化学反应工程第4章

合集下载

化学反应工程1_7章部分答案

化学反应工程1_7章部分答案

第一章绪论习题1.1 解题思路:(1)可直接由式(1.7)求得其反应的选择性(2)设进入反应器的原料量为100 ,并利用进入原料气比例,求出反应器的进料组成(甲醇、空气、水),如下表:组分摩尔分率摩尔数根据式(1.3)和式(1.5)可得反应器出口甲醇、甲醛和二氧化碳的摩尔数、和。

并根据反应的化学计量式求出水、氧及氮的摩尔数,即可计算出反应器出口气体的组成。

习题答案:(1) 反应选择性(2) 反应器出口气体组成:第二章反应动力学基础习题2.1 解题思路:利用反应时间与组分的浓度变化数据,先作出的关系曲线,用镜面法求得反应时间下的切线,即为水解速率,切线的斜率α。

再由求得水解速率。

习题答案:水解速率习题2.3 解题思路利用式(2.10)及式(2.27)可求得问题的解。

注意题中所给比表面的单位应换算成。

利用下列各式即可求得反应速率常数值。

习题答案:(1)反应体积为基准(2)反应相界面积为基准(3)分压表示物系组成(4)摩尔浓度表示物系组成习题2.9 解题思路:是个平行反应,反应物A的消耗速率为两反应速率之和,即利用式(2.6)积分就可求出反应时间。

习题答案:反应时间习题2.11 解题思路:(1)恒容过程,将反应式简化为:用下式描述其反应速率方程:设为理想气体,首先求出反应物A的初始浓度,然后再计算反应物A的消耗速率亚硝酸乙酯的分解速率即是反应物A的消耗速率,利用化学计量式即可求得乙醇的生成速率。

(2)恒压过程,由于反应前后摩尔数有变化,是个变容过程,由式(2.49)可求得总摩尔数的变化。

这里反应物是纯A,故有:由式(2.52)可求得反应物A的瞬时浓度,进一步可求得反应物的消耗速率由化学计量关系求出乙醇的生成速率。

习题答案:(1)亚硝酸乙酯的分解速率乙醇的生成速率(2)乙醇的生成速率第三章釜式反应器习题3.1 解题思路:(1)首先要确定1级反应的速率方程式,然后利用式(3.8)即可求得反应时间。

(2)理解间歇反应器的反应时间取决于反应状态,即反应物初始浓度、反应温度和转化率,与反应器的体积大小无关习题答案:(1)反应时间t=169.6min.(2)因间歇反应器的反应时间与反应器的体积无关,故反应时间仍为169.6min.习题3.5 解题思路:(1)因为B过量,与速率常数k 合并成,故速率式变为对于恒容过程,反应物A和产物C的速率式可用式(2.6)的形式表示。

作业课后答案化学反应工程第四

作业课后答案化学反应工程第四
求催化剂的内扩散有效因子。
解:由题意知,此为二级反应
dN A dW
kw
f (c); dN A dS
kS
f (c); dN A dVC
kVC
f (c)
又dS SgdW ; PdVC dW 所以kw kS Sg ;kvc kw P
所以,rA 7.696 105 P PA2
7.696 105 P (106 RT )2 (106 CA )2 mol / (cm3 s)
k p1 C4H8
k2
p C4
H6
p H2
1 b p b p C4H8 C4H8
C4H6 C4H6
第3页/共17页
(2)丁烯反应级数判断

b p C4H8 C4H8
1+b p +b p C4H8
C4H8 C4H8
C4H6 C4H6
1
由题设知反应属于化学反应控制,根据平衡近似假设:
p C4 H8
kVC 0.09s1; Deff 7.04 104 cm2 / s
对于不同形状的催化剂颗粒,西勒模数均可表示为:
Vp p Sgks Vp kVC
Sp
Deff
S p Deff
(2.5 103 )2 (5 103 ) 2 (2.5 103 )2 2 (2.5 103 ) (5 103 )
2-13 乙烯直接水合制乙醇可视为对乙烯的一级不可逆反应, 在300 ℃ 、7.09MPa下,k=0.09s-1,Deff=7.04×10-4cm2/s,采用直 径与高均为5mm的圆柱形催化剂,求内扩散有效因子。
解: 由 已 知 条 件 :
T 300 273.15K 573.15K; P 7.09MPa;
107 / 2ra = 108

