :2+2=1(a >b >0)的左焦点,A ,a bB 分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________.1答案(1)2(2)3→→解析(1)设P (x 0,y 0),则PF 1=(-1-x 0,-y 0),PF 2=(1-x 0,-y 0),→→∴PF 1+PF 2=(-2x 0,-2y 0),→→22∴|PF 1+PF 2|=4x 0+4y 0=22-2y 0+y 0=2-y 0+2.∵点P 在椭圆上,∴0≤y 0≤1,→→2∴当y 0=1时,|PF 1+PF 2|取最小值2.(2)设M (-c ,m ),则E 0,又B ,D ,M 三点共线,所以22222⎛⎝am ⎫am ⎛⎫,,OE 的中点为D ,则D 0,⎪⎪a -c ⎭⎝2a -c ⎭m m 1=,a =3c ,e =.a -c a +c 3思维升华(1)利用椭圆几何性质的注意点及技巧①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系.②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.(2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.x 2y 2(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆2+2=1(a >b >0)的a b右焦点,直线y =与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.2b答案63⎧⎪解析联立方程组⎨b y =⎪⎩2,x 2y 2+=1,a 2b 2解得B ,C 两点坐标为B -⎛⎝3b ⎫⎛3b ⎫a ,⎪,C a ,⎪,22⎭2⎭⎝23b ⎫→⎛3a b ⎫→⎛又F (c,0),则FB = -a -c ,⎪,FC = -c ,⎪,2⎭2⎭⎝2⎝2→→又由∠BFC =90°,可得FB ·FC =0,代入坐标可得3b c -a 2+=0,4422①又因为b =a -c .222c 22代入①式可化简为2=,a 3则椭圆离心率为e ==题型三直线与椭圆ca26=.33x 2y 2113e例5(2016·天津)设椭圆2+=1(a >3)的右焦点为F ,右顶点为A .已知+=,其a 3OF OA FA中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA =∠MAO ,求直线l 的斜率.113e解(1)设F (c,0),由+=,OF OA FA11即+=22c a a 3c222,可得a -c =3c .a -c222又a -c =b =3,所以c =1,因此a =4.所以椭圆的方程为+=1.43(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).x 2y 2x y ⎧⎪+=1,设B (x B ,y B ),由方程组⎨43⎪⎩y =k x -2222222消去y ,整理得(4k +3)x -16k x +16k -12=0,8k -6解得x =2或x =2.4k +38k -6-12k由题意,得x B =2,从而y B =2.4k +34k +3由(1)知,F (1,0),设H (0,y H ),12k ⎫→→⎛9-4k 有FH =(-1,y H ),BF = 2,2⎪.⎝4k +34k +3⎭→→由BF ⊥HF ,得BF ·FH =0,4k -912ky H 9-4k 所以2+2=0,解得yH =.4k +34k +312k 9-4k 因此直线MH 的方程为y =-x +.k 12k1222222y =k x -2,⎧⎪2设M (x M ,y M ),由方程组⎨19-4k y =-x +⎪k 12k⎩20k +9解得x M =.212k +1在△MAO 中,∠MOA =∠MAO MA =MO ,即(x M -2)+y M =x M +y M,20k +9化简得x M =1,即=1,212k +1解得k =-66或k =.4466或.44222222消去y ,所以直线l 的斜率为-思维升华(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB ==1+121+k 2[x 1+x 22-4x 1x 2]k[y 1+y 22-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.如图,已知椭圆O :+y =1的右焦点为F ,B ,C 分别为椭圆O 的上,下顶点,4x 22P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆O 于另一点M .(1)当直线PM过椭圆的右焦点F时,求△FBM的面积;(2)①记直线BM,BP的斜率分别为k1,k2,求证:k1·k2为定值;→→②求PB·PM的取值范围.(1)解由题意知B(0,1),C(0,-1),焦点F(3,0),当直线PM过椭圆O的右焦点F时,直线PM的方程为x3+3=1,即y=x-1.-13y⎧⎪4+y=1,联立⎨3y=⎪⎩3x-1,2x283⎧x=⎪7,解得⎨1y=⎪⎩7⎧⎪x=0,或⎨⎪y=-1⎩(舍去),831即点M的坐标为(,).77连结BF,则直线BF的方程为x+=1,31y即x+3y-3=0.