数学北师大版九年级上册一元二次方程的小结与复习
2017秋北师大版九年级数学上册第二章一元二次方程章小结复习(教案)

2.案例分析:接下来,我们来看一个具体的案例,如求解抛物线与坐标轴的交点问题。这个案例展示了如何将实际问题转化为数学模型,并运用一元二次方程来求解。
3.重点难点解析:在讲授过程中,我会特别强调一元二次方程的解法和根的判别式这两个重点。对于难点部分,如配方法和公式法,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题,如求解最大利润或最小成本。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如通过图形来直观展示配方法的过程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
(五)总结回顾(用时5分钟)
今天的学习,我们复习了一元二次方程的基本概念、解法及其在实际问题中的应用。通过实践活动和小组讨论,我们加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在解决实际问题时能够灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在复习一元二次方程这一章节时,我发现学生们在理解一些核心概念和解法上还存在一些困难。首先,对于一元二次方程的定义,虽然大多数学生能够背出公式,但在具体应用到实际问题中时,他们有时会忽略掉a≠0这个条件,导致解题时出现错误。在今后的教学中,我需要更加注重让学生理解公式背后的含义,而不仅仅是记住公式。
然而,我也注意到,在小组讨论的过程中,有些学生显得不够积极主动。为了鼓励更多的学生参与到讨论中来,我计划在接下来的教学中,增加一些引导性的问题,激发学生的思考,并适时给予他们鼓励和肯定。
北师大版九年级上册数学第二章一元二次方程-知识点总结含中考真题试题解析

北师大版九年级上册数学第二章一元二次方程☞解读考点知识点名师点晴一元二次方程的概念 1.一元二次方程的概念会识别一元二次方程。
2.一元二次方程的解会识别一个数是不是一元二次方程的解。
解法步骤能灵活选择适当的方法解一元二次方程。
根的判别式b2-4ac 是一元二次方程ax2+bx +c =0(a ≠0)的判别式会判断一元二次方程根的情况。
根与系数的关系x1+x2=b a -,x1x2=ca会灵活运用根与系数的关系解决问题。
一元二次方程的应用由实际问题抽象出一元二次方程要列方程,首先要根据题意找出存在的等量关系.最后要检验结果是不是合理.☞2年中考【2015年题组】1.(2015来宾)已知实数1x ,2x 满足127x x +=,1212x x =,则以1x ,2x 为根的一元二次方程是()A .27120x x -+=B .27120x x ++=C .27120x x +-=D .27120x x --=【答案】A .【解析】试题分析:以1x ,2x 为根的一元二次方程27120x x -+=,故选A .考点:根与系数的关系.2.(2015河池)下列方程有两个相等的实数根的是()A .2+10x x +=B .24210x x ++=C .212360x x ++=D .220x x +-=【答案】C.考点:根的判别式.3.(2015贵港)若关于x 的一元二次方程2(1)220a x x --+=有实数根,则整数a 的最大值为()A .﹣1B .0C .1D .2【答案】B .【解析】试题分析:∵关于x 的一元二次方程2(1)220a x x --+=有实数根,∴△=2(2)8(1)a ---=1280a -≥且10a -≠,∴32a ≤且1a ≠,∴整数a 的最大值为0.故选B .考点:1.根的判别式;2.一元二次方程的定义.4.(2015钦州)用配方法解方程21090x x ++=,配方后可得()A .2(5)16x +=B .2(5)1x +=C .2(10)91x +=D .2(10)109x +=【答案】A .【解析】试题分析:方程21090x x ++=,整理得:2109x x +=-,配方得:2102516x x ++=,即2(5)16x +=,故选A .考点:解一元二次方程-配方法.5.(2015成都)关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是()A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠【答案】D .【解析】试题分析:∵是一元二次方程,∴0k ≠,∵有两个不想等的实数根,则0∆>,则有224(1)0k ∆=-⨯->,∴1k >-,∴1k >-且0k ≠,故选D .考点:根的判别式.6.(2015攀枝花)关于x 的一元二次方程2(2)(21)20m x m x m -+++-=有两个不相等的正实数根,则m 的取值范围是()A .34m >B .34m >且2m ≠C .122m -<<D .324m <<【答案】D.考点:1.根的判别式;2.一元二次方程的定义.7.(2015雅安)已知等腰三角形的腰和底的长分别是一元二次方程2430x x -+=的根,则该三角形的周长可以是()A .5B .7C .5或7D .10【答案】B .【解析】试题分析:解方程2430x x -+=,(x ﹣1)(x ﹣3)=0,解得13x =,21x =;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选B .考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.8.(2015巴中)某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是()A .2560(1)315x +=B .2560(1)315x -=C .2560(12)315x -=D .2560(1)315x -=【答案】B.考点:1.由实际问题抽象出一元二次方程;2.增长率问题.9.(2015达州)方程21(2)04m x --+=有两个实数根,则m 的取值范围()A .52m >B .52m ≤且2m ≠C .3m ≥D .3m ≤且2m ≠【答案】B .【解析】试题分析:根据题意得:220301(4(2)04m m m ⎧⎪-≠⎪-≥⎨⎪⎪∆=--⨯≥⎩,解得52m ≤且2m ≠.故选B .考点:1.根的判别式;2.一元二次方程的定义.10.(2015泸州)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是()A.B.C.D .【答案】B .