Chapter 4 Introduction to Reactor Design 化学反应工程 教学课件

Chapter 4 Introduction to Reactor Design  化学反应工程 教学课件
When we can predict the response of the reacting system to changes in operating conditions (how rates and equilibrium conversion change with temperature and pressure), when we are able to compare yields for alternative designs (adiabatic versus isothermal operations, single versus multiple reactor units, flow versus batch system), and when we can estimate the economics of these various alternatives, then and only then will we feel sure that we can arrive at the design well fitted for the purpose at hand.
ofvolumeofvolume ofvolume
ofvolum e
Where the composition within the reactor is uniform (independent of position), the accounting may be made over the whole reactor.
化学反应工程
Special Case 1. Constant Density Batch and Flow Systems. This includes most liquid reactions and also those gas reactions run at constant temperature and density. Here CA and XA are related as follows:

化学反应工程知识点梳理

化学反应工程知识点梳理

化学反应工程知识点梳理第一章化学反应工程简介化学反应工程是研究化学反应和工程问题的科学动量传递、热量传递、质量传递及化学动力学,可概括为“三传一反”--第三个里程碑。

第二章均相反应动力学反应进度:转化率:膨胀因子:不可逆反应A(-)-()()AAdnrVdt==(由于反应而消耗的的摩尔数)单位反应区域单位时间RSBARSBAαααα+=+1()AAdnrV dt-=-dtdnVr SS1=PPPRRRBBBAAAnnnnnnnnααααξ0-=-=-=-=K KKKn nxn-==某反应物的转化量该反应物的起始量KiKKiixnnxαα=0000KK K K Kn n n nn n n xδ--==-00()KK Kn nn y xδ-=KKKKiKKiiKKKiii xyxyyyxyxyy1)1(1)1(δααδ+-=+-=000(1)(1)(1)(1)A AA AA AA A A A A An xn xC CV V y x y xδδ--===++()A A Br kC Cαβ-=()C Pk RT kαβ+=ERTk k e-=RTEkk-=lnlnSBASBAααα→+bBaAAACkCdtdCr=-=-)(⎰=0AACC bBaAACCdCkt均相催化反应 CC 为催化剂浓度自催化反应A + C → 2C + R …串联反应总收率瞬时收率得率yield总选择性 目的产物P 所生成的摩尔数与副产物S 生成的摩尔数之比,用S0表示:平行反应串联反应()()AA C A dC r kC C dt-=-=CA A A C kCdt dCr =-=-)(A + B P R+S 00PP P A A n n n n -Φ=-/()/p P P A A A r dC dt dC P A r dC dt dC φ====---单位时间内生成的摩尔数单位时间内消耗的摩尔数00/)(A P P P n n n X -=000PP S S n n S n n -=-αA2A αS S (副)αA1A αP P (主),11A A r k C -=(),22A A r k C -=(),1,212()()AA A A A dC r r r