基本不等式的向量形式
向量形式的基本不等式

一
由向量基本 不等式有 2 n +3 b >口 +2 +2 a
6 > +4 a・b ,
所 以 S有 3个不 同的值 , 结论①是错误 的. 由于 一 +4 a・ b , 当 a_ l - b时 , 。 一
I b I 与l a l 无关 , 结 论②正确.
一
⑤若 f b l 一2 I a l , 一8 l a l , 则a 与b 的夹角
为 .
解
a。
、 、
由于数量积 x i y ( 一1 , 2 , …, 5 ) 的值 只有
a・ b三种情形 , 考虑 到两组 向量 1 , X 2 , X 3 , , X 5 和Y l , Y 2 , Y 3 ,
一
记 S =x 1 Y 1 +x z y 2 - } - x  ̄ y 3 +X 4 Y 4 .
( 4 a) ]>O , 结论④正确 . 若l b j 一2 l a l , 5 一8 I a } 。 , 则
b 。 +4 a・b =8 l al 。 .
由题意 知 , 数量积 x i y 的值 只 有 a 、 、 a・ b j种情形 , 考虑 到 两组 向量 t , 娩, 托, X 4 和Y l , Y z , Y 3 , Y 4 共有 4 个 a和 4 个6 , 所以 S =2 a +2 、 a 。 + +2 a・ b 、4 a・ b . 由向量基本 不 等式有 2 +2 >口 + +2 a・ >4 口・ b . 所以 S 一4 a・ 记 向量 a与 b的夹 角为 ,
综 上可得 , 本题 中正确 的结论是 ② 、 ④. 例3 ( 2 0 1 2高考数 学安徽 卷理科 第 1 4题 ) 若 平 面 向量 a , b 满足 l 2 口 一易 } ≤3 , 则 a・ b的最小 值
不等式总结

不等式总结一、不等式的性质1.(不等式建立的基础)两个实数a 与b 之间的大小关系(1)a b 0a b (2)a b =0a =b (3)a b 0a b ->>;-;-<<.⇔⇔⇔⎧⎨⎪⎩⎪若、,则>>;;<<. a b R (4)a b 1a b (5)a b =1a =b (6)a b 1a b ∈⇔⇔⇔⎧⎨⎪⎪⎪⎩⎪⎪⎪+2.不等式的性质(1)a b b a()><对称性⇔(2)a b b c a c()>>>传递性⎫⎬⎭⇒(3)a b a c b c()>+>+加法单调性⇔a b c 0 ac bc >>>⎫⎬⎭⇒(4) (乘法单调性)a b c 0 ac bc ><<⎫⎬⎭⇒(5)a b c a c b()+>>-移项法则⇒(6)a b c d a c b d()>>+>+同向不等式可加⎫⎬⎭⇒ ---不等式相加(7)a b c d a c b d()><->-异向不等式可减⎫⎬⎭⇒ ---不等式相减(8)a b 0c d 0ac bd()>>>>>同向正数不等式可乘⎫⎬⎭⇒---不等式相乘(9)a b 00c d b d ()>><<>异向正数不等式可除⎫⎬⎭⇒a c --不等式相除(10)a b 0n N a b ()n n >>>正数不等式可乘方∈⎫⎬⎭⇒ 乘方法则(11)a b 0n N a ()n >>>正数不等式可开方∈⎫⎬⎭⇒b n 开方(12)a b 01a ()>><正数不等式两边取倒数⇒1b ----倒数法则3.绝对值不等式的性质 (1)|a|a |a|= a (a 0)a (a 0)≥;≥,-<.⎧⎨⎩(2)如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔|x|a x a x a x a 22>>>或<-.⇔⇔(3)|a ·b|=|a|·|b|.(4)|a b | (b 0)=≠.||||a b(5)|a|-|b|≤|a ±b|≤|a|+|b|.(6)|a 1+a 2+……+a n |≤|a 1|+|a 2|+……+|a n |.4. 基本不等式(1)如果a ,b 是正数,那么ab ≤2b a +,当且仅当a=b 时,等号成立。
基本不等式常用公式

基本不等式常用公式
基本不等式是初中数学的基础,可以表示为:对于任意实数a,b,有(a+b)/2≥√(ab),且等号仅在a=b 时取得。
除了基本不等式,其他一些常用的不等式公式包括:
1. 柯西-施瓦茨不等式:对于任何两个向量 a 和b,有|a·b|≤|a|·|b|,且等号仅在a 和b 共线时取得。
2. 三角不等式:对于任何两个实数a 和b,有|a+b|≤|a|+|b|,且等号仅在a 和b 同号时取得。
3. 约旦不等式:对于任何两个实数a 和b,有|a-b|≥|a|-|b|,且等号仅在a 和b 同号时取得。
4. 均值不等式:对于任何一组非负实数a1、a2、...、an,有(a1+a2+...+an)/n≥√(a1a2...an),且等号仅在a1=a2=...=an 时取得。
这些不等式公式广泛应用于数学、物理等领域,可帮助我们解决各种问题。
基本不等式完整版

基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。
2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。
3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。