又BF=a=2,点M到直线BF的距离为83123|+3×-3|7773d===,22271+31133故△FBM的面积为S△MBF=·BF·d=×2×=.2277-1--21 (2)方法一①证明设P(m,-2),且m≠0,则直线PM的斜率为k==-,0-m m1则直线PM 的方程为y =-x -1.m1y =-x -1,⎧⎪m 联立⎨x ⎪⎩4+y =1,22428消去y ,得(1+2)x +x =0,m m8m 4-m 解得点M 的坐标为(-2,2),m +4m +44-m -12m 2+4-2m 11--23所以k 1===m ,k 2==-,8m -8m 40-mm -2m +4313所以k 1·k 2=-·m =-为定值.m 44→②解由①知,PB =(-m,3),→8m 4-m PM =(-2-m ,2+2)m +4m +4-m -12m m +12=(2,2),m +4m +432222m +12m m +12→→所以PB ·PM =(-m,3)·(-2,2)m +4m +4m 2+12m 2+3=.m 2+4令m +4=t >4,→→则PB ·PM =232t +8tt -1t 2+7t -88==t -+7.t t8因为y =t -+7在t ∈(4,+∞)上单调递增,t88→→所以PB ·PM =t -+7>4-+7=9,t 4→→故PB ·PM 的取值范围为(9,+∞).方法二①证明设点M 的坐标为(x 0,y 0)(x 0≠0),则直线PM 的方程为y =y 0+1x -1,x 0x 0y 0+1,-2),令y =-2,得点P 的坐标为(-所以k 1=y 0-1-2-13y 0+1,k 2==,x 0x 0x 0-y 0+12y 0-13y 0+13y 0-1所以k 1·k 2=·=x 0x 0x 23y 0-13==-为定值.241-y 042x 0→②解由①知,PB =(,3),y 0+1→x 0PM =(x 0+,y 0+2),y 0+1x 0x 0→→所以PB ·PM =(x 0+)+3(y 0+2)y 0+1y 0+1x 2y 0+20=+3(y 0+2)y 0+12==41-y 02y 0+22y 0+17-y 0+3(y 0+2).y 0+2y 0+1令t =y 0+1∈(0,2),→→则PB ·PM =8-tt +1t8=-t ++7.t8因为y =-t ++7在t ∈(0,2)上单调递减,t88→→所以PB ·PM =-t ++7>-2++7=9,t 2→→故PB ·PM 的取值范围为(9,+∞).8.高考中求椭圆的离心率问题考点分析离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.x 2y 2典例1(2015·福建改编)已知椭圆E :2+2=1(a >b >0)的右焦点为F ,短轴的一个端点a b4为M,直线l:3x-4y=0交椭圆E于A,B两点.若AF+BF=4,点M到直线l的距离不小于,5则椭圆E的离心率的取值范围是__________.解析左焦点F,连结FA,FB,则四边形AFBF为平行四边形.∵AF+BF=4,∴AF+AF=4,∴a=2.4b4设M(0,b),则≥,∴1≤b<2.55c离心率e==a答案 0,c2=a2a2-b2=a24-b⎛3⎤∈ 0,⎥.42⎦⎝2⎛⎝3⎤⎥2⎦x22典例2(14分)(2016·浙江)如图,设椭圆2+y=1(a>1).a(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.规范解答解(1)设直线y=kx+1被椭圆截得的线段为AM,y=kx+1,⎧⎪2由⎨x22+y=1,⎪⎩a2得(1+a k)x+2a kx=0,22222a k故x1=0,x2=-22,1+a k2a|k|2因此AM=1+k|x1-x2|=1+k.22·1+a k22[6分](2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足AP=AQ.记直线AP,AQ的斜率分别为k1,k2,且k1,k2>0,k1≠k2.2a|k1|1+k12a|k2|1+k2由(1)知AP=,AQ=,22221+a k11+a k22222[8分]2a|k1|1+k12a|k2|1+k2故=,22221+a k11+a k2所以(k1-k2)[1+k1+k2+a(2-a)k1k2]=0.由k1≠k2,k1,k2>0,得1+k1+k2+a(2-a)k1k2=0,222222222222222222⎛1⎫⎛1⎫22因此2+1⎪2+1⎪=1+a(a-2),⎝k1⎭⎝k2⎭22①因为①式关于k1,k2的方程有解的充要条件是1+a(a-2)>1,所以a> 2.[12分]因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤2,c a2-12由e==,得0<e≤.a a2所以离心率的取值范围是(0,2].2[14分]x2y21.(2016·盐城模拟)已知椭圆C:+=1(m>0)的左、右焦点分别为F1、F2,过F2的直线l3m2m交C于A、B两点,若△AF1B的周长为43,则椭圆C的方程为________.答案x2y23+=12解析∵△AF1B的周长=AF1+BF1+AF2+BF2=4a,∴4a=43,故a=3,即3m=(3),∴m=1.∴椭圆的方程为+=1.322x2y2x2y22.(2016·苏北四市一模)已知椭圆2+2=1(a>b>0),点A、B1、B2、F依次为其左顶点、下a ba2顶点、上顶点和右焦点.若直线AB2与直线B1F的交点恰在直线x=上,则椭圆的离心率为c____.1答案2解析由题意知直线AB2:-+=1,直线B1F:-=1,联立解得x=2x ya bx yc b2ac,若交点在椭a-c2ac a1222圆的右准线上,则=,即2c+ac-a=0,所以2e+e-1=0,解得e=.a-c c2x 2y 23.若对任意k ∈R ,直线y -kx -1=0与椭圆+=1恒有公共点,则实数m 的取值范围是2m__________.