第二章 耐磨耐高温材料

合集下载

北师大版八年级物理上册 第二章 第4节 新材料及其应用 (解析版)

北师大版八年级物理上册 第二章 第4节 新材料及其应用 (解析版)

第二章第4节新材料及其应用一、单选题1.碳化硅纤维是一种陶瓷纤维类材料,具有高强度、耐高温、抗腐蚀、易加工编织等特性,用做增强材料时,常与碳纤维、玻璃纤维、金属铝复合,具有耐磨损、质轻、耐疲劳等特性。

下列可以直接用碳化硅纤维来制作的是()A. 喷气式飞机的刹车片B. 体育用品C. 过滤高温气体的滤布D. 汽车部件2.各种新材料正在提高我们的生活品质,坚硬的纳米材料一石墨烯,就是其中的一种,它几乎是完全透明的,并有着出色的导电性和导热性。

下列物体中不适合使用石墨烯制作的是()A. 防弹衣B. 电脑元件C. 隔热手套D. 太阳能电池3.清华大学的研究人员发明一种新型陶瓷,既可以像海绵一样变形,也能像陶瓷一样隔热、绝缘,同时具有超轻、高韧性等特点这种材料适合用来制造下列哪种物品()A. 自行车的车架B. 新型消防服C. 输电导线D. 便携式水果刀4.近年来,我国在科研领城不断取得新的突破,一些研究和应用已经步入世界先进行列。

下列研究中我国与世界先进国家还存在较大差距,需要努力追赶的是()A. 量子科技B. 5G通信C. 北斗导航系统D. 芯片设计制造5.“智能纤维”是一种新型材料,能对外界环境和内部状态的变化做出响应.其中,相变纤维能够通过吸热、放热来实现对温度的调节;凝胶纤维能够对温度做出反应;电子纤维能够导电以及消除静电;记忆纤维能够在特定环境下恢复原状.下列说法正确的是()A. 相变纤维制成的衣服可以调节体温是通过做功来实现的B. 用凝胶纤维有可能制成显示体温的衣服C. 电子纤维是一种绝缘体D. 记忆纤维发生形变后无法恢复原状6.纳米陶瓷作为高科技材料应用广泛,它具有耐磨、耐腐蚀、耐高温、防浸透、完全无磁性等特点,但它不可用于下列哪项技术中()A. 纳米陶瓷刀B. 公交IC卡C. “嫦娥二号”外表涂层D. 装浓硫酸的容器7.纳米磁性材料采用磁性颗粒作为记录介质,具有记录密度大、矫顽力高、记录质量好等特点,下列器件可用纳米磁性材料制成的是()A. 洗衣机内壁B. 耐腐蚀容器C. 计算机存储器D. 高性能防弹背心8.“纳米材料”的出现成了人们谈论的热门话题,下列关于“纳米材料”的说法正确的是()A. 人们找到了一种特殊的“纳米材料”,制成了“纳米抗菌奶瓶”B. “纳米防水布”是利用纳米能防水的特性制成的C. 只要认真的去探究寻找还可以找到许许多多的纳米材料D. 某些物质的尺度加工到1﹣100nm,它们的物理性质或化学性能发生了异常变化,这就是我们说的纳米材料9.下列现象中有悖文明的做法是()A. 将秤砣内部用密度小的材料填充B. 用黄金制作首饰C. 将纳米技术应用于生活之中D. 用铝这种轻质材料制造飞机10.纳米陶瓷作为高新科技材料应用广泛,它具有坚硬、耐磨、耐腐蚀、耐高温、完全无磁性等特点,它不能应用于()A. 公交IC卡B. 切割硬物的刀具C. “嫦娥二号”外表涂层D. 装浓硫酸的容器11.2010年诺贝尔物理学奖授予英国两位科学家,他们研究的石墨烯是只有一个原子厚度的碳纳米新型材料,该材料属性奇特,其中还具有良好的导电性.则下列说法错误的是()A. 研究和生产石墨烯需要纳米技术B. 纳米技术是微观范围内的科学技术C. 石墨烯虽然是非金属但可以作为导体使用D. 石墨烯是超导体材料12.下列关于纳米的叙述错误的是()A. 纳米是一个长度单位,符号是nmB. 人们在纳米尺度内发现很多新的现象,给技术上带来很多新进展C. 纳米技术是现代科学技术的前沿,我国在这方面的研究具有世界先进水平D. 所有的高科技产品都与纳米技术有关13.纳米技术在研究电学材料、光学材料、高密度材料方面有广泛的应用前景,纳米是下列哪种物理量的计算单位()A. 长度B. 体积C. 质量D. 时间14.纳米陶瓷是一种高新科技材料,具有耐磨、耐腐蚀、耐高温、防渗透、完全无磁性等特点,以下选项中哪项可以利用纳米陶瓷材料制造()A. 高压输电线B. 装浓硫酸的容器C. 银行储蓄卡D. LED发光二极管15.在下列有关现象的解释中,正确的是()A. 纳米材料颗粒能制造出很多特殊功能的物体,但它并不是分子B. 封闭在容器内的液体很难被压缩,说明分子间仅有排斥力C. 用手捏海绵,海绵的体积变小了,说明分子间有吸引力D. 铅笔笔芯在白纸上划出一条断断续续的细线,说明分子间有空隙二、填空题16.纳米技术是以0.1~100nm这样的尺度为研究对象的前沿科学,目前我国在纳米技术的研究方面已经跻身世界前列,我国制造出来的最薄的金箔的厚度为91nm=________dm.17.纳米是________的单位.1nm=________m,纳米技术是________尺度内的极微科学技术.18.石墨烯被证实是世界上已经发现的最薄、最坚硬的物质,它的导电性能好、导热性能强,熔点超过3000℃.你认为用石墨烯做成的导线________用来做保险丝(即熔丝);________用来做高压输电线(选填“能”或“不能”).科学试验表明:向空烧杯内倒入酒精与水的混合物(如图所示),盖紧石墨烯薄膜,一个月后,检查发现薄膜覆盖紧密完好,烧杯内只剩余酒精,再以后,烧杯内液体体积保持不变.在一个月时间内,烧杯内剩余液体的密度________(选填“变大”“变小”或“不变”).此实验说明石墨烯薄膜能使________的分子通过(选填“酒精”或“水”).19.纳米技术是在0.10纳米至100纳米的空间内,研究电子、原子和分子运动规律和特性的崭新技术.纳米技术研究领域被公认为是21世纪最具有前途的科研领域之一.纳米是________的单位.(填写物理量的名称)20.我国对纳米技术的研究具有世界先进水平,纳米实际上是________单位,1nm=________m.21.经过纳米方法处理的领带具有很强的________性能,不沾水也不沾油.用纳米陶瓷粉制成的陶瓷具有一定的________性,不易碎.22.纳米技术是高新科学技术和工作技术.纳米(nm)是________单位,若一个原子的直径为10nm,合________m.把________个原子一个挨一个地排列起来长度是1mm.三、解答题23.我们学习了新材料及其作用,除了纳米材料、“绿色”能源、记忆合金外,写出你还知道的一种新材料的名称.答案解析部分一、单选题1.【答案】C【考点】纳米材料及其应用【解析】【解答】碳化硅纤维主要用做耐高温材料和增强材料,耐高温材料包括热屏蔽材料、耐高温输送带、过滤高温气体的滤布等。

