广东省2017中考数学复习第1部分基础过关第三单元函数检测卷

合集下载

完整word版,2017年广东省中考数学试题与参考答案

完整word版,2017年广东省中考数学试题与参考答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。

(完整版)2017年广东省中考数学试题与参考答案

(完整版)2017年广东省中考数学试题与参考答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。

2017年广东省中考数学试卷含答案-答案在前

2017年广东省中考数学试卷含答案-答案在前

广东省2017年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】根据相反数的定义有:5的相反数是5﹣,故选:D 。

【考点】相反数的概念 2.【答案】C【解析】94000000000410=⨯,故选:C 。

【考点】科学计数法 3.【答案】A【解析】∵70A ∠=︒,∴A ∠的补角为110︒,故选A 。

【考点】补角的概念 4.【答案】B【解析】∵2是一元二次方程230x x k -+=的一个根,∴22320k -⨯+=,解得,2k =,故选:B 。

【考点】一元二次方程的根 5.【答案】B【解析】数据90出现了两次,次数最多,所以这组数据的众数是90,故选B 。

【考点】众数的概念 6.【答案】D【解析】等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形,故选D 。

【考点】轴对称图形和中心对称图形的判定 7.【答案】A【解析】∵点A 与B 关于原点对称,∴B 点的坐标为(1,2)--,故选:A 。

【考点】一次函数和反比例函数的图像和性质 8.【答案】B【解析】A .23a a a +=,此选项错误;B .325a a a =,此选项正确;C .428()a a =,此选项错误; D .4a 与2a 不是同类项,不能合并,此选项错误;故选:B 。

【考点】整式的运算 9.【答案】C【解析】∵50CBE ∠=︒,∴180********ABC CBE ∠=︒-∠=︒-︒=︒。

∵四边形ABCD 为O 的内接四边形, ∴180********D ABC ∠=︒-∠=︒-︒=︒。

∵DA DC =,∴180652DDAC ︒-∠∠==︒,故选C 。

【考点】圆内接四边形的性质,等腰三角形的性质 10.【答案】C【解析】∵四边形ABCD 是正方形,∴AD CB ∥,AD BC AB ==,FAD FAB ∠=∠。

在AFD △和AFB △中,AF AF FAD FAB AD AB =⎧⎪∠=∠⎨⎪=⎩,∴AFD AFB △≌△,∴ABF ADF S S =△△,故①正确。

广东省初中中考数学试卷含答案

广东省初中中考数学试卷含答案

2017年广东省初中毕业生学业考试数学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( )A. .5 C2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×××3.已知,则的补角为( )A. B. C. D.4.如果2是方程的一个根,则常数k的值为( ).2 C5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ).90 C6.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆7.如题7图,在同一平面直角坐标系中,直线与双曲线相交于A、B两点,已知点A的坐标为(1,2),则点B的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)题7图8.下列运算正确的是( )A. B.C. D.9.如题9图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为( )°°°°10.如题10图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①;②;③;④,其中正确的是( )A.①③B.②③C.①④D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式: .12.一个n边形的内角和是,那么n= .13.已知实数a,b在数轴上的对应点的位置如题13图所示,则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 .15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按题16图(3)操作:沿过点F的直线折叠,使点C落在EF上的点H 处,折痕为FG,则A、H两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

最新中考数学总复习第一部分数与代数 第12讲 二次函数

最新中考数学总复习第一部分数与代数 第12讲 二次函数
题23, 题23, 题23, 题10,
10, 题25
数的
题22,
题25 题25 题25 题25
图象和性质
题25
题25
二次函数的 题12,4 题7,
平移

3分
返回
数学
二次函数的
解析式
(待定系数)
二次函数图
象的
顶点坐标、
对称轴

25(1),
2分
题7,3分


25(1),
25(3),
1分
1分

23(3),
2
2
∴k= 3 或 k=2,即 k 的值为 2 或 3.
返回
数学
(3)∵函数的对称轴为直线 x=2,当 m<2 时,当 x=m 时,y 有最大
4m
1
值, 3 =- 3 (m-2)+3,解得 m=± 5,∴m=- 5;
4m
当 m≥2 时,当 x=2 时,y 有最大值,∴
3
9
=3,∴m= .
4
9
综上所述,m 的值为- 5或 4.