答案[1,2)∪(2,+∞)解析联立直线与椭圆的方程,消去y 得(2k +m )x +4kx +2-2m =0,因为直线与椭圆恒有公共点,所以Δ=16k -4(2k +m )(2-2m )≥0,即2k +m -1≥0恒成立,因为k ∈R ,所以k ≥0,则222222m -1≥0,所以m ≥1,又m ≠2,所以实数m 的取值范围是[1,2)∪(2,+∞).1124.(2016·南昌模拟)已知椭圆:+x =1,过点P (,)的直线与椭圆相交于A ,B 两点,且922弦AB 被点P 平分,则直线AB 的方程为________________.答案9x +y -5=0+x =1,⎧⎪9y解析设A (x ,y ),B (x ,y ),因为A ,B 在椭圆+x =1上,所以⎨9y ⎪⎩9+x =1,221211222222y 2y 21两式相减,得即2y 21-y 29+x 1-x 2=0,+(x 1-x 2)(x 1+x 2)=0,22y 1-y 29y 1+y 211又弦AB 被点P (,)平分,22所以x 1+x 2=1,y 1+y 2=1,将其代入上式,得得y 1-y 29+x 1-x 2=0,y 1-y 2=-9,x 1-x 2即直线AB 的斜率为-9,所以直线AB 的方程为y -=-9(x -),即9x +y -5=0.5.(2016·宿迁模拟)已知F 1、F 2是椭圆+y =1的两个焦点,P 为椭圆上一动点,则使PF 1·PF 24取得最大值的点P 为__________.答案(0,1)或(0,-1)解析由椭圆定义得PF 1+PF 2=2a =4,1212x 22∴PF 1·PF 2≤(PF 1+PF 22)=4,2当且仅当PF 1=PF 2=2,即P (0,-1)或(0,1)时,PF 1·PF 2取得最大值.6.已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为________.答案226132解析由题意知,椭圆C 的离心率e =,a求e 的最大值,即求a 的最小值.由于A ,B 两点是椭圆的焦点,所以PA +PB =2a ,即在直线l 上找一点P ,使PA +PB 的值最小,设点A (-2,0)关于直线l :y =x +3的对称点为Q (x 0,y 0),y ⎧⎪x +2=-1,则⎨y x -2⎪⎩2=2+3,000解得⎨⎧x 0=-3,⎪⎪⎩y 0=1,即Q (-3,1),则PA +PB ≥QB =[-3-2]+21-026,22=26,即2a ≥26,∴a ≥24226∴e =≤=.a 1326x 2y 2227.若椭圆2+2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x +y =4的切线,切点分别a b为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________.答案+=12016x 2y 2解析设切点坐标为(m ,n ),则n -1n ·=-1,m -2m22即m +n -n -2m =0.∵m +n =4,∴2m +n -4=0,即直线AB 的方程为2x +y -4=0.22∵直线AB 恰好经过椭圆的右焦点和上顶点,∴2c -4=0,b -4=0,解得c =2,b =4,∴a =b +c =20,∴椭圆方程为+=1.20168.已知P 为椭圆+=1上的一点,M ,N 分别为圆(x +3)+y =1和圆(x -3)+y =4上2516的点,则PM +PN 的最小值为________.答案7解析由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.9.(2017·连云港质检)椭圆+y =1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若4∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________.2626答案(-,)33解析设椭圆上一点P 的坐标为(x ,y ),→→则F 1P =(x +3,y ),F 2P =(x -3,y ).→→∵∠F 1PF 2为钝角,∴F 1P ·F 2P <0,即x -3+y <0,222222x 2y 2x 2y 22222x 22①23228∵y =1-,代入①,得x -3+1-<0,x <2,∴x <.444326262626解得-<x <,∴x ∈(-,).3333x 2x 2x 2y 2110.已知椭圆2+2=1(a >b >0)的离心率等于,其焦点分别为A ,B ,C 为椭圆上异于长轴端a b 3sin A +sin B点的任意一点,则在△ABC 中,=________.sin C 答案3sin A +sin B CB +CA解析在△ABC 中,由正弦定理得=,因为点C 在椭圆上,所以由椭圆sin C AB sin A +sin B 2a 1定义知CA +CB =2a ,而AB =2c ,所以===3.sin C 2c ex 2y 211.(2016·南京模拟)如图,椭圆C :2+2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别a b为A ,B ,且AB =5BF .2(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解(1)由已知AB =222,255BF ,即a 2+b 2=a ,222224a +4b =5a 4a +4(a -c )=5a ,∴e ==c a 3.222x 2y 2(2)由(1)知a =4b ,∴椭圆C :2+2=1.4b b设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0.2x -y +2=0,⎧⎪2由⎨x y 22+2=1⎪⎩4b b 2222消去y ,得x +4(2x +2)-4b =0,即17x +32x +16-4b =0.2Δ=322+16×17(b 2-4)>0,解得b >3216-4b x 1+x 2=-,x 1x 2=.1717→→∵OP ⊥OQ ,∴OP ·OQ =0,2217.17即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0,5x 1x 2+4(x 1+x 2)+4=0.5从而16-4b 172-128+4=0,17217解得b =1,满足b >.17∴椭圆C 的方程为+y =1.4x 22x 2y 212.