什么材料耐高温

什么材料耐高温

什么材料耐高温
高温环境下,材料的性能往往会受到很大的影响。

耐高温材料是指可以在高温环境下保持稳定性能和结构完整的材料。

下面将介绍几种常见的耐高温材料。

1. 陶瓷材料:陶瓷材料具有优异的耐高温性能,不易熔化或软化,特别适用于高温环境下的应用。

常见的耐高温陶瓷材料有氧化铝陶瓷、氮化硅陶瓷和碳化硅陶瓷等。

2. 高温合金:高温合金是一种特殊的金属合金,具有良好的耐高温性能。

由于其成分中添加了大量的稀土金属和其他合金元素,使得合金的晶粒尺寸细小,并形成了稳定的强化相,从而提高了合金的高温强度和耐腐蚀性能。

3. 耐热塑性材料:耐热塑性材料具有较高的熔点和较好的耐高温性能,适用于高温环境下的注塑、压铸、挤出等加工工艺。

常见的耐热塑性材料有聚酰亚胺、聚醚醚酮和聚苯硫醚等。

4. 碳素材料:碳素材料具有优异的导电性、耐腐蚀性和热传导性,适用于高温环境下的导热和导电应用。

常见的碳素材料有石墨、碳纤维和碳化硅等。

5. 耐火材料:耐火材料是一种纯无机非金属材料,具有较高的抗高温性能和耐磨耐腐蚀性能,适用于高温炉窑和火焰喷射等工况。

常见的耐火材料有高铝砖、硅砖和镁砖等。

总的来说,耐高温材料是指在高温环境下能够保持较好性能和
结构完整的材料。

以上介绍的几种材料都具有优异的耐高温性能,适用于不同的高温应用领域。

北师大版八年级物理上册练习:第二章四、新材料及其应用含答案

北师大版八年级物理上册练习:第二章四、新材料及其应用含答案

第二章物质世界的尺度、质量和密度四、新材料及其应用基础巩固1.(题型一)[江苏无锡中考]纳米陶瓷作为高新科技材料应用广泛,它具有坚硬、耐磨、耐腐蚀、耐高温、完全无磁性等特点,它不能应用于( )A.公交IC卡B.切割硬物的刀具C.“嫦娥二号”外表涂层D.装浓硫酸的容器2.(题型二)我们在节约能源的同时,还应开发和利用新的能源.作为未来的理想能源应满足一定的条件.下列不符合理想能源必要条件的是( )A.必须足够丰富,可以保证长期使用B.必须足够便宜,可以保证多数人用得起D.必须足够昂贵,可以保证节约使用3.(题型一)下列关于新材料及其应用的说法中错误的是( )A.纳米材料被誉为21世纪最具有前途的新型材料之一B.记忆合金的主要成分是镍和钛C.利用多晶硅和非晶硅材料制造的太阳能电池光电转化效率较高D.利用新材料锂制造的锂离子电池对环境没有污染A.具有良好的延展性B.具有良好的导电性C.具有形状记忆功能5.(题型一)[甘肃永登期末]小杰的哥哥买了一条领带,此领带有很强的自洁性能,不沾水也不沾油.由此可见,领带是利用_______材料制成的.6.(题型三)用_______制作的眼镜架,当这种眼镜架弯曲时,只要将它放入55 ℃的温水中,即可恢复到原来的形状.能力提升7.(题型三)在科技展览会上,有一家公司用一种材料制成了一种特殊的“热板凳”,你不往上坐时,它就是一块平整的金属板;当你坐上去时,它很快就支起四条腿,成为一个小板凳了.你知道它的工作原理吗?基础巩固1. A 解析:公交IC卡是通过磁性来工作的,而纳米陶瓷无磁性,故不能制作公交IC卡;纳米陶瓷坚硬、耐磨,可以制作切割硬物的刀具;纳米陶瓷耐高温,可以制作“嫦娥二号”外表涂层;纳米陶瓷耐腐蚀,可以制作装浓硫酸的容器.故选A.3. D 解析:锂离子电池不是没有污染,而是相对其他电池来讲污染较小.4. D 解析:用镍钛合金制成的宇宙飞船自展天线,在低温下被折叠,进入太空后,在阳光照射下可重新展开,恢复成原状,说明它具有形状记忆功能、良好的延展性,此外它还有良好的导电性,熔点也很高.5. 纳米解析:纳米材料制作的物品可以不沾水也不沾油,有较强的自洁性能.6.记忆合金解析:记忆合金是一种对形状有“记忆”功能的材料,在低温下变形后,如遇到高温,就能自动恢复到高温时“记忆”的形状.7.这种热板凳是用记忆合金制作的,人不往上坐时,由于它的温度较低,所以它的形状就是一个平整的金属板;当人坐上去后,人的身体会使它的温度升高,它就变成了小板凳的样子了解析:由题意知,它是受温度控制形状的材料,这是记忆合金的特点.。