【解析】试题分析:∵2210x x kb -++=有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb <0,A .k >0,b >0,即kb >0,故A 不正确;B .k >0,b <0,即kb <0,故B 正确;C .k <0,b <0,即kb >0,故C 不正确;D .k >0,b=0,即kb=0,故D 不正确;故选B .考点:1.根的判别式;2.一次函数的图象.11.(2015南充)关于x 的一元二次方程0222=++n mx x 有两个整数根且乘积为正,关于y 的一元二次方程0222=++m ny y 同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②2)1()1(22≥-+-n m ;③1221≤-≤-n m .其中正确结论的个数是()A .0个B .1个C .2个D .3个【答案】C .考点:1.根与系数的关系;2.根的判别式;3.综合题.12.(2015佛山)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A .7mB .8mC .9mD .10m 【答案】A .【解析】试题分析:设原正方形的边长为xm ,依题意有:(x ﹣3)(x ﹣2)=20,解得:x=7或x=﹣2(不合题意,舍去),即:原正方形的边长7m .故选A .考点:1.一元二次方程的应用;2.几何图形问题.13.(2015怀化)设1x ,2x 是方程2530x x +-=的两个根,则2221x x +的值是()A .19B .25C .31D .30【答案】C .考点:根与系数的关系.14.(2015安顺)若一元二次方程220x x m --=无实数根,则一次函数(1)1y m x m =++-的图象不经过第()象限.A .四B .三C .二D .一【答案】D .【解析】试题分析:∵一元二次方程220x x m --=无实数根,∴△<0,∴△=4﹣4(﹣m )=4+4m <0,∴m <﹣1,∴m+1<1﹣1,即m+1<0,m ﹣1<﹣1﹣1,即m ﹣1<﹣2,∴一次函数(1)1y m x m =++-的图象不经过第一象限,故选D .考点:1.根的判别式;2.一次函数图象与系数的关系.15.(2015山西省)我们解一元二次方程2360x x -=时,可以运用因式分解法,将此方程化为3(2)0x x -=,从而得到两个一元一次方程:30x =或20x -=,进而得道原方程的解为10x =,22x =.这种解法体现的数学思想是()A .转化思想B .函数思想C .数形结合思想D .公理化思想【答案】A .【解析】试题分析:我们解一元二次方程2360x x -=时,可以运用因式分解法,将此方程化为3(2)0x x -=,从而得到两个一元一次方程:30x =或20x -=,进而得道原方程的解为10x =,22x =.这种解法体现的数学思想是转化思想,故选A .考点:解一元二次方程-因式分解法.16.(2015枣庄)已知关于x 的一元二次方程20x mx n ++=的两个实数根分别为12x =-,24x =,则m+n 的值是()A .﹣10B .10C .﹣6D .2【答案】A.考点:根与系数的关系.17.(2015淄博)若a 满足不等式组211122a a-≤⎧⎪⎨->⎪⎩,则关于x 的方程21(2)(21)02a x a x a ---++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .以上三种情况都有可能【答案】C .【解析】试题分析:解不等式组211122a a -≤⎧⎪⎨->⎪⎩,得a <﹣3,∵△=21(21)4(2)()2a a a ---+=2a+2,∵a <﹣3,∴△=2a+2<0,∴方程21(2)(21)02a x a x a ---++=没有实数根,故选C .考点:1.根的判别式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题.18.(2015烟台)如果201(1)x x x --=+,那么x 的值为()A .2或﹣1B .0或1C .2D .﹣1【答案】C .【解析】试题分析:∵201(1)x x x --=+,∴211x x --=,即(x ﹣2)(x+1)=0,解得:12x =,21x =-,当x=﹣1时,x+1=0,故x≠﹣1,故选C .考点:1.解一元二次方程-因式分解法;2.零指数幂.19.(2015烟台)等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为()A .9B .10C .9或10D .8或10【答案】B .考点:1.根的判别式;2.一元二次方程的解;3.等腰直角三角形;4.分类讨论.20.(2015大庆)方程)5(2)5(32-=-x x 的根是.【答案】15x =,2173x =.【解析】试题分析:方程变形得:23(5)2(5)0x x ---=,分解因式得:(5)[3(5)2]x x ---,可得50x -=或3170x -=,解得:15x =,2173x =.故答案为:15x =,2173x =.考点:解一元二次方程-因式分解法.21.(2015甘孜州)若矩形ABCD 的两邻边长分别为一元二次方程27120x x -+=的两个实数根,则矩形ABCD 的对角线长为.【答案】5.【解析】试题分析:方程27120x x -+=,即(3)(4)0x x --=,解得:13x =,24x =,则矩形ABCD 2234+=5.故答案为:5.考点:1.矩形的性质;2.解一元二次方程-因式分解法;3.勾股定理.22.(2015达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x 元,可列方程为.【答案】(40﹣x )(20+2x )=1200.考点:1.由实际问题抽象出一元二次方程;2.销售问题.23.(2015广元)从3,0,-1,-2,-3这五个数中抽取一个敖,作为函数2(5)y m x=-和关于x 的一元二次方程2(1)10m x mx +++=中m 的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是________.【答案】2-.【解析】试题分析:∵所得函数的图象经过第一、三象限,∴250m ->,∴25m <,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入2(1)10m x mx +++=中得,210x +=,△=﹣4<0,无实数根;将1m =-代入2(1)10m x mx +++=中得,10x -+=,1x =,有实数根,但不是一元二次方程;将2m =-代入2(1)10m x mx +++=中得,2210x x +-=,△=4+4=8>0,有实数根.