k k C dt-=-+-=+=()()A A P A A p P P C k r dt dC r 11,1,1,)(αααα-=--==AA S S S C k dt dC r 22,αα-==tk k A A eC C )(021+-=A P S (均为一级反应)k 1k 2P A P P C k C k dt dC r 21-==PSS C k dt dC r 2==第三章 理想均相反应器 间歇反应器(BSTR)反应时间实际操作时间(operating time)= 反应时间(t) + 辅助时间auxiliary time (t') 反应体积V 是指反应物料在反应器中所占的体积 V = v0 (t + t')为装料系数(the volume charge coefficient),通常在0.4~0.85平推流反应器PFR 空时全混流反应器(CSTR)绝热操作恒容间歇反应器的设计式为:变温平推流反应器⎰⎰--=-=A A A C C A Ax A A A r dC r dx C t 0)()(00等容过程,液相反应 VV ϕ=实际实际的反应器体积为:0V v τ==反应器的容积进料的体积流量0R V dV t v ==⎰反应器中物料反应期的容积的体积流量000()()A A A AA A C C C x V v r r τ-===--0()A A A x V F r =-005000024R R R F v C M ==⨯00000000()(1)A A A A A A x x x A AA A A A E nx x x n n A ART A A dx dx dx t C C C r kC k e C x -===--⎰⎰⎰1001()A A x A A n xA t I x dx k C -=⎰20()()4A A A P A F dx r dV r D dl π=-=-20()4A A A dx D r dl F π-=00000()A x A A A A A dx V V F r v C C τ===-⎰化学反应工程研究的目的是实现工业化学反应过程的优化 全混流平推流多级CSTR 串联的优化对于一级不可逆反应应有PFR: 同间歇釜CSTR:全混流反应器的热衡算方程第四章 非理想流动 停留时间分布()⎰-==A x AAA B A B r dx C t F V 000BR : ()⎰-==Ax A AA P A P r dxCF V 000τPF R: ()000m m A A A A V x F C r τ-==-CST R: 112100010200...(1)(1)(1)Am Am A A A R A A A A A A Am x x x x x V v C kC x kC x kC x -⎛⎫---=+++ ⎪---⎝⎭0121110(1,2,.....1)(1)1Ai RAi Ai Ai v x V i m x k x x -+⎡⎤-∂=-==-⎢⎥∂--⎣⎦11111Ai Ai Ai Ai Ai Ai x xx x x x -++--=--221max 1max 02()k k k P P A C k X C k -==max max 1202211[(/)1]P P A C X C k k ==+1212ln(/)opt k k k k τ=-121opt k k τ=)()1())((0000Pm P P r A c v UAT T c v UA T c v H r V ρρρ+-+=∆--)()1(000P m P r c v UAT T c v UAT Q ρρ+-+= (){}E t P t residence time t t ∆=<<+停留时间分布函数 (){}=<F t P residence time t方差PFRCSTR最大层流流动 轴向扩散模型 0()()d t F t E t t=⎰22222()()()()()()t t t E t dtt t E t dt t E t dt tE t dtσ∞∞∞∞-==-=-⎰⎰⎰⎰0 t t () t t 0 t t E t <⎧⎪=∞=⎨⎪>⎩2220()()()0t t t E t dt t t σ∞=-=-=⎰0 t t () 1 t tF t <⎧=⎨≥⎩()11()t tt tF t e E t et---=-=222 1.0ttθσσ==22()()[2()]r r F t R R =-222/222()2()(1)212()(1)Z t uL E z z Pe tE Ee uL uL e Pe Peθσσ--==--=--。