耐高温金属材料有哪些

耐高温金属材料有哪些

耐高温金属材料有哪些耐高温金属材料是指在高温环境下能够保持良好性能的金属材料,通常用于航空航天、能源、化工等领域。

这些材料能够在高温下保持其强度、硬度和耐腐蚀性能,具有重要的应用价值。

下面将介绍一些常见的耐高温金属材料。

第一种耐高温金属材料是镍基合金。

镍基合金是一种重要的高温结构材料,具有良好的耐腐蚀性能和高温强度,常用于航空发动机、化工设备等领域。

镍基合金具有优异的高温强度和抗氧化性能,能够在高温下保持稳定的性能。

第二种耐高温金属材料是钼合金。

钼合金具有优异的高温强度和热膨胀性能,常用于制造高温零部件和高温工具。

钼合金在高温下能够保持其强度和硬度,具有良好的耐热性能。

第三种耐高温金属材料是钛合金。

钛合金具有良好的耐腐蚀性能和高温强度,常用于航空航天领域。

钛合金具有较低的密度和良好的耐热性能,能够在高温下保持其强度和刚性。

第四种耐高温金属材料是铬合金。

铬合金具有良好的耐高温性能和抗氧化性能,常用于制造高温零部件和高温工具。

铬合金在高温下能够保持其强度和硬度,具有优异的高温稳定性。

第五种耐高温金属材料是钨合金。

钨合金具有极高的熔点和优异的高温强度,常用于制造高温工具和高温零部件。

钨合金在高温下能够保持其硬度和耐热性能,具有良好的高温稳定性。

总的来说,耐高温金属材料包括镍基合金、钼合金、钛合金、铬合金和钨合金等多种材料,它们在高温环境下能够保持良好的性能,具有重要的应用价值。

随着科学技术的不断发展,对耐高温金属材料的需求也在不断增加,相信在未来会有更多新型耐高温金属材料的出现,为各个领域的高温应用提供更好的解决方案。

高温耐热材料

高温耐热材料

高温耐热材料高温耐热材料是指在高温环境下能够保持稳定性能和良好机械性能的材料。

由于高温会引发材料的热膨胀、蠕变、氧化等问题,因此需要选用能够承受高温的特殊材料来满足工业领域对高温工况的需求。

高温耐热材料广泛应用于航空航天、汽车、电力、石化等领域,具有重要的经济和社会意义。

下面介绍一些常见的高温耐热材料。

一、金属材料1.钼:钼具有高熔点、低蒸气压、良好的导热和导电性能,在高温下具有优秀的抗氧化、耐腐蚀和耐热疲劳性能,被广泛应用于航空航天、航空发动机和等离子体技术等领域。