2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
4.求最值的条件:“一正,二定,三相等”。
5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。
2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。
3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。
4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。
5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。
向量模的基本不等式

向量模的基本不等式
向量模是向量的长度,在计算中经常使用,而向量模的基本不等式是数学中的一个重要定理。
该定理可以用于证明向量的大小和方向的关系,而且在很多数学、物理和工程领域都有广泛的应用。
向量模的基本不等式可以表示为:对于任意向量a和b,有
|a+b|<=|a|+|b|。
这个不等式表明,当两个向量相加时,它们的和的模不会超过它们的模之和。
这个不等式也可以被理解为三角形不等式的扩展,即任意两个向量的和的模不会超过它们的模之和。
这个基本不等式有很多有用的推论。
例如,如果两个向量的模相等,那么它们的和的模也相等;如果一个向量的模为0,则它是一个零向量。
此外,向量模的基本不等式也可以用于证明其他重要的不等式,如柯西-施瓦茨不等式和三角形不等式。
在物理学中,这个不等式也有广泛的应用,尤其是在力学中,用于计算物体的加速度、速度和位移等。
总之,向量模的基本不等式作为数学中的重要定理,有着广泛的应用。
通过理解和掌握这个不等式,我们可以更好地理解向量的性质,同时也可以更好地应用向量来解决各种实际问题。
- 1 -。
不等式讲义

不等式精品讲义一、不等式的基本性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ,c ∈R ⇔a +c >b +c ; (4)加法法则:a >b ,c >d ⇒a +c >b +d ;(5)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ; (6)乘法法则:a >b >0,c >d >0⇒ac >bd ;(7)乘方法则:a >b >0⇒a n >b n (n ∈N ∗,且n >1); (8)开方法则:a >b >0⇒√a n>√b n(n ∈N ∗,且n >1); (9)倒数法则:110a b a b>>⇒<; (10)有关分数的性质:若 a >b >0,m >0,则①真分数的性质:b b m a a m +<+;b b ma a m −>−; ②假分数的性质:a a mb b m +>+;a a mb b m−<−; (11)**不等式的对称性(了解)设f(x 1,x 2,⋅⋅⋅,x n )是一个n 元函数. 若将x 1,x 2,⋅⋅⋅,x n 中任意的两个变元互相交换位置,得到的f 与原式是恒等的,则称 f (x 1,x 2,⋅⋅⋅,x n )是完全对称的. 如xy +yz +zx ,a b cb c c a a b+++++等. 设f(x 1,x 2,⋅⋅⋅,x n )是一个n 元函数. 若作置换 x 1→x 2,x 2→x 3,⋅⋅⋅,x n−1→x n ,x n →x 1,得到的f 与原式是恒等的,则称f(x 1,x 2,⋅⋅⋅,x n )是轮换对称的. 如x 3y +y 3z +z 3x ,a b ca b b c c a+++++等. 显然,完全对称的一定是轮换对称的.二、重要不等式1.无理式化为有理式,分式化为整式 (12()0()0() ()0()()g x g x g x f x f x g x <≥⎧⎧>⇔⎨⎨≥>⎩⎩或2()0()()0()()g x g x f x f x g x >⎧⎪<⇔≥⎨⎪<⎩()0(0()0 ()0g x f x g x f x >⎧≥⇔=⎨≥⎩或(2)()()()00()f x f xg x g x >⇔⋅> ()()0()0()0()f x g x f x g x g x ⋅≥⎧≥⇔⎨≠⎩2.1. 含有绝对值的不等式(1)()()()() ()()f x g x f x g x f x g x ≥⇔≥≤−或; (2)|()|()()()()f x g x g x f x g x ≤⇔−≤≤;(3)对形如|x −a|+|x −b|≤(≥)c 的不等式,可利用绝对值不等式的几何意义求解. (4)含有绝对值的不等式的性质|a|−|b|≤|a ±b|≤|a|+|b|.取等条件:不等式|a|−|b|≤|a +b|≤|a|+|b|,右侧“=”成立的条件是ab ≥0,左侧“=”成立的条件是ab ≤0,且|a|≥|b|;不等式|a|−|b|≤|a −b|≤|a|+|b|,右侧“=”成立的条件是ab ≤0,左侧“=”成立的条件是ab ≥0,且|a|≥|b|.2.2. 一元二次不等式ax 2+bx +c >0(a ≠0)的解 (设 Δ=b 2−4ac )对于a <0的情况,先移项将系数变为正然后求解. 2.3.