化学反应工程第四章习题答案

化学反应工程第四章习题答案

化学反应工程第四章习题答案work Information Technology Company.2020YEAR第四章 非理想流动1.停留时间分布的密度函数在t <0时,E (t )=_______。

(0) 2.停留时间分布的密度函数在t ≥0时,E (t )_______。

(>0) 3.当t=0时,停留时间分布函数F (t )=_______。

(0) 4.当t=∞时,停留时间分布函数F (t )=_______。

(1) 5.停留时间分布的密度函数E (θ)=_______E (t )。

(t )6.表示停留时间分布的分散程度的量=2θσ_______2tσ。

(21t )7.反应器物料的停留时间的分布曲线是通过物理示踪法来测定的,根据示踪剂的输入方式不同分为_______、_______、_______、_______。

(脉冲法、阶跃法、周期示踪法、随机输入示踪法) 8.平推流管式反应器t t =时,E (t )=_______。

(∞) 9.平推流管式反应器t t ≠时,E (t )=_______。

(0) 10.平推流管式反应器t t ≥时,F (t )=_______。

(1) 11.平推流管式反应器t <t 时,F (t )=_______。

(0)12.平推流管式反应器其E (θ)曲线的方差=2θσ_______。

(0) 13.平推流管式反应器其E (t )曲线的方差=2t σ_______。

(0) 14.全混流反应器t=0时E (t )=_______。

(tte t -1)15.全混流反应器其E (θ)曲线的方差=2θσ_______。

(1) 16.全混流反应器其E (t )曲线的方差=2t σ_______。

(2t ) 17.偏离全混流、平推流这两种理想流动的非理想流动,E (θ)曲线的方差2θσ为_______。

(0~1)18.当流体在半径为R 的管内作层流流动时,在径向存在流速分布,轴心处的流速以0u 记,则距轴心处距离为r 的流速=r u _______。

化学反应工程 第四章 非理想流动

化学反应工程 第四章 非理想流动

今用分散模型关联,求
数。
化学反应工程
4.2.1 常见的几种流动模型
解:
换算为无量纲时标,
则得下表数据。
将实验数据标绘成曲线,然后读取
等间隔时的诸E值
见下表。
化学反应工程
4.2.1 常见的几反应工程
4.2.1 常见的几种流动模型
③化学反应的计算 定态情况下平推流管式反应器的物料衡算式为:
流, ;对一般实际流况, 。
;对平推
所以,用
来评价分布的分散程度比较方便。
化学反应工程
4.1.4 用对比时间θ表示的概率函数
例4-1 今有某一均相反应器中测定的下列一组数据(见 ,示踪加入 下表第一栏和第二栏),实验采用
量Q=4.95g,实验完毕时测得反应器内存料量V=1785mL,求 解:
(详见教材P92)
对定态系统的非理想流动,同样可作微元段的物料衡算而得:
若用无量纲参数表示并注意到:
这样式(4-32)便变为:
化学反应工程
4.2.1 常见的几种流动模型
对一级反应可得解析解:
对于二级反应,用数值法求得的结果,表示在图(4-17)
和图(4-18)中。
化学反应工程
4.2.1 常见的几种流动模型
(4)组合模型
化学反应工程
4.1.1 非理想流动与停留时间分布
在一个稳定的连续流动系统中,当在某一瞬间同时进 入系统的一定量流体,其中各流体粒子将经历不同的停留 时间后依次自系统中流出。如果把函数 用曲线表示,
则图4-2(a)中所示阴影部分的面积值也就是停留时间介 于t和t+dt之间的流体分率。
化学反应工程
4.1.1 非理想流动与停留时间分布
化学反应工程

化学反应工程第4章 反应器中的混合及对反应的影响


第四章 反应器中的混合对反应的影响 第一节 连续反应器中物料混合状态分析 一、 混合现象的分类 二、 连续反应过程的考察方法
不同的凝聚态,宜采用不同的考察方法 一、以反应器为对象的考察方法 二、以反应物料为对象的考察方法
第四章 反应器中的混合对反应的影响 第二节 停留时间分布的测定及其性质 一、停留时间分布 二、停留时间分布的实验测定 三、停留时间分布数字特征 四、理想流型反应器的停留时间分布 五、停留时间分布曲线的应用

柯尔莫哥洛夫(А.Η.Колмогоров)
Kolmogonov,1903-1987
苏联数学家。他对开创现代数 学的一系列重要分支作出了 重大贡献。柯尔莫哥洛夫建 立了在测度论基础上的概率 论公理系统,奠定了近代概 率论的基础,他也是随机过 程论的奠基人之一,1980年 由于他在调和分析、概率论、 遍历理论及动力系统方面出 色的工作获沃尔夫奖。此外 他在信息论、数理逻辑算法 论、解析集合论、湍流力学、 测度论、拓扑学等领域都有 重大贡献。
t< 0 t 吵0
Cin (t - ) =
0 C0

2.脉冲法(pulse input)
主流体V 注入
反应器VR
C(t)
C0 示踪剂
检测器
2.脉冲法
c(∞)
C0
c(t)
C(t)
C(t)
0
t=0 输入曲线
t
0
t
t 响应曲线
2.脉冲法
停留时间介于t ~ t + t的粒子分率 E (t ) = lim t ® 0 t
第五节 非理想流动反应器的计算
第四章 反应器中的混合对反应的影响
第一节 连续反应器中物料混合状态分析 第二节 停留时间分布的测定及其性质 第三节 非理想流动模型