题23(1) 3分
23(2),
(2),6分 题
3分
25(3),
2分
题10,
3分

23(3),
1分
返回
数学
二次函数与一元
二次方程、不等

题25(1), 题10,3
题23(3),
25(1),

5分

4分
(与x轴的交点坐
2分
标)
题10,3分
题25(3), 题25(3), 题25(3), 题25(3),
A,B(-1,0)两点,则下列说法正确的是( D )

广东省2017中考数学复习 第1部分 基础过关 第三单元 函数 课时10 一次函数作业

广东省2017中考数学复习 第1部分 基础过关 第三单元 函数 课时10 一次函数作业

课时10 一次函数基础强化1.对于一次函数y =-2x +4,下列结论错误的是( ) A .函数值随自变量的增大而减小 B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得y =-2x 的图象D .函数的图象与x 轴的交点坐标是(0,4)2.点A (-5,y 1),B (-2,y 2)都在直线y =-12x 上,则y 1,y 2的关系是( )A .y 1≤y 2B .y 1=y 2C .y 1<y 2D .y 1>y 23.在同一直角坐标系中,下列函数关于y 轴对称的是:(1)y =-x -1;(2)y =x +1;(3)y =-x +1;(4)y =-2(x +1)( )A .(1)和(3)B .(2)和(3)C .(1)和(2)D .(3)和(4)4.(2016·陕西)已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数的图象的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图1,点P 是等边△ABC 的边上的一个做匀速运动的动点,其由点A 开始沿AB 边运动到B ,再沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,则S 与t 的大致图象是( )图16.已知一次函数y =(k -1)x +3,其图象y 随x 的增大而减小,则k 的取值范围是__________.7.(2016·江西)如图2,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13.图2(1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式.能力提升8.(2016·昆明)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9.(2016·云南模拟)在平面直角坐标系中,直线AB 与x 轴交于B 点,与y 轴交于A 点,已知A (0,4),B (2,0),直线AC 与x 轴交于C 点,与y 轴交于A 点.(1)求直线AB 的解析式; (2)若S △ABC =7,求点C 的坐标.参考答案:基础强化1.D 2.D 3.B 4.A 5.C 6.k <17.解:(1)∵点A (2,0),AB =13,∴BO =AB 2-AO 2=9=3. ∴点B 的坐标为(0,3).(2)∵△ABC 的面积为4,∴12×BC ×AO =4.∴12×BC ×2=4,即BC =4. ∵BO =3,∴CO =4-3=1.∴C (0,-1). 设l 2的解析式为y =kx +b ,则⎩⎪⎨⎪⎧0=2k +b ,-1=b ,解得⎩⎪⎨⎪⎧k =12,b =-1.∴l 2的解析式为y =12x -1.能力提升8.解:(1)设甲种商品每件的进价为x 元,乙种商品每件的进价为y 元.由题意得:⎩⎪⎨⎪⎧2x +3y =270,3x +2y =230,解得⎩⎪⎨⎪⎧x =30,y =70.答:甲种商品每件的进价为30元,乙种商品每件的进价为70元. (2)设该商场购进甲种商品m 件,则购进乙种商品(100-m )件, 由已知得:m ≥4(100-m ), 解得m ≥80.设卖完A ,B 两种商品商场的利润为w ,则w =(40-30)m +(90-70)(100-m )=-10m +2 000, ∴当m =80时,w 取最大值,最大利润为1 200元.答:该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1 200元.9.解:(1)设直线AB 的解析式为y =kx +b ,∵直线AB 经过A (0,4),B (2,0),∴⎩⎪⎨⎪⎧b =4,2k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =4.∴直线AB 的解析式为y =-2x +4.(2)设C (x,0),∵A (0,4),B (2,0),∴OA =4,OB =2. ∵S △ABC =7,∴12BC ·OA =7.∴BC =3.5.∴|x -2|=3.5.解得x =5.5或x =-1.5, ∴C (-1.5,0)或C (5.5,0).。