2.钨:钨是目前人类所知熔点最高的金属,具有极高的熔点、硬度和热稳定性,被广泛应用于高温工作环境。

3.铂:铂具有极高的熔点、优良的耐腐蚀性和电学特性,在高温环境下能够保持稳定性能,广泛应用于化工、医药等领域。

二、陶瓷材料1.氧化铝陶瓷:氧化铝陶瓷是一种高温常用耐热陶瓷材料,具有优良的机械性能、耐热性能和抗腐蚀性能,广泛应用于电力、冶金、化工等领域。

2.碳化硅陶瓷:碳化硅陶瓷具有高熔点、高硬度和良好的抗氧化性能,在高温环境下具有优异的耐磨性和耐腐蚀性,被广泛应用于汽车、电力等行业。

3.氮化硅陶瓷:氮化硅陶瓷具有高温强度、高热导率和高抗冲击性,被广泛应用于航空航天、燃气轮机等领域。

三、复合材料1.碳纤维复合材料:碳纤维复合材料具有低密度、高强度和良好的热稳定性能,被广泛应用于航空航天、运动器材等领域。

2.陶瓷基复合材料:陶瓷基复合材料由陶瓷基质和增强相组成,具有高温强度、低热膨胀系数和良好的耐腐蚀性能,被广泛应用于航空航天、汽车等领域。

综上所述,高温耐热材料在高温工况下能够保持稳定性能和良好机械性能,其在航空航天、电力、化工等领域具有广泛应用前景。

未来,随着科技的不断进步和工业需求的不断增长,高温耐热材料将会得到进一步的研究和开发,以满足对于高温工况的更高要求。

耐高温5000度材料

耐高温5000度材料

耐高温5000度材料在工业生产和科学研究领域,耐高温材料是一种非常重要的材料类型。

随着技术的不断发展,对耐高温材料的需求也越来越大。

在高温环境下,普通材料容易发生熔化、变形甚至燃烧,因此需要有一种材料能够在极端高温下保持稳定的性能。

本文将介绍一些目前市场上常见的耐高温5000度材料。

首先,碳化硅是一种常见的耐高温材料,它具有极高的熔点和热稳定性,能够在5000度的高温下保持稳定的性能。

碳化硅材料具有优异的耐磨性和耐腐蚀性,因此在一些特殊工业领域得到了广泛的应用。

此外,碳化硅材料还具有良好的导热性能,能够在高温下有效地传导热量,因此在高温炉等设备中也得到了广泛的应用。

其次,钼是另一种常见的耐高温材料,它具有极高的熔点和抗氧化性能,能够在5000度的高温下保持稳定的性能。

钼材料具有良好的机械性能和导热性能,因此在航空航天、电子工业等领域得到了广泛的应用。

此外,钼材料还具有优异的耐腐蚀性能,能够在恶劣环境下保持稳定的性能。

另外,氧化锆是一种新型的耐高温材料,它具有极高的熔点和热稳定性,能够在5000度的高温下保持稳定的性能。

氧化锆材料具有优异的绝缘性能和化学稳定性,因此在核工业、航天航空等领域得到了广泛的应用。

此外,氧化锆材料还具有良好的机械性能和耐磨性能,能够在恶劣环境下保持稳定的性能。

综上所述,碳化硅、钼和氧化锆都是目前市场上常见的耐高温5000度材料,它们都具有极高的熔点和热稳定性,能够在极端高温下保持稳定的性能。

这些材料在工业生产和科学研究领域发挥着重要的作用,为人类的生产生活提供了有力的支持。

随着技术的不断发展,相信会有更多新型的耐高温材料出现,为各行各业带来更多的惊喜和便利。

五年级科学上册第二章第4课什么材料保温好课件1新人教版1021121

五年级科学上册第二章第4课什么材料保温好课件1新人教版1021121

精品建⑴课筑保件保温P温材P材料T 料在的墙主体要及应围用护:结构中的应用⑵保温材料在屋顶上的应用⑷保温材料在 地面中的应用
精品课件PPT
发展趋势