反应工程第四章


思考题:
1. 比较恒容条件下进行某一反应,要达到同一转化率,在间歇 釜中经历的时间长,还是平推流? 2.比较恒容条件下进行某一反应,要在相同的反应时间达到同 一转化率,所需的平推流反应器体积大,还是间歇釜? (反应器的处理能力)
恒容条件下,
∫ t = − CA dCA (间歇釜) CA0 (−rA )
[2ε A
(1+
εA
) ln(1 −
xA
)
+
ε
2 A
xA
+
(1 +
ε A )2
xA 1− xA
37
(− rA )
=
k P PAn
=
kP
[
y A0 (1 1 +ε
− xA AxA
)
P ]n
反应级数
一级反应 A mp
二级反应 2A mp
二级反应 A+B mp
反应速率式
(−rA ) = kp PA
(−rA) = kpPA2
二级
二级自 化反应
( − r A ) = kC C A B
C A0 ≠ C B0 M = C B0 − C A0
C A0 ( − r A ) = kC C A P
n级
(− rA )
=
kC
n A
设计式
VR F A0
=
xA k
, F A0
= v0C A0
τ = VR V0
V R = 1 ln
1
F A0
kC A 0
反应均为一级,已知 k1 = 0.30 min−1, k2 = 0.10 min−1 。A的最大进料量
为3 m3 / h ,且不含P与S。试计算P的最大收率和总选择性以及达到最

化 学 反 应 工 程-第四章 停留时间分布与流动模型

区别:寿命分布是指系统出口处的流体微元的停留时间;而年龄分
布则是对系统内的流体微元而言的停留时间
4.1.1 停留时间分布的定量描述
在反应工程中假设:
Feed
Effluent
a)
Injection
Reactor
Detection
b) 各微元保持 独立身份(identification), 即微元间不能混合 c) 不研究微元在反应器内的历程, 只研究它在反应器内的停 留时间。 则定义: a) 在反应器内流体微元:年龄分布 b) 在反应器出口流体微元:寿命分布
实际停留时间ti不尽相同,转化率x1, x2, …, x5亦不相同。出口转化率应 为各个质点转化率的平均值,即
x A xi N
i 1
N
聚集态的影响
理想反应器假定混合为分子尺度,实际工程难以达到,如
结团
弥散
喷 雾
两种体系的反应程度显然应该是不 同的。
鼓泡
气体 液体
工程中,尽量改善体系的分散尺度,以达到最有效的混合, 从而改善反应效果。
E(t)dt
(t t ) E(t)dt t 2 E(t)dt (t ) 2
2 0
0


因次:[时间]2
方差 t2反映停留时间分布的离散程度: 物理意义:
2 t t2
,停留时间分布就越宽;
,停留时间分布越集中
4.1.4 停留时间分布函数的数字特征

2 t

0
(t t ) E(t)dt
第四章 停留时间分布与流动模型
4. 1. 2 停留时间分布的函数表达式
物料在反应器内的停留时间是一个随机过程,对随 机过程通常用概率进行描述,有两种表示形式: 对出口流体而言: F(t)——停留时间分布函数,也称概率函数 E(t)——停留时间分布密度函数,也称概率密度函数 对反应器内的流体而言: y(t) ——年龄分布函数 I(t)——年龄分布密度函数

化学反应工程-16-第四章-气固相催化反应本征动力学


积分反应器定义:组分单程转化率较大(xA>25%)时的情况。 问题:由于转化率高,对于热效应大的反应,如何保持反应器恒温? 问题:由于转化率高,对于热效应大的反应,如何保持反应器恒温? ①气体进入催化剂床层之前,常有一段预热区;且要求反应管要 足够细,管外的传热要足够好。 ②用等粒度的惰性物质稀释催化剂,以减轻管壁传热的负荷。为 了强化管外传热,可选用恒温浴、流化床、铜块等方式,力求催 化剂床层等温。
2、内扩散影响的检验: 、内扩散影响的检验: 方法:改变催化剂的粒度(直径 d P),在恒定的 w / FA0下测量转化率 xA 以x A ~ d P 作图:
若 d P 在b点左边,x A 不变。表明内扩散无影响。
x 若d P 在b点右边, A 变化。表明内扩散有阻力存在。
二、实验反应器
1、固定床积分反应器 、
(1) (2)
试推导由式(1)(2)分别控制时的均匀表面吸附动力学方程。
解:(1)式控制时,由控制步骤得:
r = k1 PH 2 Oθ V − k1' PH 2θ O
因(2)式达到平衡:
' k 2 PCOθ O = k 2 PCO 2θ V
θ O + θV = 1
1 PCO 2 +1 k 2 PCO
θ B = K B PBθV
(2′)
对(4)
′ ′ k 4θ R = k 4 PRθV
θ R = K R PRθV
同理对(5)
′ k4 KR = k4 (4′)
θ S = K S PSθV
(5′)
θ A + θ B + θ R + θ S + θV = 1
1 1 + ∑ K i Pi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tc
t
0
c