故m=2-.故答案为:2-.考点:1.根的判别式;2.一次函数图象与系数的关系;3.综合题.24.(2015凉山州)已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n +=.【答案】225-.【解析】试题分析:∵m n ≠时,则m ,n 是方程23650x x --=的两个不相等的根,∴2m n +=,53mn =-.∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为:225-.考点:1.根与系数的关系;2.条件求值;3.压轴题.25.(2015泸州)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为.【答案】27.考点:根与系数的关系.26.(2015绵阳)关于m 的一元二次方程2220n m --=的一个根为2,则22n n -+=.【答案】26.【解析】试题分析:把m=2代入2220n m --=得022742=--n n ,整理得:n n 7212=+,所以721=+n n ,所以原式=21()2n n +-=22-=26.故答案为:26.考点:一元二次方程的解.27.(2015内江)已知关于x 的方程260x x k -+=的两根分别是1x ,2x ,且满足12113x x +=,则k 的值是.【答案】2.【解析】试题分析:∵关于x 的方程260x x k -+=的两根分别是1x ,2x ,∴126x x +=,12x x k =,1212121163x x x x x x k ++===,解得:k=2,故答案为:2.考点:根与系数的关系.28.(2015咸宁)将263x x ++配方成2()x m n ++的形式,则m=.【答案】3.考点:配方法的应用.29.(2015荆州)若m ,n 是方程210x x +-=的两个实数根,则22m m n ++的值为.【答案】0.【解析】试题分析:∵m ,n 是方程210x x +-=的两个实数根,∴1m n +=-,21m m +=,则原式=2()()m m m n +++=1﹣1=0,故答案为:0.考点:1.根与系数的关系;2.一元二次方程的解.30.(2015曲靖)一元二次方程250x x c -+=有两个不相等的实数根且两根之积为正数,若c 是整数,则c=.(只需填一个).【答案】故答案为:1,2,3,4,5,6中的任何一个数.【解析】试题分析:∵一元二次方程250x x c -+=有两个不相等的实数根,∴△=2(5)40c -->,解得254c <,∵125x x +=,120x x c =>,c 是整数,∴c=1,2,3,4,5,6.故答案为:1,2,3,4,5,6中的任何一个数.考点:1.根的判别式;2.根与系数的关系;3.开放型.31.(2015呼和浩特)若实数a 、b 满足(44)(442)80a b a b ++--=,则a b +=__________.【答案】12-或1.【解析】试题分析:设a b +=x ,则由原方程,得:4(42)80x x --=,整理,得:(21)(1)0x x +-=,解得112x =-,21x =.则a b +的值是12-或1.故答案为:12-或1.考点:换元法解一元二次方程.32.(2015吉林省)若关于x 的一元二次方程20x x m -+=有两个不相等的实数根,则m 的值可能是(写出一个即可).【答案】答案不唯一,只要14m <即可,如:0.考点:1.根的判别式;2.开放型.33.(2015毕节)关于x 的方程2430x x -+=与121x x a =-+有一个解相同,则a=.【答案】1.【解析】试题分析:由关于x 的方程2430x x -+=,得:(x ﹣1)(x ﹣3)=0,∴x ﹣1=0,或x ﹣3=0,解得x=1或x=3;当x=1时,分式方程121x x a =-+无意义;当x=3时,12313a =-+,解得a=1,经检验a=1是原方程的解.故答案为:1.考点:1.分式方程的解;2.解一元二次方程-因式分解法;3.分类讨论.34.(2015毕节)一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L ,则每次倒出的液体是L .【答案】20.【解析】试题分析:设每次倒出液体xL ,由题意得:40401040xx x ---⋅=,解得:x=60(舍去)或x=20.故答案为:20.考点:一元二次方程的应用.35.(2015日照)如果m ,n 是两个不相等的实数,且满足23m m -=,23n n -=,那么代数式2222015n mn m -++=.【答案】2026.考点:根与系数的关系.36.(2015成都)如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号).①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;③若点()p q ,在反比例函数2y x =的图像上,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,且相异两点(1)M t s +,,N(4)t s -,都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为54.【答案】②③.【解析】试题分析:研究一元二次方程20ax bx c ++=是倍根方程的一般性结论,设其中一根为t ,则另一个根为2t ,因此222()(2)32ax bx c a x t x t ax atx t a ++=--=-+,所以有2902b ac -=;我们记292K b ac=-,即0K =时,方程20ax bx c ++=为倍根方程;下面我们根据此结论来解决问题:对于①,29102K b ac =-=,因此本选项错误;对于②,2(2)20mx n m x n +--=,而29K (2)(2)02n m m n =---=,∴22450m mn n ++=,因此本选项正确;对于③,显然2pq =,而29K 302pq =-=,因此本选项正确;对于④,由(1)M t s +,,N(4)t s -,知145222b t t a ++--==,∴5b a =-,由倍根方程的结论知2902b ac -=,从而有509c a =,所以方程变为:250509ax ax a -+=,∴2945500x x -+=,∴1103x =,253x =,因此本选项错误.故答案为:②③.考点:1.新定义;2.根与系数的关系;3.压轴题;4.阅读型.37.(2015黄石)解方程组:224 4 2 2 x y y ⎧+=⎪+=①②.