基本不等式(1)设a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(2)若 a,b >0,则2a b+≥,当且仅当a =b 时,等号成立. (3)若 a,b >0,则2112a b a b+≤≤≤+,当且仅当a =b 时,等号成立. 其中,211a b+称为几何平均数,2a b +2.4. 柯西不等式(1)柯西不等式简单形式:,,,a b x y R ∈,()()22222()ab x y ax by ++≥+,()()22222()ax by a b x y −≥−−证:()()()2222222222222222222222()22()0ab x y ax by a x b y a y b x a x axby b ya yb x axby ay bx ++−+=+++−++=+−=−≥()()()()2222222222222222222222()22()0ax by a b x y a x axby b y a x a y b x b y a y b x axby ay bx −−−−=−+−−−+=+−=−≥ 得证. 当ay bx =时取等号.(2)柯西不等式向量形式:|α⃗⋅β⃗|≤|α⃗|⋅|β⃗|如图,设在平面直角坐标系xOy 中有向量α⃗=(a,b),β⃗=(c,d),α⃗与β⃗之间的夹角为θ,0≤θ≤π. 根据向量数量积的定义,有α⃗⋅β⃗=|α⃗|⋅|β⃗|cosθ,因为|cosθ|≤1,所以|α⃗⋅β⃗|≤|α⃗|⋅|β⃗|. 当且仅当β⃗是零向量,或者α⃗//β⃗时取等. (3)二维形式的三角不等式:√x 12+y 12+√x 22+y 22≥√(x 1−x 2)2+(y 1−y 2)2当且仅当P 1,P 2与原点O 在同一直线上,并且点P 1,P 2在原点O 两旁时,式中的等号成立.三、例题展示 3.1 比较法【例1】设a 、b 是非负实数,求证:)3322.a b a b +≥+【证明】3322)a b a b a b ++=+55]=−当a b ≥≥,从而55≥,得55]0−≥;当a b <<,从而55<,得55]0−<;所以)3322.a b a b +≥+【例2】已知,a b R +∈,证明:a bb aa b a b ≥.【证明】,a b R +∈,0b aa b ∴>,a ba b a b b a a b a b a a a b b b −−−⎛⎫== ⎪⎝⎭∴当a b ≥时,1a b ≥,0a b −≥,于是1a ba b −⎛⎫⎪⎝⎭≥;当a b <时,1a bb aa b b a −−⎛⎫⎛⎫ ⎪⎪⎝⎝⎭=>⎭.所以a bb aa b a b ≥.【例3】设1111333b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,则( )A .abaa ab << B .aab a b a<<C .b a a a a b <<D .b a aa b a <<【答案】C【解析】∵1111333b a⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭,0 1.1a a a b b b a a a b a b a −∴<<<∴>=>,b aa a ∴<|,01,0,1aaa a a a a a ab b b b ⎛⎫⎛⎫=<<>∴< ⎪ ⎪⎝⎭⎝⎭,a a b a a a b a a b ∴<∴<<,. 故答案为:C3.2 分析法1. 凑项【例4】设a >1,则2213M a a =+−的最小值是 ▲ . 【答案】5【解析】22133335M a a −+=−+≥= 当且仅当22133a a −=− ,即2a =时取等号. 【点评】使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图象,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型. 【练习】设x,y 为正实数,且43112x y+=++,则xy 的最小值为 ▲ . 【答案】27 【解析】因为43112x y +=++,所以3(3)1y x y +=−,,0x y >,1y ∴>因此3(3)43(1)5352711y y xy y y y ⎡⎤⎡⎤+==+−+≥=⎢⎥⎢⎥−−⎣⎦⎣⎦当且仅当y −1=2,y =3时取等号,即xy 的最小值为27. 未知定值(没有形如“a +b =1”这样的定值式) 【例5】设x,y 为正实数,则433x yM x y x=++的最小值为 【答案】3【解析一】配凑434311333x y x x y x y x x y x ++=+−≥=++, 当且仅当433x x yx y x+=+时,即x =3y 取等号.【点评】配凑法是解决这类问题的常用方法,其目的是将代数式或函数式变形为基本不等式适用的条件,对于这种没有明确定值式的求最大值(最小值)问题,要灵活依据条件或待求式合理构造定值式. 【解析二】比值换元 令y =kx ,k >0则443(31)1131313M k k k k =+=++−≥=++. 当且仅当41313k k =++时,即13k =时取等号. 【点评】由于分子,分母皆为x,y 的一次方式子,通过减量换元的方法可将两个未知量x,y 减少为一个未知量k ,再通过一元函数求值域的方法或者基本不等式求出最值. 【例6】已知,0x y >,2811x y+=,则x y +的最小值为. 