(2015·安徽)设椭圆E 的方程为2+2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),a b点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为(1)求E 的离心率e ;5.107(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为,2求E 的方程.⎛21⎫解(1)由题设条件知,点M 的坐标为 a ,b ⎪,⎝33⎭又k OM =5b 5,从而=,102a 10c 2522进而得a =5b ,c =a -b =2b ,故e ==.a 5(2)由题设条件和(1)的计算结果可得,直线AB 的方程为1⎫⎛5 b ,-b ⎪.2⎭⎝27⎫⎛设点N 关于直线AB 的对称点S 的坐标为 x 1,⎪,2⎭⎝则线段NS 的中点T 的坐标为 17⎫⎛5x 1b +,-b +⎪.244⎭⎝4x5b +=1,点N 的坐标为yb又点T 在直线AB 上,且k NS ·k AB =-1,⎧⎪5b 从而有⎨71+b22⎪x -5b=⎩215x 1b +4217-b +44+=1,b 5.y 2解得b =3.所以a =35,故椭圆E 的方程为+=1.459x 2x 2y 2213.(2016·南京市学情调研)如图,已知椭圆2+2=1 (a >b >0)的离心率e =,一条准线a b 2方程为x =2.过椭圆的上顶点A 作一条与x 轴、y 轴都不垂直的直线交椭圆于另一点P ,P 关于x 轴的对称点为Q .(1)求椭圆的方程;(2)若直线AP ,AQ 与x 轴交点的横坐标分别为m ,n ,求证:mn 为常数,并求出此常数.2c 2a 解(1)因为=,=2,a 2c所以a =2,c =1,所以b =a -c =1.故椭圆的方程为+y =1.2(2)方法一设P 点坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1).因为k AP =22x 22y 1-1y 1-1=,x 1-0x 1y 1-1x +1.x 1.所以直线AP 的方程为y =令y =0,解得m =-x 1y 1-1-y 1-1y 1+1因为k AQ ==-,x 1-0x 1所以直线AQ 的方程为y =-令y =0,解得n =y 1+1x +1.x 1x 1y 1+1.2-x 1x 1x 1所以mn =·=2.y 1-1y 1+11-y 1又因为(x 1,y 1)在椭圆+y =1上,2所以+y =1,即1-y =,22所以2=2,即mn =2,1-y 1所以mn 为常数,且常数为2.方法二设直线AP 的斜率为k (k ≠0),则AP 的方程为y =kx +1,1令y =0得m =-.x 22x 212121x 21x 21ky =kx +1,⎧⎪2联立方程组⎨x 2+y =1,⎪⎩222消去y 得(1+2k )x +4kx =0,解得x A =0,x P =-4k 2,1+2k 21-2k 所以y P =k ·x P +1=2,1+2k 4k 1-2k 则Q 点的坐标为(-2,-2),1+2k 1+2k 1-2k -2-11+2k 1所以k AQ ==,4k 2k -21+2k 1故直线AQ 的方程为y =x +1.2k令y =0得n =-2k ,1所以mn =(-)·(-2k )=2,22k所以mn 为常数,且常数为2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 直线的斜率与方程考试要求 1.直线的倾斜角和斜率的概念,过两点的直线斜率的计算公式,B 级要求;2.确定直线位置的几何要素,直线方程的几种形式(点斜式、两点式及一般式),C 级要求;3.斜截式与一次函数的关系,A 级要求.知 识 梳 理1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π). (2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan_α;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. 2.直线方程的五种形式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)斜率相等的两直线的倾斜角一定相等.(4)当直线的斜率不存在时,不可以用方程y -y 0=k (x -x 0)表示. 答案 (1)× (2)× (3)× (4)× (5)√2.(2017·衡水金卷)直线x -y +1=0的倾斜角为________.解析 由题得,直线y =x +1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°. 答案 45°3.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过第________象限.解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-C B>0,故直线经过第一、二、四象限,不经过第三象限. 答案 三4.