3
知之者不如好之者,好之者不如乐之者。——《论语·雍也》
18
我国保温材料经过了20多年的发展,在研制、生产方面都取得了长足的进步,但
精品是课在件建P筑P保T 温(包括围护墙体保温和屋面保温)的应用还不多。随着建筑节能政 策的实施,建筑使用者对室内热环境要求的日益提高,建筑保温材料将得到快速
发展,建筑保温材料也必然向着轻质化方向发展。
精品向的课绿使件色用P化功P发能T 展失:效建、筑废保弃温后材,料对从环原境料的来影源响、及生一产再加生工循制环造利过用程等、四使个用方过面程满和足产绿品色 建材的要求是必然趋势。
合理利用固体废弃物包括粉煤灰、矿渣和废旧泡沫塑料等。我国火电站每年排放 精品的课粉件煤P灰P渣T 有近4000万吨, 是一个重要的污染源。如果我们能充分的利用这些
率可低至0.013W/m·K, 孔隙率可高达99%, 同时还具有良好的吸声和减震等性 能, 具有其他隔热材料不可比拟的优越性
真空绝热材料:真空多孔绝热材料, 即在真空空间内填充多孔绝热材料, 缩短 精品空体课间被件间分P壁隔P的或T 距封离闭,在无无数需微很小高空的间真内空,度就因可此以对使流空传气热的量热比传例导也几很乎小为。零另,外,又因真气空
精品2文0课中11件指年P出1P1:T月“,从北2京01市2公年布起了,《北北京京市市新居建住居建住筑建节筑能要设执计行标修准订(后征的求北意京见市稿居)住》建, 筑节能设计标准,节能幅度将达到75%以上。”
①保温隔热材料在国外的最大用户是建筑业, 约占产量的80% , 在我国占20% 精品; ②课生件产PP工T艺整体水平和管理水平需进一步提高, 产品质量不够稳定; ③科研投

耐高温材料有哪些

耐高温材料有哪些

耐高温材料有哪些
耐高温材料是指在高温环境下能够保持其性能和稳定性的材料。

这些材料通常具有高熔点、高抗氧化性、低膨胀系数和良好的热传导性能。

以下是一些常见的耐高温材料:
1. 陶瓷材料:陶瓷材料是一种非金属材料,具有高熔点和良好的耐高温性能。

其中,氧化铝(Al2O3)和氮化硅(Si3N4)
是常见的耐高温陶瓷材料。

它们能够在高温下保持强度和硬度,并且具有较低的热膨胀系数,受热时不易变形。

2. 金属合金:一些金属合金具有优异的耐高温性能,例如镍基合金、钛基合金和铬钼合金等。

这些合金能够在高温下保持强度和韧性,并具有良好的耐氧化性能。

镍基合金在高温高速气体流动中常用于制造燃气涡轮发动机的涡轮叶片。

3. 碳材料:碳材料具有良好的高温耐性和耐化学腐蚀性能。

石墨是一种具有高熔点和良好的导热性能的碳材料,常被用于高温炉、真空炉和半导体生产中。

炭化硅也是一种耐高温材料,可用于制造高温氧化铝和电子器件。

4. 聚合物材料:耐高温聚合物是一类具有优异高温稳定性的高分子材料。

类芳族聚酰亚胺(PAI)和聚醚醚酮(PEEK)是
两种常见的耐高温聚合物。

它们具有较高的熔点,能够在高温下保持稳定性,并且具有优异的机械性能和耐化学腐蚀性能。

这些材料在航空航天、能源、化工和电子等领域中广泛应用。

耐高温材料的选用要根据具体应用环境、工艺要求和性能需求来确定,以确保在高温条件下材料的可靠性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章耐磨耐高温材料第一节耐磨材料在此主要介绍制造刀具的耐磨材料,常用的耐磨材料有碳化硅、氮化硼、氧化铝和硬质合金。