22818122x x k k x y k y k k k xy x y ⎛⎫+++−=++++−≥= ⎪⎝⎭取等条件:22822424811x x k x x k y y y k xy ⎧==⎪⎪=⎧⎪⎪=⇒=⎨⎨⎪⎪=⎩⎪+=⎪⎩所求最小值为6k =28186x x y x y y xy x y ⎛⎫+=++=++≥= ⎪⎝⎭取等条件:482x x y y x y =⎧==⇒⎨=⎩2. 凑系数【例7】 当0<x <4时, y =x(8−2x)的最大值为 ▲ . 【答案】8【分析】由0<x <4知8−2x >0,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到2x +(8−2x)=8为定值,故只需将y =x(8−2x)凑上一个系数即可.【解析】[]211282(82)2(82)8222x x y x x x x −−⎛⎫=−=⋅−≤= ⎪⎝⎭,当2x =8−2x ,即x =2时取等号,∴当x =2时,y =x(8−2x)的最大值为8.【评注】本题也可通过二次函数求最值的方法求解,当无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值.【练习】已知实数x ,y 满足x >y >0,且x +y =2,则3122M x y x y=++−的最小值是 ▲ .【分析】将x y +凑出λ(x +3y)+μ(x −y)的形式(本质是换元法),即可使用均值不等式或者柯西不等式求出最小值:[]231(2)(2)2x y x y x y x y λμ⎛⎫+++−≥ ⎪+−⎝⎭【解析】31(2)(2)(2)(2),55x y x y x y x y λμλμλμλμ++−=++−=+⇒== 即31(2)(2)55x y x y x y +=++−, 313113119138(2)(2)2222225525555M x y x y x y x y x y x y ⎛⎫⎡⎤⎛⎫∴=+=+⋅++−≥++⨯= ⎪ ⎪⎢⎥+−+−⎣⎦⎝⎭⎝⎭ 取等条件:3222212x x y x y x y y ⎧=⎪−=+⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩ 或者直接换元:令x +2y =m ,2x −y =n ,可得1221,5555x m n y m n =+=−,即 122132155551010m nx y m n m n +=++−=⇒+=313139133811010101010105m n m n M m n m n n m ⎛⎫⎛⎫∴=+=++=+++≥+= ⎪⎪⎝⎭⎝⎭. 3. 凑完全平方式凑完全平方式用于条件与问题皆为一次、二次式的情况. 【例8】已知4x 2+y 2+xy =5,求M =2x +y 的最大值. 解:取参数k ∈R ,M 2=(2x +y )2+k (4x 2+y 2+xy −5) =(4+4k)x 2+(4+k)xy +(1+k)y 2−5k当(4+4k)x 2+(4+k)xy +(1+k)y 2为完全平方式时, (4+k 2)2=(4+4k )(1+k )时,即k =−85时,有M 2=−35(2x −y)2+8≤8.于是{2x −y =04x 2+y 2+xy =5,{x =√22y =√2时,2x +y 有最大值2√2.【例9】若22425x xy y −+=,则223M x y =+的取值范围是 . 取参数k R ∈,有()()()222222342534125M x y k x xy y k x kxy k y k =++−+−=+−++−当()()22341k x kxy k y +−++为完全平方式时,有最值.于是令()()226341,235k k k x ⎛⎫++=⇒=−− ⎪⎝⎭当23x =−时,()22212125125253333333M x xy y x y =+++=++≥ 取等条件:0x y +=.即6666x x y y ⎧⎧==−⎪⎪⎪⎪⎨⎨⎪⎪=−=⎪⎪⎩⎩或 当65x =−时,()222961130330305555M x xy y x y =−+−+=−−+≤取等条件:30x y −=,即x y ==于是所求的取值范围是25303⎡⎤⎢⎥⎣⎦, 【评析】将问题中223x y +变为()212533x y ++的形式,可得最小值;变为()213305x y −−+的形式可得最大值. 变形过程需要利用已知条件凑成完全平方,于是设出参数,列方程求解即可. 4. 分离对于2ax bx cx d +++形式的分式函数,将分子降次,化为1m m+的形式运用不等式.【例10】 求2710(1)1x x y x x ++=>−+的值域.【分析】本题看似无法运用基本不等式,不妨将分子配方凑出含有x +1的项,再将其分离.【解析】22710(1)5(1)44(1)5111x x x x y x x x x ++++++===++++++,当x >−1,即x +1>0时,59y ≥=(当且仅当x =1时取“=”号). 【练习】已知a ,b 都是负实数,则2a ba b a b+++的最小值是 . 【答案】2(√2−1)【解析】2()(2)(2)()2()222222a b a b a b a b a b a b a ba b a b a b a b a b a b+−++−++++=+=+−≥++++++.