t2c
t2
t2c t 2
0
t 2
0
c
0
0
37
• 计算值如表所示。
t/s c/(g·m-3) ∑c F(t)
0
0.0
0
0
120
6.5
6.5 0.13
240
12.5
19.0 0.38
360
12.5
31.5 0.63
480
10.0
41.5 0.83
600

请确定系统的F(t),E(t)曲线及 t

2 t
值。
36
• 解:本实验采用脉冲示踪法,测定的时 间间隔相同(Δt=120s),计算式为:



m 0Vdct V ctVcc
0
0
Et
Vc m

c

tc
t
F t

Vt m
t

0
c


0


c c
0
0

2 t

t2c t 2
0
t 2
0
c
0
8539200 374.42 30608
s2
50
39
40
三、用对比时间表示停留时间分布
• 目的:将停留时间分布无因次化。
• 对比时间:
t
:反应器空间V时 R 间
V0
• 换算:将所有关系式中t用τθ替换。
5.0
46.5 0.93
720
2.5
49.0 0.98
840
1.0
50.0 1.00
960
0.0
50.0 1.00
1080
0.0
50.0 1.0
Σ
50.0
E(t)
0 0.001083 0.002083 0.002083 0.00167 0.000823 0.0004167 0.000167
0 0
tc
23
24
• 因为在切换成另一种含有示踪物料的 流体后t时刻,其出口物料在系统中的停 留时间均小于t,而所占的分率为F(t)。
• 假设进口物料以体积流量V送入反应器, 在停留时间为t时,出料的示踪剂总量应该 是Vc,它将由两部分示踪剂组成的,一部 分是阶跃输入后的物料(量为Vc+)中停 留时间小于t的示踪剂,其量应是Vc+F(t); 另一部分是阶跃输入前的物料(量为Vc0-) 中时间大于t的示踪剂,其量为Vc0-(1-F(t)) 即:
tE(t)t
E(t)t 0
0
散度
2 t

(t t)2 E (t) t

2 t

0

E (t) t
0

(t t)2 E (t) t数学期望:代表均值(统计量的平均值),
这里是平均停留时间。 方 差:代表统计量的分散程度,这里
是停留时间对均值的偏离程度。
(6)反应器的结构
2
3
二、返混对化学反应的影响
• 返混是不同停留时间物料间的混合。即不同转化率, 不同温度的物料粒子间的相互混合。返混会改变反应
器内物料浓度的分布,因此是影响反应器性能的一个 重要参数。
• 1.单一反应
• (1)n>0 返混降低了反应的推动力,-rA ,XA
• (2)n<0 返混降低了反应的推动力,-rA ,XA
第四章 非理想流动反应器
1
第一节 概述 一、返混
物料在反应器内不仅有空间上的混合而且有时间 上的混合。
1.简单混合:相同停留时间物料间的混合。
• 2.返混:不同停留时间物料间的混合。
• 3.返混产生的原因:
(1)反应器中物料的循环流动
(2)湍流
(3)分子扩散
(4)催化剂或填料的碰撞
(5)不均匀的流速分布(如层流)
• 由此可知,返混与停留时间分布并无确定的 一一对应关系,一定的返混必然形成确定的 停留时间分布,但是一定的停留时间分布并 不一定由确定的返混引起的。
8
返混程度的大小很难通过实验直接测定,而 停留时间分布可以实验直接测定,故总是设法用 停留时间分布来描述返混程度的大小。可是由于 停留时间分布与返混不是一一对应关系,不能直 接把实验测定的停留时间分布用于描述返混程度 的大小,而要借助于流体的流动模型来表示。
0 780 3000 4500 4800 3000 1800 840
0 0 18720
t2c
0 93600 720000 1620000 2304000 180000 1296000 705600
0 0 8539200
38