【答案】111xy=⎧⎨=⎩,2212xy⎧=⎪⎨=-⎪⎩.考点:高次方程.38.(2015自贡)利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.【答案】当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.【解析】试题分析:设垂直于墙的一边为x米,则邻边长为(58﹣2x),利用矩形的面积公式列出方程并解答.试题解析:设垂直于墙的一边为x米,得:x(58﹣2x)=200,解得:125x=,24x=,∴另一边为8米或50米.答:当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.考点:1.一元二次方程的应用;2.几何图形问题.39.(2015巴中)如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.【答案】2m.考点:1.一元二次方程的应用;2.几何图形问题.40.(2015广元)李明准备进行如下操作实验:把一根长40cm的铗丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于582cm,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于482cm.你认为他的说法正确吗?请说明理由.【答案】(1)12cm和28cm;(2)正确.考点:1.一元二次方程的应用;2.几何图形问题.41.(2015崇左)为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?【答案】(1)50%;(2)18.【解析】试题分析:(1)设每年市政府投资的增长率为x.根据2015年投资6.75亿元人民币建设廉租房,列方程求解;(2)先求出单位面积所需钱数,再用累计投资÷单位面积所需钱数可得结果.试题解析:(1)设投资平均增长率为x,根据题意得:23(1) 6.75x+=,解得10.5x=,22.5x=-(不符合题意舍去)答:政府投资平均增长率为50%;(2)212(10.5)18+=(万平方米)答:2015年建设了18万平方米廉租房.考点:1.一元二次方程的应用;2.增长率问题.42.(2015崇左)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB、AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?【答案】(1)证明见试题解析;(2)48;(3)2400.考点:1.一元二次方程的应用;2.几何图形问题;3.最值问题;4.压轴题.43.(2015淮安)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?【答案】(1)100+200x;(2)1.考点:1.一元二次方程的应用;2.销售问题;3.综合题.44.(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111 (1)()(1)()23423452345234---⨯+++-----⨯++.令111234t++=,则原式=11 (1)()(1)55 t t t t -+---=22 114 555t t t t t +---+=1 5问题:(1)计算1111111111111111111 (1...)(...)(1...)(...)2342014234520152345201420152342014 -----⨯+++++--------⨯++++;(2)解方程22(51)(57)7 x x x x++++=.【答案】(1)12015;(2)10x=,25x=-.考点:1.换元法解一元二次方程;2.有理数的混合运算;3.换元法;4.阅读型;5.综合题.45.(2015十堰)已知关于x 的一元二次方程()222320x m x m -+++=.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为1x ,2x ,且满足22121231x x x x +=+,求实数m 的值.【答案】(1)112m ≥-;(2)2.【解析】试题分析:(1)若方程有实数根,则△≥0,解不等式即可;(2)由根与系数的关系得到1223x x m +=+,2122x x m =+,由21220x x m =+>和22121231x x x x +=+,得到22121231x x x x +=+,即21212()313x x x x +=+,代入即可得到结果.试题解析:(1)∵关于x 的一元二次方程()222320x m x m -+++=有实数根,∴△≥0,即22(23)4(2)0m m +-+≥,∴112m ≥-;(2)根据题意得1223x x m +=+,2122x x m =+,∵21220x x m =+>,∴1212x x x x =,∵22121231x x x x +=+,∴22121231x x x x +=+,∴21212()313x x x x +=+,即22(23)313(2)m m +=++,解得m=2,m=﹣14(舍去),∴m=2.考点:1.根的判别式;2.根与系数的关系;3.综合题.46.(2015潜江)已知关于x 的一元二次方程042=+-m x x .(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根为1x ,2x ,且满足22521=+x x ,求实数m 的值.【答案】(1)m≤4;(2)m=﹣12.考点:1.根的判别式;2.根与系数的关系.47.(2015鄂州)关于x 的一元二次方程22(21)10x k x k ++++=有两个不等实根1x ,2x .(1)求实数k 的取值范围.(2)若方程两实根1x ,2x 满足1212x x x x +=,求k 的值.【答案】(1)k >34;(2)k=2.【解析】试题分析:(1)由方程有两个不相等的实数根可得△=430k ->,求出k 的取值范围;(2)首先判断出两根均小于0,然后去掉绝对值,进而得到2211k k +=+,结合k 的取值范围解方程即可.试题解析:(1)∵原方程有两个不相等的实数根,∴△=22(21)4(1)k k +-+=2244144k k k ++--=430k ->,解得:k >34;(2)∵k >34,∴12(21)0x x k +=-+<,又∵21210x x k =+>,∴10x <,20x <,∵1212x x x x +=,∴1212x x x x --=,∴2211k k +=+,∴10k =,22k =,又∵k >34,∴k=2.考点:1.根的判别式;2.