(必修2P73练习3改编)已知A (3,5),B (4,7),C (-1,x )三点共线,则x =______. 解析 ∵A ,B ,C 三点共线,∴k AB =k AC ,∴7-54-3=x -5-1-3,∴x =-3.答案 -35.过点P (2,3)且在两轴上截距相等的直线方程为________________. 解析 当纵、横截距为0时,直线方程为3x -2y =0;当截距不为0时,设直线方程为x a +y a=1,则2a +3a=1,解得a =5.所以直线方程为x +y -5=0.答案 3x -2y =0或x +y -5=0考点一 直线的倾斜角与斜率(典例迁移)【例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是________. (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3, 即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴直线l 的斜率k ∈(-∞,-3]∪[1,+∞).答案 (1)⎣⎢⎡⎦⎥⎤π4,π3 (2)(-∞,-3]∪[1,+∞) 【迁移探究1】 若将题(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02--=13, k BP =3-00--= 3.如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦⎥⎤13,3. 【迁移探究2】 将题(2)中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的范围. 解 如图:直线PA 的倾斜角为π4,直线PB 的倾斜角为3π4,由图象知直线l 的倾斜角的范围为[0,π4]∪[3π4,π).规律方法 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).【训练1】 (2017·常州期末)直线x sin α+y +2=0的倾斜角的取值范围是________. 解析 设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以-1≤ tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.答案 ⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π考点二 直线方程的求法【例2】 根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)由题设知纵横截距不为0,设直线方程为x a +y12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性. 【训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1),∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0. 考点三 直线方程的综合应用【例3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0, 令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0.∵S =12·OA ·OB =12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·+2k2k=12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.规律方法 在求直线方程的过程中,若有以直线为载体的求面积、距离的最值问题,则可先设出直线方程,建立目标函数,再利用基本不等式求解最值.【训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解 法一 设直线方程为x a +y b=1(a >0,b >0), 点P (3,2)代入得3a +2b =1≥26ab,得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0),且有A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+-9k +4-k ≥12⎣⎢⎡⎦⎥⎤12+2-9k4-k=12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立, 即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.[思想方法]1.直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率. (2)直线的倾斜角α和斜率k 之间的对应关系:2.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. [易错防范]1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性. 3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.基础巩固题组(建议用时:30分钟)1.直线3x -y +a =0(a 为常数)的倾斜角为________.解析 直线的斜率为k =tan α=3,又因为0°≤α<180°,所以α=60°. 答案 60°2.(2014·福建卷改编)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程为________.