它们都是硬度大,熔点高的物质,而且在较高的温度下仍能保持足够的硬度和耐磨性。

一、碳化硅(SiC)碳化硅的晶体结构和金刚石相似,属于原子晶体。

它可以看作是金刚石晶体中有半数的碳原子被硅原子所取代。

mp=2827℃,硬度近似于金刚石,故又称为金刚砂。

制备,将砂子(二氧化硅)和过量焦炭的混合物放在电炉中加热:加热SiO2 + 3C ——→ SiC + 2CO电炉制得的碳化硅是蓝黑色发珠光的晶体,化学性质很稳定,即使在高温下也不受氯、氧或硫的侵蚀,不和强酸作用,甚至发烟硝酸和氢氟酸的混合酸(HNO3 + HF )也不能侵蚀它。

但是SiC在空气中能被熔融的强碱或碳酸钠分解:加热① SiC+ 4KOH + 2O2 ----- K2SiO3 + K2CO3 + 2H2O加热② SiC + 2Na2CO3----- Na2SiO3 + Na2O + 2CO + C应用:工业上SiC常用做磨料和制造砂轮或磨石的磨檫表面。

SiC磨料的硬度高,棱角锋利,但性脆,抗张强度小,宜用来磨脆性材料。

常用的SiC磨料有两种不同的晶体,一种是绿SiC,含SiC97%以上,主要用于磨硬质合金的工具;另一种是黑SiC,有金属光泽,含SiC95%以上,强度比绿SiC 大,但硬度较低,主要用于磨铸铁和非金属材料。

二、氮化硼(BN)BN是白色耐高温的物质,不溶于水,可以由熔融B2O3 + NH4Cl -------- BN + HCl + H2O也可B在NH3 中燃烧而制得,BN有两种晶体结构,一种与金刚石相似,另一种与石墨相似,这是由于(BN)n 与单质碳(C2)n是等电子体,因此人们根据许多感性知识总结出一条经验规律:具有相同电子数(全部电子数或价电子数)和相同原子数(H,He,Li除外)的分子或离子,它们的电子式和原子的排列方式相似,性质也相似。

这条规律叫做等电子原理。

由于B比C少一个电子,而N比C多一个电子,BN与单质碳电子数和原子数都相等,应该有相似的晶体结构。

通常制得的BN是石墨型的,俗称白色石墨,它是比石墨更耐高温的固体润滑剂。

和石墨转变为金刚石的原理相似,石墨型BN在高温(1800℃)、高压(800 Mpa)下可转变为金刚石型BN。

这种BN中B-N键长(0.156 nm)与金刚石中C-C 键长(0.154 nm)相似,密度也和金刚石相近,它的硬度和金刚石不相上下,而耐热性比金刚石好,所以是新型耐高温的超硬材料,用来制作钻头,磨具和切割工具。

三、刚玉刚玉是自然界中以结晶状态存在的氧化铝,它的硬度很高,仅次于金刚石和金刚砂。

人工高温烧结的氧化铝称为人造刚玉。

刚玉也是常用的磨料,其抗弯强度较大,韧性较好,但硬度较低,适用于磨削抗张强度大和有韧性的材料如碳钢、合金刚等。

刚玉中含有少量其他氧化物质,能呈现不同的颜色。

例如,含有少量的Cr2O3时,形成红宝石,含有少量铁和钛的氧化物时,得到蓝宝石。

现在可以用人工方法合成各种宝石,人造宝石常用作机器、仪表中轴承和手表中的钻石。

四、硬质合金第Ⅳ、Ⅴ、Ⅵ副族金属和C、N、B等形成的化合物,硬度和熔点等特别高,统称为硬质合金。

下面以碳化物为重点来说明硬质合金的结构、特性和应用。

碳与电负性比碳小的元素形成的二元化合物,除碳氢化合物外,都叫做碳化物。

碳化物有三种类型:一类是碳和活泼金属形成的碳化物,例如CaC2是离子型碳化物,能和水或稀酸作用,生成碳氢化合物。

CaC2 + 2H2O = C2H2 + Ca(OH)2CaC2 + 2HCl = C2H2 + CaCl2第二类是碳和非金属元素硅或硼形成的碳化物,它们是共价型碳化物,在固态时属于原子晶体。