根与系数的关系;3.综合题.【2014年题组】1.(2014年甘肃兰州中考)一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac 满足的条件是()A.b2﹣4ac=0B.b2﹣4ac >0C.b2﹣4ac <0D.b2﹣4ac≥0【答案】B .【解析】试题分析:∵一元二次方程有两个不相等的实数根,∴△=b2﹣4ac >0.故选B .考点:一元二次方程根的判别式.2.(2014年广西贵港中考)若关于x 的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,则b+c 的值是()A .﹣10B .10C .﹣6D .﹣1【答案】A.考点:1.一元二次方程根与系数的关系;2.求代数式的值.3.(2014年内蒙古呼伦贝尔中考)一元二次方程x2﹣x ﹣2=0的解是()A.x1=2,x2=1 B.x1=﹣2,x2=1 C.x1=2,x2=﹣1 D.x1=﹣2,x2=﹣1【答案】C .【解析】试题分析:(x ﹣2)(x+1)=0,x ﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选C .考点:因式分解法解一元二次方程.4.(2014年山东聊城中考)用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.22.2b b 4ac x 2a 4a -⎛⎫+=⎪⎝⎭ B.22.2b 4ac b x 2a 4a -⎛⎫+=⎪⎝⎭ C.22.2b b 4ac x 2a 4a -⎛⎫-=⎪⎝⎭ D.22.2b 4ac b x 2a 4a -⎛⎫-=⎪⎝⎭【答案】A .【解析】试题分析:先移项,把二次项系数化成1,再配方,最后根据完全平方公式得出即可:移项,得ax2+bx=﹣c ,两边同除以a ,得2b c x x a a +=-,两边同加上一次项一半的平方,得222b bc b x x a 2a a 2a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,∴22.2b b 4ac x 2a 4a -⎛⎫+=⎪⎝⎭.故选A .考点:配方法解一元二次方程.5.(2014年甘肃白银、定西、平凉、酒泉、临夏中考)一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=.【答案】1.考点:一元二次方程和解的定义.6.(2014年广西桂林中考)已知关于x 的一元二次方程()22x 2k 1x k 20+++-=的两根x1和x2,且()()112x 2x x 0--=,则k 的值是.【答案】2-或94-.【解析】试题分析:∵()()112x 2x x 0--=,∴1x 2=或12x x =.∵关于x 的一元二次方程()22x 2k 1x k 20+++-=的两根x1和x2,∴若1x 2=,则()22222k 1k 20k 2+++-=⇒=-;若12x x =,则方程()22x 2k 1x k 20+++-=有两相等的实数根,∴()()2292k 141k 20k 4∆=+-⋅⋅-=⇒=-.∴k 2=-或9k 4=-.考点:1.解方程;2.一元二次方程的根和根的判别式;3.分类思想的应用.7.(2014年湖南永州中考)方程x2﹣2x=0的解为.【答案】x1=0或x2=2.【解析】试题分析:把方程的左边分解因式得x (x ﹣2)=0,得到x=0或x ﹣2=0,从而求出方程的解:x1=0或x2=2.考点:因式分解法解一元二次方程.8.(2014年江西省中考)若,a b 是方程2x 2x 30--=的两个实数根,则22a +b =.【答案】10.【解析】试题分析:∵,a b 是方程2x 2x 30--=的两根,∴2,3a +b =a b =- .∴()222222610a +b =a +b -a b =+=.考点:1.一元二次方程根与系数的关系;2.代数式求值;3.完全平方公式;4.整体思想的应用.9.(2014年江苏泰州中考)解方程:2x2﹣4x ﹣1=0.【答案】12x x == .考点:公式法解一元二次方程.10.(2014年四川巴中中考)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?【答案】当该商品每个单价为60元时,进货100个.【解析】试题分析:方程的应用解题关键是设出未知数,找出等量关系,列出方程求解.本题利用销售利润=售价-进价,根据题中条件可以列出利润与x 的关系式,求出即可.解:设每个商品的定价是x 元,由题意,得(x ﹣40)[180﹣10(x ﹣52)]=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=60.x1=50时,进货180﹣10(x ﹣52)=200个,不符合题意舍去.答:当该商品每个单价为60元时,进货100个.考点:一元二次方程的应用(销售问题).☞考点归纳归纳1:一元二次的有关概念基础知识归纳:1.一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一般形式:ax2+bx+c=0(其中a 、b 、c 为常数,a ≠0),其中ax2、bx 、c 分别叫做二次项、一次项和常数项,a 、b 分别称为二次项系数和一次项系数.3.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.基本方法归纳:一元二次方程必须具备三个条件:(1)必须是整式方程;(2)必须只含有1个未知数;(3)所含未知数的最高次数是2.注意问题归纳:在一元二次方程的一般形式中要注意a ≠0.因为当a=0时,不含有二次项,即不是一元二次方程.【例1】若x=﹣2是关于x 的一元二次方程225x ax a 02-+=的一个根,则a 的值为()A.1或4B.﹣1或﹣4C.﹣1或4D.1或﹣4【答案】B .考点:一元二次方程的解和解一元二次方程.归纳2:一元一次方程的解法基础知识归纳:一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
北师大9年级上册 一元二次方程 第二章 小结与复习

(ax + m)2 = n (a ≠ 0,n≥0) x2 + px + q = 0 ( p2 - 4q≥0) ax2 + bx +c = 0 (a ≠ 0,b2 - 4ac≥0) (ax + m)(bx + n) = 0 (ab ≠ 0)
三、一元二次方程的实际应用 列方程解应用题的一般步骤:
图2
方法总结
解决有关图形面积问题时,除了掌握所学面积公 式外,还要会将不规则图形分割或组合成规则图形, 并找出各部分图形面积之间的关系,再列方程求解.