中考数学 第一部分 基础知识过关 第三章 函数及其图象 第12讲 二次函数精练

中考数学 第一部分 基础知识过关 第三章 函数及其图象 第12讲 二次函数精练

第12讲二次函数A组基础题组一、选择题1.(2018陕西)对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2018威海)抛物线y=ax2+bx+c(a≠0)如图所示,下列结论错误的是( )A.abc<0B.a+c<bC.b2+8a>4acD.2a+b>03.(2017甘肃兰州)将抛物线y=3x2-3向右平移3个单位长度,得到的新抛物线的表达式为( )A.y=3(x-3)2-3B.y=3x2C.y=3(x+3)2-3D.y=3x2-64.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为( )A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥95.在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )二、填空题6.(2017湖北武汉)已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.7.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m,则能建成的饲养室面积最大为m2.8.如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2(a≠0)上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为.三、解答题9.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为 m,到墙边的距离分别为 m, m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m,则最多可以连续绘制几个这样的拋物线型图案?B组提升题组一、选择题1.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,正确的是( )A.没有交点B.有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧2.(2018枣庄)下图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( )A.b2<4acB.ac>0C.2a-b=0D.a-b+c=03.(2018潍坊)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6B.1或6C.1或3D.4或64.(2018菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是( )二、填空题5.(2017青岛)若抛物线y=x2-6x+m与x轴没有交点,则m的取值范围是.6.(2018淄博)已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C 是线段AD的三等分点,则m的值为.三、解答题7.(2017广东)如图,在平面直角坐标系中,抛物线y=-x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=-x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.8.(2018陕西)已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y 轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L',且L'与x轴相交于A'、B'两点(点A'在点B'的左侧),并与y轴相交于点C',要使△A'B'C'和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.二次函数的综合应用培优训练一、选择题1.向上发射一枚炮弹,经x秒后的高度为y千米,且时间与高度的关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )A.第9.5秒B.第10秒C.第10.5秒D.第11秒2.烟花厂为成都春节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-t2+12t+30,若这种礼炮在升空到最高点时引爆,则从点火升空到引爆需要的时间为( )A.3 sB.4 sC.5 sD.6 s3.二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,x=-1是对称轴,下列结论:①<0;②a-b+c=-9a;③若(-3,y1),是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2-9).其中正确的是( )A.①②③B.①③④C.①②④D.①②③④二、填空题4.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃-4 -2 0 1 4植物高度增长量l/mm 41 49 49 46 25科学家经过猜想并推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为℃.5.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.三、解答题6.旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1 100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?7.