【例11】已知,,0a b R ab ∈>,求4441a b M ab++=的最小值.【解析】442241141144a b a b M ab ab ab ab ab++++=≥==+≥.取等条件:44142144a a b ab b ab ⎧⎧==⎪⎪⎪⎪⇒⎨⎨=⎪⎪=⎪⎪⎩⎩【例12】已知0,0x y >>,且25x y +=的最小值为【解析】===≥取等条件:62531x yxy+=⎧=⎧⎪⇒⎨=⎪⎩=⎨⎩【练习】变形:已知0,0x y>>的最小值为.【解析】拆开运用基本不等式:≥=≥或用柯西不等式:)2(1)(21)1x y++≥,21+≥=≥取等条件:12112x y xy=⎧=⎧⎪⎪⇒⎨⎨=⎪⎪⎩⎩=.3.3 代换对于一些结构比较复杂,变元较多而变化关系不太清楚的不等式,可适当引进一些新的变量或等式进行代换,以简化其结构.主要目的:非标准问题标准化;复杂问题简单化;降次;化分式为整式;化无理式为有理式;化超越式为代数式.1. 消元【例13】已知实数,0x y>,且811x y+=,求2x y+的取值范围.【解析】由已知条件得8xyx=−,08y x>⇒>,22(8)161628101018888x xx y x x xx x x−++=+=+=−++≥=−−−,取等条件168128x x x −=⇒=−,38xy x ==−. 2. 整体代换(“1”的代换)多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错. 【例14】已知x >0,y >0,且1x +9y =1,求x +y 的最小值.【错解】 x >0,y >0,且1x +9y =1, x +y =(1x +9y )(x +y)≥2√9xy 2√xy =12,故(x +y)min =12.【错因】解法中两次连用基本不等式,在x +y ≥2√xy 等号成立条件是x =y ,在1x +9y ≥2√9xy 等号成立条件是1x =9y ,即y =9x ,取等号的条件的不一致,产生错误.因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法. 【正解】x >0,y >0,1x +9y =1∴x +y =(x +y)(1x +9y )=yx +9x y+10≥6+10=16 ,当且仅当y x =9x y时,上式等号成立,又1x +9y =1,可得x =4,y =12时,(x +y)min =16.【练习】已知正实数x,y 满足111x y +=,则3411x yx y +−−的最小值为________. 【答案】7+4√3【解析】正实数x ,y 满足1x +1y =1,则:x +y =xy , 则:3473443111x y xy x yx y x y xy x y −−+==+−−−−+,1143(43)4377x y x y x y y x ⎛⎫∴++=+++≥+=+ ⎪⎝⎭故3411x yx y +−−的最小值为7+4√3. 【例15】已知a ,b 为正实数,2b +ab +a =30,求y =1ab 的最小值.【分析】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行. 【解法一】由已知得a =30−2b b+1,ab =30−2b b+1⋅b =−2b 2+30b b+1.∵a >0,∴0<b <15.∴令t =b +1,则1<t <16, ∴ab =−2t 2+34t−31t=−2(t +16t)+34.∵t +16t≥2√t ⋅16t=8,∴ab ≤18,∴y ≥118,当且仅当t =4,即a =6,b =3时,等号成立.【解法二】由已知得:30−ab =a +2b .∵a +2b ≥2√2ab ,∴30−ab ≥2√2ab . 令u =√ab ,则u 2+2√2u −30≤0,−5√2≤u ≤3√2,∴√ab ≤3√2,ab ≤18,∴y ≥118. 【点评】①本题考查不等式a+b 2≥√ab(a >0,b >0)的应用、不等式的解法及运算能力;②如何由已知不等式ab =a +2b +30 (a >0,b >0)出发求得ab 的范围,关键是寻找到a +b 与ab 之间的关系,由此想到不等式0,0)2a ba b +≥>>,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围. 【例16】已知,0x y >且2312x y +=,求xy 的最大值.【解析】将24(06)3y x x =−<<代入得, 2224433x x x y x x ⎛⎫−=−+ ⎪⎝⎭=即可将二元变量问题转化为一元函数求值域问题,()()224,0,63f x x x x =−+∈ ()()36f x f ≤=即3,2x y ==时,xy 有最大值6. 部分使用“1的代换”若形如“已知1ma nb +=,求1(,,,,0am n a b k a kb+都是大于)的最小值”,只需部分使用“1的代换”,即1a ma nb a a kb a kb++=+ 【例17】设正实数b a , 满足ba ab a 81,2+=+则的最小值为 .【答案】1 【解析】0,0a b >>,111111828228222a ab a b a a b a b a b +∴+=+=++≥+=+=.