第三类是碳和第Ⅳ、Ⅴ、Ⅵ副族金属形成的金属型碳化物。

这些过渡金属电负性不太小,不能与碳以离子键或共价键形成结合,但碳原子半径小,可溶于这些过渡金属形成间充固溶体。

在适宜条件下,当碳含量超过溶解度极限时,可出现一种突变,形成间充化合物,使原金属晶格转变为另一种形式的金属晶格,如Fe3C、WC等。

这类金属型碳化物的共同特点是具有金属光泽,能导电传热,硬度大,熔点高,但脆性也大。

从几何学方面考虑,要形成简单结构的间充化合物,间充原子和金属原子的半径比必须小于0.59。

C的原子半径为0.077 nm。

金属原子的半径应大于0.130 nm。

Ti、Zr、Hf、V、Nb、Ta、Mo、W等都大于0.130 nm,其碳化物的晶体结构与原金属相似。

Cr、Mn、Fe、Co、Ni等原子半径小于0.130 nm,晶格中空隙较小,形成碳化物时,使金属晶格发生较显著的变化,形成复杂结构的间充化合物。

这些碳化物的化学键在不同程度上表现出向离子键过渡,因而具有一些接近离子型碳化物的性质。

例如,Fe3C的硬度和熔点要低于TiC、WC等,化学稳定性也较差,和稀酸作用生成CH4和H2。

Fe3C + 6HCl= 3FeCl2 + CH4 + H2与离子型化合物或共价形化合物不同,间充化合物的化学式是不符合正常化合价规则的,间充化合物本身还能溶解其它的组成元素而形成以间充化合物为溶剂的固溶体,其成分可以在一定范围内变化。

同一周期的过渡元素,由第Ⅳ副族开始,从左至右形成的碳化物稳定性依次降低。

例如,第4周期元素中,Ti、V能形成很稳定的碳化物,Cr、Mn、Fe的碳化物稳定性较差,Co、Ni 的碳化物就不大稳定,Cu则不能形成碳化物。

这是因为形成金属碳化物的实质是碳原子的价电子进入过渡元素次外层d亚层的空轨道上,金属原子次外层d亚层上电子数越少(d亚层的空轨道越多)该金属和碳结合力就越强,这种碳化物的稳定性也就越高。

从原子结构来看,同周期中由第Ⅳ副族开始,从左至右,次外层d亚层的电子数逐渐增加,形成的碳化物稳定性便依次降低。

金属型碳化物是许多合金钢中的重要组成部分,对合金钢的性能有较大影响。

例如,一般工具钢当温度达到300℃以上时,硬度显著降低,使切割过程不能进行;但含W 18%,Cr 4%,V 1%的高速钢制成的刀具有较高的红硬性,当温度接近600℃时,仍能保持足够的硬度和耐磨性,因此可在较高的切割速度下进行切割,并提高了刀具的寿命。

这主要是由于高速钢中含有大量W、Cr、V的碳化物。

碳化钛具有高熔点,高硬度,抗高温氧化,密度小和价廉等优点,是一种非常重要的金属型碳化物,并得到了广泛的应用。

除碳原子外,周期表中与碳相邻的氮N原子和硼B原子也能进入金属晶格的空隙中形成间充型碳化物相似的性质:能导电、传热、熔点高、硬度大。

由于N原子半径(0.075 nm)比C原子半径(0.077 nm)还略小些,不仅Ti、Zr、Hf、V、Nb、Ta、Mo、W等能和N形成晶体结构与原金属相似的间充化合物,就是Cr、Mn、Fe、Co、Ni也能和N形成晶体结构与原金属相似的间充化合物,但Mn、Fe、Co、Ni 等氮化物的晶格已发生某种程度的变形。

渗氮B原子半径(0.082 nm)比C原子半径略大,所以硼化物的晶体结构就比较复杂。

常用的硬质合金可分为两大类:一类是钨钴硬质合金:例如,YG6 是含WC 94%,Co 6%的硬质合金,其中Co起粘合剂的作用,钴含量越高,韧性越好,能抗冲击,但硬度和耐热性降低。