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元/台,就可多售出50台.供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;(2)求售价x的范围;(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?8.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A和B(4,m)两点,点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.9.如图,直线y=-x+3与x轴,y轴分别交于B(3,0),C(0,3)两点,抛物线y=ax2+bx+c过A(1,0),B,C三点.(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方的一个动点,过点M作MN∥y轴交直线BC于点N,求线段MN 的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是以BN为腰的等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.10.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=-x2+bx+c的对称轴l上是否存在点F,使△DFQ为直角三角形,若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.11.如图1,平面直角坐标系中,二次函数y=-x2+bx+c的图象与坐标轴分别交于点A、B、C,其中点A(0,8),OB=OA.(1)求二次函数的表达式;(2)若OD=OB,点F为该二次函数在第二象限内图象上的动点,E为DF的中点.①当△CEF的面积最大时,求出点E的坐标;②如图2,将△CEF绕点E旋转180°,C点落在M处,若M点恰好在该抛物线上,求出此时△CEF 的面积.12.如图,直线y=-x+2与x轴交于B点,与y轴交于C点,A点坐标为(-1,0).(1)求过A、B、C三点的抛物线的解析式;(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF 周长的最大值;(3)在满足第(2)问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P 的坐标;若不存在,说明理由.13.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=-且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC,BC.求四边形PABC面积的最大值,并求出此时点P的坐标;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.第12讲二次函数A组基础题组一、选择题1.C 当x=1时,y=a+2a-1+a-3>0,解得a>1,又根据抛物线顶点坐标公式可得-<0,=<0,所以这条抛物线的顶点一定在第三象限,故选C.2.D A.由图象开口可知:a<0,由对称轴可知:->0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;B.由图象可知:x=-1时,y<0,∴y=a-b+c<0,∴a+c<b,故B正确;C.由图象可知:顶点的纵坐标大于2,∴>2,∵a<0,∴4ac-b2<8a,∴b2+8a>4ac,故C正确;D.对称轴x=-<1,a<0,∴2a+b<0,故D错误.故选D.3.A4.A5.D二、填空题6.答案-3<a<-2或<a<解析把(m,0)代入y=ax2+(a2-1)x-a得am2+(a2-1)m-a=0,m==,解得m1=,m2=-a,∵2<m<3,∴2<<3或2<-a<3,解得<a<或-3<a<-2.7.答案75解析设垂直于墙的材料长为x米,则平行于墙的材料长为27+3-3x=30-3x,则总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75,故饲养室的最大面积为75平方米.8.答案(,2)解析∵Rt△OAB的顶点A(-2,4)在抛物线y=ax2(a≠0)上,∴4=4a,解得a=1,∴抛物线的解析式为y=x2,∵AB⊥x轴,∴B(-2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入y=x2,得2=x2,解得x=(负值舍去),∴P(,2).三、解答题9.解析(1)根据题意得B,C,把B,C代入y=ax2+bx(a≠0)得解得∴拋物线的函数关系式为y=-x2+2x,∴图案最高点到地面的距离==1 m.(2)令y=0,即-x2+2x=0,解得x1=0,x2=2,∵10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.B组提升题组一、选择题1.D ∵a>1,∴Δ=(-2a)2-4a=4a(a-1)>0,∴ax2-2ax+1=0有两个不相等的实数根,即函数图象与x轴有两个交点,x=>0,故选D.2.D ∵抛物线与x轴有两个交点,∴b2-4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴-=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(-1,0),∴a-b+c=0,所以D选项正确.