t 0 tcc1857020374.4
s
0


t 2c


求在此条件下F(t),E(t)及 t 与
2 t
值。
29
• 解:本实验测定的数据并非连续曲线而
是离散型的。则F(t),E(t),t , t2 的计算
式如下:
F t c
c0
EtdFtFtc
dt t c0t

t0t
E tdt tE tt 0 tc 0c
t

2 t

26
27
c/c0 1
阶跃输入前进入的物料
t=0 响应曲线
阶跃输入后进入的物料 t
28
• 例3-1 测定某一反应器停留时间分布规 律,采用阶跃示踪法,输入的示踪剂浓 度c0=7.7kg·m-3,在出口处测定响应曲线 如表所示。
时 间 / s 0 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 出 口 示 踪 剂 浓0 0 .5 1 .0 2 .0 4 .0 5 .5 6 .5 7 .0 7 .7 7 .7 度 / (k g .m -3 )
0
t2c
c0
0 14.6l 40.58 159.09 525.97 589.29 548.70 365.26 820.45
0
t


tc51.49
0 c0
s
t2
t2ct241.72 c0
s2
31
32
2.脉冲输入法
• 本法是在被测定的系统达到定常态后, 在系统的入口处,瞬间加入一定量m的 示踪物料(加入时间远小于停留时间), 同时开始计时,检测不同停留时间出口 处示踪物料的浓度。因为示踪物料量较 少,且加入时间可忽略,不会影响原来 的流动状况,所以,示踪物在系统内的 流况代表系统内主流体的流况,换言之, 示踪物料的停留时间分布,也就是主流 体的停留时间分布。
t20 t t2 E td t0 t2 E td t t2
t2 c t2 c 0
30
• 具体计算结果如表
时间t/s
0 15 25 35 45 55 65 75 85 95
出口浓度c/kg·m-3
0 0.5 1.0 2.0 4.0 5.5 6.5 7.0 7.7 7.7
注意: E(t)的大小并不是分率的大小,只 有在E(t)曲线下方,在t-t+dt间的面积才 是分率的大小,所以,把E(t)叫做RTD密 度函数。
11
12
2.RTD函数F(t)
• 当物料以定常态的流量流入反应器而不发生化 学变化时,在流出物料中停留时jian小于t物料 占总流出物的分率:
F t N t
N
• F(t)为时间t的停留时间分布概率;Nt为停留时 间小于t的物料量;N∞为流出物料的总量,也 是流出的停留时间在0与无限大之间的物料量。
13
3.E(t)和F(t)的关系
Et dFt
dt
• 则存在
Ft0t Etdt
E(t)具有归一化性质

0
Et
dt

1
• 及 F0Etdt1
25
V c V c 0 F t V c 0 1 F t
• 可得
Ft


c c0 c0 c0
• 如果阶跃输人前进口物流中不含示踪剂,
即 c0 0 ,上式可以写成:
F t
c (t ) c0
• 有了实测的不同时间t下的C(t)值,即可绘出
F(t)-t曲线和E(t)-t曲线,并求出特征值
• 对于“出口流体”:E(t)-RTD密度函数

F(t)- RTD函数
• 对于“器内流体”:I(t)-年龄分布密度函数

Y(t)-年龄分布函数
10
1.RTD密度函数E(t)
• 定义:在定常态下的连续流动的系统中, 停留时间在t-t+dt范围内的瞬时物料占 总进料的分率为E(t) dt。
dmm停留 进时 入 t间 反 t+ 为 应 d流 t器出 的的 物物 料 =E 料 (总 t)d量 量 t
由于停留时间分布常用概率予以描述,即用 二个函数及二个特征值予以描述。二个函数分别 是停留时间分布函数和停留时间分布密度函数, 二个特征值则是数学期望和方差。
9
第二节:流体在反应器内的 停留时间分布
• 一、停留时间分布(简称RTD)的表示方法
• 通常,停留时间分布依据其测定方法,有着不 同的表示方法。
14
15
4.停留时间分布的数字特征
流动情 况简 化E(t)曲线
简 化特征数t( 、t2)
• (1)数学期望 t (平均停留时间):
• 变量(时间t)对坐标原点的一次矩。

t0t
E tdt01tdFt
16
(2)散度
相关文档
最新文档