另一类是钨钴钛硬质合金:例如YT14是含WC 78%、TiC 14%、Co 8%的硬质合金,加入Ti能提高合金的红硬性,在1000~1100℃时还能保持其硬度。

硬质合金刀具的切削速度可比高速钢刀具提高4~7倍,所以硬质合金是制造高速切削和钻探等工具主要部分的优良材料。

钢铁制件在化学热处理过程中,使碳、氮或硼等渗入低碳钢的表面,能在钢的表层生成具有高硬度和耐磨性的碳化物,氮化物或硼化物,而钢的内部仍保持塑性和韧性。

近年来制成一种新型工具材料--钢结硬质合金。

它是以TiC、WC等碳化物为硬质材料,用铬钼钢或高速钢作“粘合剂”而制成的。

它兼有硬质合金和钢的性能,既有一般合金钢的可加工、热处理、焊接的性能,又有硬质合金的高硬度、高耐磨性等优点,克服了工具钢不耐磨和硬质合金难加工的缺点,而且成本较低,是很有发展前途的材料。

另外,通过气相沉积的方法在合金钢表面涂一薄层耐磨的TiC或TiN涂层以形成涂层硬质合金,它也兼有硬质合金和钢的性能。

第二节耐高温材料一、耐热合金耐热合金用作各种热机和化工装置的高温部件,是提高这类机械性能和效率不可缺少的材料。

耐热合金应具备以下的性能:1、在高温条件下,仍有较好的机械性能。

2、组织的稳定性:在高温条件下,不会由于相变而引起韧性或断裂强度降低。

3、耐高温腐蚀、高温时能抵抗周围介质中氧气、硫和其他杂质的腐蚀。

第Ⅴ、Ⅵ、Ⅶ副族元素是高熔点金属。

因为这些元素原子中未成对的价电子数很多,在金属晶体中形成了坚强的化学键,而且它的原子半径较小,晶格结点上粒子间的距离短,相互作用力大,所以熔点高,硬度大。

耐热合金主要是Ⅴ~Ⅶ副族元素和第Ⅷ族元素形成的合金。

按化学成分可分为铁基合金、镍基合金、钴基合金和铬基合金等几种类型。

耐热合金钢是以铁为主要成分的铁基合金,耐热合金钢中含有一定量铬,因为铬易形成具有保护性的氧化物,可提高钢的抗氧化性和耐腐蚀性。

一般随着铬含量的增多,耐热钢的耐高温腐蚀性相应提高。

耐热钢中加入适量的Mo(0.2~2.0%),对增加蠕变强度是很有效的。

近年来,随着科学技术和工农业生产的发展,对耐热合金的要求越来越高,希望提高使用温度,延长在高温下使用的时间,并减轻质量,因此逐渐从镍铁基合金代替铁基合金。

镍铁基合金含有Ni25~60%和Fe15~60%,还含有Cr、Mo、W、Ti、Nb等元素,增加了高温强度。

在大多数镍铁基耐热合金中,Ni和Fe含量必须保持适当比例,这会影响合金的成本和有效的使用温度范围。

一般来说,Ni含量高则使用温度高,稳定性也得到改善,但成本较高。

二、耐火材料耐火材料是指能耐1580℃以上的高温,并在高温下能耐气体,熔融金属,熔融炉渣等物质侵蚀,而且有一定机械强度的无机非金属材料。

耐火度是材料受热软化时的温度,它是耐火材料的重要性能之一。

常用的耐火材料是一些高熔点的氧化物、碳化物和氮化物。

按耐火度的高低,可分为:普通耐火材料耐火度为 1580~1770℃高级耐火材料 1770~2000℃特级耐火材料 >2000℃按化学性质可分为:酸性耐火材料、碱性耐火材料和中性耐火材料,此外还有碳质耐火材料。

1、酸性耐火材料: 主要成份是一些高熔点的酸性氧化物。

例如SiO2(mp1610℃)能耐酸性物质的侵蚀,但在高温下易和碱性氧化物,熔融的碱或Na2 CO3 发生发应而受到侵蚀。

SiO2 + CaO = CaSiO3SiO2 + 2NaOH = Na2SiO3 + H2OSiO2 + Na2CO3 = Na2SiO3 + CO2↑常用的酸性耐火材料有硅酸 SiO2 >93% 耐火度1670~1710℃半硅酸 SiO2 >65% Al2O320~30% 1650~1710℃粘土砖 SiO2 50~60% 弱酸性 1650~1710℃Al2O3 30~48%2、碱性耐火材料,主要成分是一些高熔点的碱性氧化物。

相关文档
最新文档