故选D.3.B 对于二次函数y=-(x-h)2(h为常数),当x=h时,函数有最大值0,又当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,故h<2或h>5.当h<2,2≤x≤5时,y随x的增大而减小,故当x=2时,y有最大值,此时-(2-h)2=-1,解得h1=1,h2=3(舍去);当h>5,2≤x≤5时,y随x的增大而增大,故当x=5时,y有最大值,此时-(5-h)2=-1,解得h1=6,h2=4(舍去),综上可知h=1或6.故选B.4.B ∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选B.二、填空题5.答案m>9解析∵抛物线y=x2-6x+m与x轴没有交点,∴Δ<0,即(-6)2-4×1×m<0,解得m>9.6.答案 2解析如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x-3=0,(x-1)(x+3)=0,x1=1,x2=-3,∴A(-3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为2.三、解答题7.解析(1)把A(1,0),B(3,0)代入抛物线y=-x2+ax+b,得解得∴抛物线的解析式为y=-x2+4x-3.(2)当点P是线段BC的中点时,易得点P的横坐标为,当x=时,y=,所以点P的坐标为.(3)由(2)得点C的坐标为,∴OC=,又OB=3,∴BC==.∴sin∠OCB===.8.解析(1)令y=0,得x2+x-6=0,解得x=-3或x=2,∴A(-3,0),B(2,0).∴AB=5,令x=0,得y=-6,∴C(0,-6),∴OC=6,∴S△ABC=AB·OC=×5×6=15.(2)由题意得A'B'=AB=5.要使S△A'B'C'=S△ABC,只要抛物线L'与y轴的交点为C'(0,-6)或C'(0,6)即可. 设所求抛物线L':y=x2+mx+6,y=x2+nx-6.∵抛物线L'与抛物线L的顶点的纵坐标相同,∴=,=,解得m=±7,n=±1(n=1舍去).∴抛物线L'的函数表达式为y=x2+7x+6,y=x2-7x+6或y=x2-x-6.二次函数的综合应用培优训练一、选择题1.C 当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=-21a,根据二次函数图象的对称性及抛物线的开口方向,得当x=-=10.5时,y最大,即高度最高.故选C.2.B ∵礼炮在升空到最高点时引爆,且二次函数图象的开口向下,∴高度h取最大值时,t=-,即t=-=4.故选B.3.D ∵二次函数的图象开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∴<0,故①正确;∵抛物线的对称轴x=-=-1,∴b=2a,当x=2时,y=0,∴4a+2b+c=0,∴4a+4a+c=0,∴c=-8a,∴a-b+c=-9a,故②正确;∵抛物线的对称轴为x=-1,∴当x=-1时,抛物线有最大值,-3距离-1有2个单位长度,距离-1有个单位长度,∴y1>y2,故③正确;设抛物线的解析式为y=a(x+1)2+k,将抛物线沿x轴向右平移一个单位后得出平移后的解析式y=ax2+k,∵c=-8a,∴a+k=-8a,∴k=-9a,∴将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=ax2-9a,即y=a(x2-9),故④正确.正确结论为①②③④.故选D.二、填空题4.答案-1解析设l=at2+bt+c(a≠0),将(0,49),(1,46),(4,25)代入后得方程组解得所以l与t之间的二次函数解析式为l=-t2-2t+49,当t=-=-1时,l有最大值50,即最适合这种植物生长的温度是-1 ℃.5.答案x<-1或x>4解析由题图可知,当x<-1或x>4时,直线y=mx+n的图象在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<-1或x>4.三、解答题6.解析(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1 100>0,解得x>22,∵x是5的倍数,∴每辆车的日租金至少应为25元.(2)设每天的净收入为y元,当0<x≤100时,y1=50x-1 100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100-1 100=3 900;当x>100时,y2=x-1 100=50x-x2+20x-1 100=-x2+70x-1 100=-(x-175)2+5 025,当x=175时,y2的最大值为5 025,5 025>3 900,故当每辆车的日租金为175元时,每天的净收入最多,是5 025元.7.解析(1)根据题中条件售价每降低10元/台,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式为y=200+50×,化简得y=-5x+2 200.(2)根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务,则解得300≤x≤350.所以售价x的范围为300≤x≤350.(3)w=(x-200)(-5x+2 200),整理得w=-5(x-320)2+72 000.∵x=320在300≤x≤350内,∴当x=320时,w有最大值,为72 000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72 000元.8.解析(1)∵B(4,m)在直线y=x+2上,∴m=6,即B(4,6),∵A和B(4,6)在抛物线y=ax2+bx+6上,∴解得∴抛物线的解析式为y=2x2-8x+6.(2)存在.