平移转化
(注:这里的横坚斜小路的水平宽度都相等)
课堂小结
一元二次方 概念:①整式方程;②一元;③二次
一
程的定义 一般形式:ax2 + bx + c = 0 (a ≠ 0)
【易错提示】由于原方程是一元二次方程,所以 m 的值为 1 不符合其定义,应舍去,要引起注意.
针对训练
2. 一元二次方程 x2 + px - 2 = 0 的一个根为 2,则 p 的 值为 -1 .
考点三 一元二次方程的解法
例3 (1) 用配方法解方程 x2 - 2x - 5 = 0 时,原方程应变为 (A ) A.(x - 1)2 = 6 B.(x + 2)2 = 9 C.(x + 1)2 = 6 D.(x - 2)2 =
解析 本题为销售中的利润问题,设公司每天的销售价
为 x 元. 则其基本数量关系列表分析如下:
单件利润(元) 销售量(件) 每天利润(元)
正常销售
4
32
128
涨价销售
x - 20
32 - 2(x - 24)
150
北师大版数学九年级上册第二章一元二次方程知识点归纳及例题含答案

北师大版九年级上册第二章一元二次方程知识知识点归纳及例题【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【知识点梳理】知识点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.知识点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.知识点二、一元二次方程的解法1.基本思想一元二次方程一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.知识点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.知识点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是, 那么,. 注意它的使用条件为a ≠0, Δ≥0.知识点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.知识点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.−−−→降次)0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =212.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.知识点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.(2016•诏安县校级模拟)关于x 的一元二次方程(a ﹣1)x 2+x +a 2﹣1=0的一个根是0,则a 的值为( )A .1B .﹣1C .1或﹣1D .【思路点拨】根据方程的解的定义,把x=0代入方程,即可得到关于a 的方程,再根据一元二次方程的定义即可求解.【答案】B ;【解析】解:根据题意得:a 2﹣1=0且a ﹣1≠0,解得:a=﹣1.故选B .【总结升华】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.举一反三:【变式】关于x 的方程,当 时为一元一次方程;当 时为一元二次方程.【答案】=4;≠4且≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x 2-=0; (2) (x+a)2=;(3) 2x 2-4x-1=0; (4) (1-)x 2=(1+)x .【答案与解析】 22(28)(2)10a a x a x --++-=a a a a a(1)原方程可化为0.5x2=∴x2=用直接开平方法,得方程的根为∴x1=,x2=-.(2)原方程可化为x2+2ax+a2=4x2+2ax+∴x2=a2用直接开平方法,得原方程的根为∴x1=a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0.∴ 3x-2=0或3x-3=0,∴ ,. (2)原方程可化为:2(t-1)2+(t-1)=0.∴ (t-1)[2(t-1)+1]=0.∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0.∴ ,. 类型三、一元二次方程根的判别式的应用3.(2015•荆门)若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是( )A .a ≥1B . a >1C . a ≤1D .a <1【答案】A ;【解析】∵关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,∵∵=(﹣4)2﹣4(5﹣a )≥0,∵a ≥1.故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程的两个不相等的实数根,(1)求t 的取值范围; (2)设,求s 关于t 的函数关系式. 【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1.(2)由一元二次方程根与系数的关系知:,,从而,即.【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于x 的一元二次方程的两实数根为,.(1)求m 的取值范围;(2)设,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为. 123x =21x =11t =212t =2220x x t -++=2212s x x =+122x x +=122x x t =+2212s x x =+21212()2x x x x =+-222(2)2t t =-+=-2(1)s t t =-<-222(1)x m x m =--1x 2x 12y x x =+222(1)0x m x m +-+=∵ 原方程有两个实数根.∴ ,∴ . (2) ,且. 因为y 随m 的增大而减小,故当时,取得最小值1.类型五、一元二次方程的应用5.如图所示,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm ,由题意得4x 2=10×8×(1-80%).解得x 1=2,x 2=-2.经检验,x 1=2符合题意,x 2=-2不符合题意舍去.∴ x =2.答:截去的小正方形的边长为2cm .【总结升华】设小正方形的边长为x cm ,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2015春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m ),现在欲砌50m 长的墙,砌成一个面积300m 2的矩形花园,则BC 的长为多少 m?【答案】解:设AB=x 米,则BC=(50﹣2x )米.根据题意可得,x (50﹣2x )=300,解得:x 1=10,x 2=15,当x=10,BC=50﹣10﹣10=30>25,故x 1=10(不合题意舍去),50﹣2x=50﹣30=20.22[2(1)]4840m m m =--=-+≥△12m ≤1222y x x m =+=-+12m ≤12m=答:BC的长为20m.6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x2-5x+6=0.解得,x1=2,x2=3.∴当x=2时,2x=4;当x=3时,2x=6.答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.。