当且仅当28b a a b =即42,33a b ==时取得等号. 【例18】设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值. 【答案】2−【解析】因为2a b +=,所以12a b+=所以1||||||||12||4||4||4||4|||4||a ab a a b a a a aa b a b a a b a b a ++=+=++≥+=+ 当且仅当||4||b a a b+,即2||b a =时取等号, 当0a >时,1||15112||4||44a a a b a +≥+=+=; 当0a <时,1||13112||4||44a a ab a +≥+=−+=; 所以1||2||a a b +的最小值为34,此时2b a =− 又2a b +=,所以(2)2a a +−=,即2a =− 【例19】已知且,则的最小值是 . 【答案】32 【解析】222222222141414(2)(44)a b a ab b a b a b a b ⎛⎫⎛⎫+=++=+++ ⎪ ⎪⎝⎭⎝⎭222241684b a b a a b ab ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭44b a a b +≥=,当且仅当4b a a b =,即2b a =时取等号; 2222168b a a b +≥=,当且仅当222216b a a b+,即2b a =时取等号; 所以2214844832a b +≥+⨯+=,当且仅当2b a =时取等号; 所以2214a b +的最小值为32 【点评】在使用“1的代换”时,注意保持两和式是同次的.;在使用两次基本不等式时,注意两次等号成立,a b R +∈21a b +=2214a b+的条件是否一致.3. 判别式法(万能K 法)判别式法(万能K 法)并不万能,很容易出错,因此求出最值后,必须验证取等条件!!如果二次项系数不为0,此方程为关于x 的一元二次方程。
基本不等式完整版(非常全面)
基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当b a =时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)(3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d a c b d ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥ 4、已知,,a b c R+∈,且1a b c ++=,求证:a b cc b a 8)1)(1)(1(≥--- 5、已知,,a b c R+∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域(1)22213x x y += (2))4(x x y -= (3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
schwarz不等式条件
schwarz不等式条件
Schwarz不等式(Schwarz Inequality)是数学中的一个基本不等式,它表明对于任何向量x和y,有
(x·y) ≤ x·y
其中“·”表示点积,“x”表示向量x的模。
Schwarz不等式的取等条件是:只有当两个矢量对应元素相等(或完全相同)时,不等式才能有效。
这就意味着,如果将向量x和y交换,带入Schwarz 不等式中,结果仍能保持不变。
也就是说,矢量的大小取决于它们的“内插性”,而不是它们的位置。
此外,Cauchy-Schwarz不等式是一个十分常见的不等式,其形式如下:若x,y为内积空间的元素,则有(x·y)^2 ≤ x^2·y^2。
当且仅当x和y线性相关时,等号成立。
最常在初等微积分领域应用的积分形式为:若f(x),g(x)在[a,b]上连续,则(∫f(x)g(x)dx)^2 ≤ (∫f(x)^2dx)(∫g(x)^2dx)。
当且仅当f(x)与g(x)线性相关时,等号成立。
此形式在证明许多积分不等式中有着非常广泛的应用。
以上内容仅供参考,建议查阅数学书籍或咨询数学专业人士获取更多专业解答。
基本不等式知识点归纳
基本不等式知识点总结向量不等式:rr r【注意】: a 、b 同向或有 0r rra 、b 反向或有 0 r r ur a 、b 不共线 || a | 代数不等式 :a, b 同号或有 0 |a a, b 异号或有 0|aur ur ur urur ur ur ur| a b | | a | | b|≥ ||a | | b || | a b |; ur ur ur ur ur urur ur| a b | | a | | b | ≥ ||a | |b || | a b |; ur ur ur ur ur| b || |a b | |a | |b |.(这些和实数集中近似 )b | | a | |b |≥ |a | | b | |a b | ; b | |a | |b | | a | | b | | a b |.≥绝对值不等式:a 1 a 2 a 3 ≤ a 1 a 2 a 3双向不等式:ab ≤ ab ≤ abab0(0)(左侧当 ab≤ 0( 0)时获得等号,右侧当 ≥ 时获得等号 .)