设动点P的坐标为(n,n+2),点C的坐标为(n,2n2-8n+6),∴PC=(n+2)-(2n2-8n+6)=-2n2+9n-4=-2+,∵-2<0,∴抛物线开口向下,有最大值,∴当n=时,线段PC的长有最大值.9.解析(1)由题意将点A(1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得解得∴抛物线的解析式为y=x2-4x+3.(2)设点M的坐标为(m,m2-4m+3),∵MN∥y轴,∴点N的坐标为(m,-m+3).∵A(1,0),B(3,0)在抛物线上且点M是抛物线在x轴下方的一个动点.∴1<m<3.∵线段MN=-m+3-(m2-4m+3)=-m2+3m=-+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为,∴PB==,PN=,BN==.△PBN以BN为腰的等腰三角形,分二种情况:①当PB=BN,即=时,解得n=±,此时点P的坐标为或.②当PN=BN,即=时,解得n=,此时点P的坐标为或.综上可知:在抛物线的对称轴l上存在点P,使△PBN是以BN为腰的等腰三角形,点P的坐标为或或或.10.解析(1)将A、C两点坐标代入抛物线解析式,得解得∴抛物线的解析式为y=-x2+x+8.(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10-m),∴S=·CP·QE=m×(10-m)=-m2+3m.②∵S=·CP·QE=m×(10-m)=-m2+3m=-(m-5)2+, ∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△DFQ为直角三角形,∵抛物线y=-x2+x+8的对称轴为x=,D的坐标为(3,8), Q的坐标为(3,4),当∠FDQ=90°时,F1,当∠FQD=90°时,则F2,当∠DFQ=90°时,设F,则FD2+FQ2=DQ2,即+(8-n)2++(n-4)2=16,解得n=6±,∴F3,F4,满足条件的点F共有四个,分别为F1,F2,F3,F4,6-.11.解析(1)∵OA=8,∴OB=OA=4,∴B(4,0),∵y=-x2+bx+c的图象过点A(0,8),B(4,0), ∴解得∴二次函数的表达式为y=-x2-x+8.(2)①当y=0时,-x2-x+8=0,解得x1=4,x2=-8,∴C点坐标为(-8,0),∵D点坐标为(0,4),∴设直线CD的解析为y=kx+d(k≠0),故解得故直线DC的解析为y=x+4.如图,过点F作y轴的平行线交DC于点P,设F点坐标为,则P点坐标为, 则FP=-m2-m+4,∴S△FCD=·FP·OC=×-m2-m+4×8=-m2-6m+16,∵E为FD中点,∴=×=-m2-3m+8=-(m+3)2+,当m=-3时,有最大值,∴-m2-m+8=-×9+3+8=,E点纵坐标为×=,∴F,∴E.②∵F点坐标为,C点坐标为(-8,0),D点坐标为(0,4),∴M,又∵M点在抛物线上,∴-(m+8)2-(m+8)+8=-m2-m+12,解得m=-7,故=-m2-3m+8=.12.解析(1)直线y=-x+2与x轴交于B(2,0),与y轴交于C(0,2), 设过A、B、C的抛物线的解析式为y=ax2+bx+c(a≠0),把A(-1,0),B(2,0),C(0,2)的坐标代入,解得a=-1,b=1,c=2,∴抛物线的解析式为y=-x2+x+2.(2)设D(x,-x2+x+2),F(x,-x+2),∴DF=(-x2+x+2)-(-x+2)=-x2+2x,所以x=1时,DF最大=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴∠DFE=∠OCB=45°,∴△DEF为等腰直角三角形,∴△DEF周长的最大值为1+.(3)存在.如图,当△DEF周长最大时,D(1,2),F(1,1).延长DF交x轴于H,作PM⊥DF于M,则DB=,DH=2,OH=1,当∠DFP=∠DBC时,△DFP∽△DBF,∴=,∴DP=,∴===,∴PM=,DM=,∴P点的横坐标为OH+PM=1+=,P点的纵坐标为DH-DM=2-=,∴P.13.解析(1)对于y=x+2,当x=0时,y=2,当y=0时,x=-4,∴C(0,2),A(-4,0),由抛物线的对称性可知:点A与点B关于x=-对称,∴点B的坐标为(1,0). ∵抛物线y=ax2+bx+c过A(-4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x-1),又∵抛物线过点C(0,2),∴2=-4a,∴a=-,∴y=-x2-x+2.(2)设P.过点P作PQ⊥x轴交AC于点Q,∴Q,∴PQ=-m2-m+2-=-m2-2m,∵=×PQ×(x C-x A)=×PQ×4=2PQ=-m2-4m=-(m+2)2+4,∴当m=-2时,△PAC的面积有最大值4,易知S△ACB=×OC×AB=×2×5=5.则四边形PABC面积的最大值是9,此时P(-2,3).(3)存在.在Rt△AOC中,tan∠CAO=,在Rt△BOC中,tan∠BCO=,∴∠CAO=∠BCO,∵∠BCO+∠OBC=90°,∴∠CAO+∠OBC=90°,∴∠ACB=90°,∴△ABC∽△ACO∽△CBO,如下图:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(-3,2)时,△MAN∽△ABC;③当点M在第四象限时,设M n,-n2-n+2,则N(n,0), ∴MN=n2+n-2,AN=n+4,当=时,MN=AN,即n2+n-2=(n+4),整理得n2+2n-8=0,解得n1=-4(舍),n2=2,∴M(2,-3);当=时,MN=2AN,即n2+n-2=2(n+4),整理得n2-n-20=0,解得n1=-4(舍),n2=5,∴M(5,-18).综上所述,存在M1(0,2),M2(-3,2),M3(2,-3),M4(5,-18),使得以点A、M、N为顶点的三角形与△ABC相似.。