解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0. 答案 x -y +3=03.直线x +(a 2+1)y +1=0的倾斜角的取值范围为________. 解析 ∵直线的斜率k =-1a 2+1,∴-1≤k <0,则倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π.答案 ⎣⎢⎡⎭⎪⎫3π4,π 4.(2017·扬州期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程为________.解析 因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 6x -4y -3=05.已知三角形的三个顶点A (-5,0,),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y+5=0.答案 x +13y +5=06.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________.解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1.当2π3≤α<π时,-3≤tan α<0, 即-3≤k <0,∴k ∈⎣⎢⎡⎭⎪⎫33,1∪[-3,0). 答案 [-3,0)∪⎣⎢⎡⎭⎪⎫33,1 7.(2017·南通调研)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________.解析 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13. 答案 -138.(2017·泰州调研)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是________(填序号).解析 当a >0,b >0时,-a <0,-b <0.②符合. 答案 ②9.(2017·衡水一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为________. 解析 ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2. 答案 y =3x +210.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________. 解析 ①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0.②若直线不过原点,设直线方程为x a +y a=1, 即x +y =a .则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案 4x +3y =0或x +y +1=011.(2017·苏州测试)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为________.解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.答案 412.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________.解析 直线l 的方程变形为a (x +y )-2x +y +6=0,由⎩⎪⎨⎪⎧ x +y =0,-2x +y +6=0,解得x =2,y =-2,所以直线l 恒过定点(2,-2).答案 (2,-2)能力提升题组(建议用时:15分钟)13.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________.解析 由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12, 所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1), 即4x -3y -4=0.答案 4x -3y -4=014.(2017·苏北四市模拟)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为________. 解析 由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12. 答案 ⎣⎢⎡⎦⎥⎤-1,-12 15.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.解析 设直线l 与线段2x +y =8(2≤x ≤3)的公共点为P (x ,y ).则点P (x ,y )在线段AB 上移动,且A (2,4),B (3,2),设直线l 的斜率为k .又k OA =2,k OB =23. 如图所示,可知23≤k ≤2. ∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2. 答案 ⎣⎢⎡⎦⎥⎤23,2 16.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是________.解析 直线OA 的方程为y =x ,代入半圆方程得A (1,1),∴H (1,0),直线HB 的方程为y =x -1,代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32. 所以直线AB 的方程为y -1-1+32-1=x -11+32-1, 即3x +y -3-1=0.答案 3x +y -3-1=0。