≥ ≤ 放缩不等式:① a b 0, a m0 ,则 b m b b m .a m a a m【说明】:b b m( a b 0, m 0 ,糖水的浓度问题) .aa m 0,则 bb m a na .【拓展】: a b0,m 0, n 1a a mb nb②a,b, cR ,bd , bb d d ;ac则 a a cc③ n N ,n 1n1nn 1 ;2 n④ nN , n1,1 1111nn1 n 2n 1 .n⑤ ln x ≤ 1 x ( x 0) , e x ≥ x 1 ( x R) .函数 f (x)axb(a 、 b 0) 图象及性质x(1) 函数 f ( x)axb a 、 b 0 图象如图:yxb 2 abxbaob (2) 函数 f ( x) axa 、 b0 性质:2 abxa①值域: ( , 2 ab ][ 2 ab , ) ;②单一递加区间: ( ,b] , [ b ,) ;单一递减区间:(0,b ] , [ b, 0) .aaaa基本不等式知识点总结重要不等式1、和积不等式:a,b Ra 2b 2 ≥ 2ab (当且仅当 ab 时取到 “ ”).【变形】 : ① ab ≤ a b2≤ a 2 b2a b2a 2b 2() 2 (当 a = b 时, () ab )222【注意】:ab ≤ab( a, b R ) ,ab ≤ ( a b) 2(a ,bR)222、均值不等式:两个正数 a 、 b 的调解均匀数、几何均匀数、算术均匀数、均方根之间的关系,即 “平方均匀 ≥ 算术均匀 ≥ 几何均匀 ≥ 调解均匀 ”*. 若 x 0 ,则 x1 2 (当且仅当 x1时取“ = ”);x若 x0 ,则 x1 2 (当且仅当 x1 时取“ = ”)x若 x0,则 x112或 x1 -2 (当且仅当 a b 时取“ = ”)x2即 xxx*. 若 ab 0,则ab 2(当且仅当 ab 时取“ = ”)ba若 ab 0 ,则ab 2即ab 2或ab -2 (当且仅当 ab 时取“ = ”)bababa3、含立方的几个重要不等式(a 、b 、c 为正数):a 3b 33c 0等式即可建立 , a b c 或a b c 0时取等 );c ≥ 3abc ( a b *不等式的变形在证明过程中或求最值时,有宽泛应用,如:当ab 0 时, a 2b 22ab 同时除以 ab 得ba 2 或 b1 1 a 。
基本不等式(很全面)
基本不等式(很全面)基本不等式基本不等式原始形式:对于任意实数a和b,有a+b≥2ab/(a^2+b^2)。
基本不等式一般形式(均值不等式):对于任意实数a和b,有a+b≥2ab/2.基本不等式的两个重要变形:1)对于任意实数a和b,有(a+b)/2≥√(ab)。
2)对于任意实数a和b,有ab≤(a^2+b^2)/2.求最值的条件:“一正,二定,三相等”。
常用结论:1)对于任意正实数x,有x+1/x≥2(当且仅当x=1时取“=”)。
2)对于任意负实数x,有x+1/x≤-2(当且仅当x=-1时取“=”)。
3)对于任意正实数a和b,有(a/b+b/a)≥2(当且仅当a=b 时取“=”)。
4)对于任意实数a和b,有ab≤(a^2+b^2)/2≤(a+b)^2/4.5)对于任意实数a和b,有1/(a+b)≤1/2√(ab)≤(1/a+1/b)/(a+b/2)。
特别说明:以上不等式中,当且仅当a=b时取“=”。
柯西不等式:1)对于任意实数a、b、c和d,有(a+b)(c+d)≥(ac+bd)^2.2)对于任意实数a1、a2、a3、b1、b2和b3,有(a1^2+a2^2+a3^2)(b1^2+b2^2+b3^2)≥(a1b1+a2b2+a3b3)^2.3)对于任意实数a1、a2、…、an和b1、b2、…、bn,有(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)≥(a1b1+a2b2+…+an bn)^2.题型归纳:题型一:利用基本不等式证明不等式。
题目1:设a、b均为正数,证明不等式ab≥2/(1/a+1/b)。
题目2:已知a、b、c为两两不相等的实数,求证:a/(b-c)^2+b/(c-a)^2+c/(a-b)^2≥2/(a-b+b-c+c-a)。
题目3:已知a+b+c=1,求证:a^2+b^2+c^2+9abc≥2(ab+bc+ca)。
题目4:已知a、b、c为正实数,且abc=1,求证:a/b+b/c+c/a≥a+b+c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式的向量形式
[思维扩展]
波利亚有句名言:“类比是伟大的引路人”.这句话言简意赅地阐明了类比在数学发现中的地位.
我们知道,a 2
+b 2
≥2ab (a ,b ∈R)以及
a +b
2
≥ab (a ,b ∈R +)是
两个应用广泛的基本不等式,一种有趣的想法是:这两个不等式可以类比到向量中去吗?
由(a -b )2=|a -b |2≥0不难得到a 2+b 2≥2a ·b ,当且仅当a =b 时等号成立.
但将
a +b
2
≥ab (a ,b ∈R +)简单地类比为
a +b
2
≥a ·b 就不行
了,由于该不等式左边为向量,右边为数量,故其无意义,因此我们需要调整角度,看能否获得有用的结果.