中考数学总复习第1编知识梳理篇第3章函数及其图象第11讲二次函数及其应用(精练)试题(new)

中考数学总复习第1编知识梳理篇第3章函数及其图象第11讲二次函数及其应用(精练)试题(new)

第十一讲二次函数及其应用第1课时二次函数1.(2017随州中考)对于二次函数y=x2-2mx-3,下列结论错误的是( C)A.它的图象与x轴有两个交点B.方程x2-2mx=3的两根之积为-3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小2.在下列二次函数中,其图象对称轴为x=-2的是( A)A.y=(x+2)2B.y=2x2-2C.y=-2x2-2 D.y=2(x-2)23.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则( A)A.ac+1=b B.ab+1=cC.bc+1=a D.以上都不是,(第3题图)),(第4题图))4.(2017齐齐哈尔中考)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示,则下列结论:①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at2+bt(t为实数);⑤点错误!,错误!,错误!是该抛物线上的点,则y1<y2<y3,正确的个数有( B)A.4个B.3个C.2个D.1个5.(2017安顺中考)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中结论正确的个数是(C)A.1 B.2 C.3 D.4,(第5题图)),(第6题图)) 6.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0其中正确的个数为( C)A.1 B.2 C.3 D.47.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为(B) A.m>1 B.m>0C.m>-1 D.-1<m<08.(2017扬州中考)如图,已知△ABC的顶点坐标分别为A(0,2),B(1,0),C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是(C)A.b≤-2 B.b<-2C.b≥-2 D.b>-29.(2017枣庄中考)已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是(D)A.当a=1时,函数图象经过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大10.(2017鄂州中考)如图抛物线y=ax2+bx+c的图象交x轴于A(-2,0)和点B,交y 轴负半轴于点C,且OB =OC. 下列结论:①2b-c=2;②a=错误!;③ac=b-1;④错误!>0.其中正确的个数有(C)A.1个B.2个C.3个D.4个11.(2017陕西中考)已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( C)A.(1,-5) B.(3,-13)C.(2,-8)D.(4,-20)12.抛物线y=x2+2x+3的顶点坐标是__(-1,2)__.13.二次函数y=3x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B,C在二次函数y=错误!x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为__2错误!__.,(第13题图)) ,(第14题图)) 14.(2017乌鲁木齐中考)如图,抛物线y=ax2+bx+c过点(-1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(-3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点错误!;⑤am2+bm+a≥0,其中所有正确的结论是__②④⑤__.15.(2017鹤岗中考)如图,已知抛物线y=-x2+mx+3与x轴交于点A,B两点,与y 轴交于C点,点B的坐标为(3,0),抛物线与直线y=-错误!x+3交于C,D两点.连结BD,AD.(1)求m的值;(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.解:(1)∵抛物线y=-x2+mx+3过(3,0),∴0=-9+3m+3,∴m=2;(2)由错误!得错误!错误!∴D错误!.∵S△ABP=4S△ABD,∴错误!AB×|y P|=4×错误!AB×错误!,∴|y P|=9,y P=±9,当y=9时,-x2+2x+3=9,无实数解,当y=-9时,-x2+2x+3=-9,x1=1+13,x2=1-错误!,∴P(1+错误!,-9)或(1-错误!,-9).16.(2017随州中考)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a,b,c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形".备用图已知抛物线y=-错误!x2-错误!x+2错误!与其“梦想直线”交于A,B两点(点A在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的表达式为________,点A的坐标为________,点B 的坐标为________;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A,C,E,F为顶点的四边形为平行四边形?若存在,请直接写出点E,F的坐标;若不存在,请说明理由.解:(1)y=-错误!x+错误!;(-2,2错误!);(1,0);(2)如答图①,过A作AD⊥y轴于点D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元检测卷三 函数限时:____________分钟 总分:100分一、选择题(本大题共10小题,每小题3分,共30分)1.(2016·大连)在平面直角坐标系中,点(1,5)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.(2016·南充)抛物线y =x 2+2x +3的对称轴是( ) A .直线x =1 B .直线x =-1 C .直线x =-2D .直线x =23.(2016·赤峰)平面直角坐标系内的点A (-1,2)与点B (-1,-2)关于( ) A .y 轴对称 B .x 轴对称 C .原点对称D .直线y =x 对称4.下列四个函数中,y 的值随着x 值的增大而减小的是( ) A .y =2x B .y =x +1 C .y =1x(x >0)D .y =x 2(x >0)5.(2016·丽水)在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A .M (2,-3),N (-4,6) B .M (-2,3),N (4,6) C .M (-2,-3),N (4,-6)D .M (2,3),N (-4,6)6.