最新北师大版九年级数学上册第二章-一元二次方程小结与复习

当x=
时,可化为a-b+c=0
认真做一做
当m为何值时,方程 m 1 x2 2mx m 3 0
(1)有两个相等实根; m-1≠0且Δ=0
(2)有两个不等实根; m-1≠0且Δ>0
(3)有实根; (4)无实数根; (5)只有一个实数根;
△≥0或者m-1=0 △<0且m-1≠0
m-1=0
(6)有两个实数根。 △≥0且m-1≠0
解之得 k1=k2=1
∵
k1 2
∴k1=k2=1不合题意, 舍去
②当x1+x2<0时, 则有 x1+x2=-(x1x2-1) 即2(k-1)=-(k2-1)
解之得 k1 1, k2 3
∵
k1 2
∴k=-3
综合①、②可知k=-3
已知关于x的方程 x2+2(a-1)x+a2-7a-4=0的两根为
x1、x2,且满足x1x2-3x1-3x2-2=0,
第二章 一元二次方程
考点梳理
1、一元二次方程 ⑴概念:只含有一个未知数,未知数的最高次数是 2 ,且二次项系数不为零 的 整式 .方程,叫做一元二次方程。
⑵一元二次方程的一般形式: ax2 bx c 0a 0 .其中 ax 2 叫
做 二次项 , bx叫做 一次项 ., c 叫做 常数项 .。a、b 分别叫做二次
(1)求平均每次下调的百分率。
解:(1)设平均每次下调的百分率x,则
6000(1-x)2 = 4860
解得:x1=0.1 x2=1.9(舍去)
∴平均每次下调的百分率10%
(2011浙江义乌)商场某种商品平均每天可销售30件,每件 盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2 件.设每件商品降价x元. 据此规律,请回答:
北师大版九年级上册 一元二次方程解法知识点复习总结提高

一元二次方程解法知识点总结提高(精华版)一、概念一元二次方程——“整式方程”;“只含一个未知数,且未知数的最高次数是2”。
=0(分式),=1(无理式)一元二次方程的一般形式——ax2 +bx+c=0(a0).方程的根(解)——是使方程成立的未知数的取值,了解一元二次方程的根的个数。
如果有根,一定是两个根,相同和不同的根。
一元二次方程的解法——把一元二次方程降次为一元一次方程求解。
二、解一元二次方程1.直接开平方法——适用于(px+q)2 =a 的方程。
2.配方法——适用于所有的一元二次方程。
ax2 +bx+c=0(a0).3.公式法——适用于所有的一元二次方程,反映了一元二次方程的根与系数的关系。
一元二次方程首先必须要把方程化为一般形式,准确快速找出各项系数a、b、c;先求出b2 -4ac的值,如果b2 -4ac0,则带入公式(3)当b2 -4ac<0时,方程没有实数根,方程有两个共轭虚根注意:一元二次方程根1.k为何值时,关于x的二次方程kx2-6x+9=0k满足k且b2 -4ac>0 时,方程有两个不等的实数根。
K满足k且b2 -4ac=0时,方程有两个相等的实数根。
K满足k且b2 -4ac<0 时,方程无实数根。
4.因式分解法——用因式分解法解一元二次方程的依据是:A-B=0⇒A=0或B=0.通过将二次三项式化为两个一次式的乘积,从而达到将次的目的。
把ax2 +bx+c=0(a0)转化为(px+q)(gx+h)=0的形式。
a.提公因式b.十字相乘5.换元法(2x+1)2 -3(2x+1)-4 =0 x4+2x+1=0=1转化为整式方程:x2+3x-4=0(x-1)(x+4)=0 x1=1,x2=-4.这时候一定要将x1=1,x2=-4.带入原方程中,看是否满足题意。
x1=1(舍),所以,x=-4.三、解一元二次方程基本题型1.会化一般形式。
x2+3x=42.应用一元二次方程的定义求待定系数或其他字母值关于x的方程(a2-2a-8)x2 +(a+2)x-1 =0当a=(a2-2a-8)=0且(a+2)0 即=4时为一元一次方程。
北师大九上第10讲 一元二次方程复习与巩固
《一元二次方程》全章复习与巩固【知识网络】【要点梳理】要点一、一元二次方程的有关概念1. 一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点二、一元二次方程的解法1.基本思想一元二次方程一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的−−−→降次)0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,.注意它的使用条件为a ≠0, Δ≥0.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.【典型例题】类型一、一元二次方程的有关概念1.关于x 的一元二次方程(a ﹣1)x 2+x +a 2﹣1=0的一个根是0,则a 的值为()A .1B .﹣1C .1或﹣1D .举一反三:【变式】关于x 的方程,当 时为一元一次方程;当 时为一元二次方程.∆ac b 42-=∆)0(02≠=++a c bx ax 21x x ,a b x x -=+21a cx x =2122(28)(2)10a a x a x --++-=a a2.用适当的方法解一元二次方程(1) 0.5x 2-=0; (2) (x+a)2=;(3) 2x 2-4x-1=0; (4) (1-)x 2=(1+)x .举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t =1.类型三、一元二次方程根的判别式的应用3.若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是() A .a ≥1 B . a >1 C . a ≤1 D .a <1类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程的两个不相等的实数根,(1)求t 的取值范围; (2)设,求s 关于t 的函数关系式.举一反三:【变式】已知关于x 的一元二次方程的两实数根为,.(1)求m 的取值范围;(2)设,当y 取得最小值时,求相应m 的值,并求出最小值.2220x x t -++=2212s x x =+222(1)x m x m =--1x 2x 12y x x =+5.如图所示,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.