注意到a +b
2≥ab (a ,b ∈R +)⇔⎝ ⎛⎭
⎪⎫a +b 22
≥ab (a ,b ∈R +),而不等式⎝
⎛⎭
⎪⎫a +b 22
≥a ·b 左右两边都是数量,因而可以比较大小.事实上,由(a +b )2=(a -b )2+4a ·b =|a -b |2
+4a ·b ≥4a ·b
可得⎝ ⎛⎭
⎪⎫a +b 22
≥a ·b ,当且仅当a =b 时等号成立.
这样,我们就得到如下两个结论:
定理1 设a ,b 是两个向量,则a 2+b 2≥2a ·b ,当且仅当a =b 时等号成立.
定理2 设a ,b 是两个向量,则⎝ ⎛⎭
⎪⎫a +b 22
≥a ·b ,当且仅当a =b
时等号成立.
例1 若平面向量a ,b 满足|2a -b |≤3,则a ·b 的最小值是________. 答案 -98
解析 方法一 由定理1得 32≥|2a -b |2=(2a -b )2 =(-2a )2+b 2-4a ·b
≥2·(-2a ·b )-4a ·b =-8a ·b ,
所以a ·b ≥-9
8,当且仅当b =-2a 时等号成立,
故a ·b 的最小值是-9
8.
方法二 由定理2得
2a ·(-b )≤⎝ ⎛⎭
⎪⎫2a -b 22=|2a -b |24≤9
4, 则a ·b ≥-9
8,当且仅当b =-2a 时等号成立.
故a ·b 的最小值是-9
8
.
说明 本题可推广至一般形式:若平面向量a ,b 满足:|λa +b |≤
m (m >0),则当λ>0时,a ·b 的最大值为m 2
4λ;当λ<0时,a ·b 的最
小值为m 2
4λ
.
例2 已知a ,b 满足|a |=1,(a +b )·(a -2b )=0,则|b |的最小值为________.
分析 此题有一定难度.普通学生难以想到.事实上,利用定理1此题极易作答,过程如下.
答案 12
解析 引入正参数λ,
由(a +b )·(a -2b )=0得a 2-a ·b -2b 2=0,又|a |=1,则1-2b 2=a ·b ,
1-2b 2
=a ·b ≤12⎝
⎛⎭⎪⎫λa 2
+1λb 2
=12(λ+1λb 2
), 当且仅当λa 2
=
1
λ
b 2,即b 2=λ2时等号成立.
所以1-2λ2=a ·b ≤12⎝
⎛⎭⎪⎫λa 2
+1λb 2
=12⎝ ⎛⎭
⎪⎫λ+1λ·λ2
,
解得λ=|b |≥1
2,
故|b |的最小值为1
2
.
例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,求|c |的最大值. 解 由(a -c )·(b -c )=0得c 2=c ·(a +b ), 由定理1及已知条件得 c 2
=c ·(a +b )≤12
[c 2
+(a +b )2]
=12(c 2+a 2+b 2)=1
2(c 2+2), 解得|c |2≤2,故|c|的最大值是 2.
拓展1 已知a ,b 是平面内夹角为θ的两个单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是
1cos
θ
2
.
拓展2 已知a ,b 是平面内两个互相垂直的向量,且|a |=m ,|b |=n ,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是m 2+n 2. 例4 平面上三点A ,B ,C 满足AB →·BC →>0,求AC →2+
1
AB →·BC
→的最小值.
解 由定理2得0<AB →·BC →≤⎝ ⎛⎭
⎪⎪⎫AB →+BC →22=1
4AC →2, 则 AC →2+
1
AB →·BC →≥AC →2+4AC →2
=|AC →|2+4|AC →|2≥2·|AC →|·2|AC →|=4,
故当且仅当AB →=BC →,且|AC →|=2时,AC →2+
1
AB →·BC →取得最小值4.
例5 设a ,b 满足a 2+a ·b +b 2=3,求a 2-a ·b +b 2的取值范围. 解 由定理1得a ·b ≤
a 2+
b 2
2
,
所以a ·b ≤3-a ·b
2,
解得a ·b ≤1.
又由定理1得(-a )·b ≤-a 2+b 2
2,
所以a ·b ≥-
a 2+
b 2
2=-3-a ·b 2
,解得a ·b ≥-3.
所以-3≤a ·b ≤1.
因为a2-a·b+b2=(3-a·b)-a·b=3-2a·b,所以1≤a2-a·b +b2≤9.
以上五道例题从不同角度为我们初步展示了定理1、定理2的魅力,它们微小平凡,对破解难题却极其有效.不过,追求它们更广泛的应用前景固然让人心动,但更有价值的则是获得它们的思维过程.类比是打开发现之门的金钥匙,但如何用好这把钥匙却值得我们长久的思考.。