举一反三:【变式】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为多少m?6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【巩固练习】一、选择题1.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1B.﹣1C.0D.无法确定2.一元二次方程x2﹣6x﹣5=0配方组可变形为()A.(x﹣3)2=14B.(x﹣3)2=4C.(x+3)2=14D.(x+3)2=43.某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为()A .2%B . 5%C . 10%D . 20%4.将代数式x 2+4x-1化成(x+p )2+q 的形式( )A.(x-2)2+3B.(x+2)2-4C.(x+2)2-5D.(x+2)2+45.若关于x 的一元二次方程有实数根,则k 的取值范围是( ).A .k <0B .k ≤0C .k ≠1且k ≠0D .k ≤1且k ≠06.从一块正方形的铁片上剪掉2 cm 宽的长方形铁片,剩下的面积是48 cm 2,则原来铁片的面积是( )A.64 cm 2B.100 cm 2C.121 cm 2D.144 cm 27.若t 是一元二次方程的根,则判别式和完全平方 式 的关系是( ) A.△=M B. △>M C. △<M D. 大小关系不能确定8.如果关于x 的方程ax 2+x-1=0有实数根,则a 的取值范围是( )A .B .C .且D .且二、填空题9.已知关于x 的方程x 2+x +2a ﹣1=0的一个根是0,则a= .10.有一间长20m ,宽15m 的矩形会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则地毯的长、宽分别为 和 .11.关于的一元二次方程有一个根为0,则 .12.阅读材料:设一元二次方程似(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:,,根据该材料填空:已知x 1,x 2是方程的两实数根,则的值为________. 13.已知两个连续奇数的积是15,则这两个数是___________________.14.设x 1,x 2是一元二次方程x 2-3x-2=0的两个实数根,则的值为________.15.问题1:设a 、b 是方程x 2+x -2012=0的两个实数根,则a 2+2a +b 的值为 ;问题2:方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1―1)(x 2―1)= ;问题3:已知一元二次方程x 2-mx +m -2=0的两个实数根为x 1、x 2且x 1x 2(x 1+x 2)=3,则m 的值是 ;问题4:已知一元二次方程x 2-2x+m=0,若方程的两个实数根为X 1,X 2,且X 1+3X 2=3,则m 的值是 .16.某校2010年捐款1万元给希望工程,以后每年都捐款,计划到2012年共捐款4.75万元,则该校捐款的平均年增长率是 .2210kx x ++=x 22(1)10a x x a -++-=a =20ax bx c ++=12b x x a +=-12c x x a=2630x x ++=2112x x x x +2211223x x x x ++三、解答题17.某两位数的十位数字与个位上的数字之和是5,把这个数的个位上的数字与十位上的数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数.18. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.19.(2015•十堰)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元?。
新北师大版九上第二章一元二次方程知识点复习
知识点总结:一元二次方程知识框架知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;】(3)是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0)3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。
一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
4.一元二次方程的解法(1)直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
、(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根.(3)公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的小结与复习
古坳初中 袁绍建
【学习目标】
1﹒一元二次方程的相关概念;
2﹒灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程; 3﹒能运用一元二次方程的根的判别式判定方程的根的情况以及能简单运用一元二次方程的根与系数的关系解决相关问题﹒
【学习重点】运用知识、技能解决问题﹒ 【学习难点】解题分析能力的提高. 前置性学习:
尝试整理本章的知识结构图,并反思在这章的学习过程中还有哪些疑惑?
活动一:情境引入,回顾梳理
问题:要设计一座高2m 的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下
部与全部的高度比,求雕像的下部应设计为高多少米?
活动二:自主应用,巩固提升
题组一:选用适当的方法解下列一元二次方程.
口 答:下列一元二次方程,何种解法最恰当?
1. 2. 3. 4. 5. 6. 7. 8. 2
2164
x +=()22
2410x x --+=()()2
440x x ---=(5)(5)2
4100x x --=2
450x x --=32
510
x
x +-=2
830
x x --=
3210
y -=
一元二次方程的小结与复习
义: 根 : 整体
分类讨论
数学思想方法:
转化 根与系数关系
公式法
12x x +12
x x 根的判别式 △
△△
题组二:填空题
2110_____________x ax x a ++=.若关于的一元二次方程2有两个不相等的实数根,
则 的取值范围为.
22510x a x x a ---=.若关于的一元二次方程()4有实数根, 则 的取值范围为______________.
题组三:解答题
2122
1224+430+53+2,x x x x x x x a a -=-=.已知、是一元二次方程的两个实数根, 且2()求 的值.
活动三:课堂反思,提升能力
1﹒课堂总结
通过本节课的复习, 我学会了: 我体会到: 我会注意: 我还有疑惑:
2﹒课后作业
《课时作业本》选做
板书设计 23510x a x x a ---=.若关于的方程()4有实数根, 则 的取值范围为___________.。