(2016·宜宾)如图1是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )图1A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度7.(2016·呼和浩特)已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A .k >1,b <0B .k >1,b >0C .k >0,b >0D .k >0,b <08.(2016·黑龙江)已知反比例函数y =6x,当1<x <3时,y 的最小整数值是( )A .3B .4C .5D .69.(2016·安徽模拟)在同一坐标系中,一次函数y =ax +b 与二次函数y =ax 2-b 的图象可能是( )10.如图2所示,已知正方形ABCD 的边长为4,E 是BC 边上的一个动点,AE ⊥EF ,EF 交DC 于点F ,设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是( )二、填空题(本大题共6小题,每小题4分,共24分) 11.函数y =x -2中自变量x 的取值范围是____________.12.(2016·上海)如果将抛物线y =x 2+2向下平移1个单位,那么所得新抛物线的表达式是____________.13.(2016·长春)如图3,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限,若点B 在直线y =kx +3上,则k 的值为__________.图314.(2016·张家界)如图4,点P 是反比例函数y =k x(x <0)图象的一点,PA 垂直于y 轴,垂足为点A ,PB 垂直于x 轴,垂足为点B .若矩形PBOA 的面积为6,则k 的值为____________.图415.(2016·青岛)已知二次函数y =3x 2+c 与正比例函数y =4x 的图象只有一个交点,则c 的值为__________.16.如图5,假设篱笆(虚线部分)的长度16 m ,则所围成矩形ABCD 的最大面积是____________.图5三、解答题(本大题共5小题,共计46分)17.(8分)(2016·甘孜州)如图6,在平面直角坐标系xOy 中,一次函数y =-ax +b 的图象与反比例函数y =k x的图象相交于点A (-4,-2),B (m,4),与y 轴相交于点C .图6(1)求反比例函数和一次函数的表达式; (2)求点C 的坐标及△AOB 的面积.18.(8分)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件) 100 110 120 130 … 月销量(件)200180160140…(1)请用含x 的式子表示:①销售该运动服每件的利润是__________元;②月销量是__________件;(直接填写结果)(2)设销量该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?19.(10分)如图7,在平面直角坐标系xOy中,一次函数y=kx-2的图象与x,y轴分别交于点A,B,与反比例函数y=-32x (x<0)的图象交于点M⎝⎛⎭⎪⎫-32,n.图7(1)求A,B两点的坐标;(2)当x<0时,直接写出不等式kx-2<-32x的解集;(3)设点P是一次函数y=kx-2图象上的一点,且满足△APO的面积是△ABO的面积的3倍,请求出点P的坐标.20.(10分)(2016·福建三明节选)如图8,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:y=x2-2mx+m2-2与直线x=-2交于点P.图8(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤-2,比较y1与y2的大小.21.(10分)(2016·宁波)如图9,已知抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0).图9(1)求m 的值及抛物线的顶点坐标;(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.参考答案:一、选择题1.A10.A 【解析】解法一:连接AF ,设BE =x ,FC =y ,则AE 2=x 2+42,EF 2=(4-x )2+y 2,AF 2=(4-y )2+42.又∵△AEF 为直角三角形,∴根据勾股定理得到AE 2+EF 2=AF 2.即x 2+42+(4-x )2+y 2=(4-y )2+42化简得:y =-14x 2+x =-14(x -2)2+1,此时,该函数图象是以(2,1)为顶点的抛物线.很明显,y 关于x 的函数图象是A 项.解法二:易证△ABE ∽△ECF ,则BE ∶CF =AB ∶EC ,即x ∶y =4∶(4-x ),整理,得y =-14(x -2)2+1,此时,该函数图象是以(2,1)为顶点的抛物线.很明显,y 关于x 的函数图象是A 项.二、填空题11.x ≥2 =x 2+1 13.-2 14.-6 16.64 m 2三、解答题17.解:(1)∵点A (-4,-2)在反比例函数y =k x的图象上, ∴k =-4×(-2)=8.∴反比例函数的表达式为y =8x.∵点B (m,4)在反比例函数y =8x的图象上,∴4m =8,解得:m =2,∴点B (2,4).将点A (-4,-2)、B (2,4)代入y =-ax +b 中,得:⎩⎪⎨⎪⎧-2=4a +b ,4=-2a +b ,解得:⎩⎪⎨⎪⎧a =-1,b =2.∴一次函数的表达式为y =x +2.(2)令y =x +2中x =0,则y =2,∴点C 的坐标为(0,2). ∴S △AOB =12OC ×(x B -x A )=12×2×[2-(-4)]=6.18.解:(1)①x -60;②-2x +400.(2)依题意可得:y =(x -60)(-2x +400)=-2x 2+520x -24 000=-2(x -130)2+9 800.当x =130时,y 有最大值980.∴售价为每件130元时,当月的利润最大,为9 800元.19.解:(1)∵点⎝ ⎛⎭⎪⎫-32,n 在反比例函数y =-32x (x <0)的图象上,∴M ⎝ ⎛⎭⎪⎫-32,1. ∵一次函数y =kx -2的图象经过点M ⎝ ⎛⎭⎪⎫-32,1,∴1=-32k -2.∴k =-2.∴一次函数的解析式为y =-2x -2. ∴A (-1,0),B (0,-2). (2)解集为-32<x <0.(3)S △AOB =12OA ·OB =1,设点P 的坐标为(a ,-2a -2),由题意得,12×1×|-2a -2|=3,解得a 1=2,a 2=-4. 故P 1(2,-6),P 2(-4,6).20.解:(1)∵抛物线F 经过点C (-1,-2),∴-2=1+2m +m 2-2. ∴m =-1.∴抛物线F 的表达式是y =x 2+2x -1.(2)当x =-2时,y P =4+4m +m 2-2=(m +2)2-2. ∴当m =-2时,y P 的最小值=-2. 此时抛物线F 的表达式是y =(x +2)2-2. ∴当x ≤-2时,y 随x 的增大而减小. ∵x 1<x 2≤-2,∴y 1>y 2.21.解:(1)把点B 的坐标为(3,0)代入抛物线y =-x 2+mx +3得:0=-32+3m +3,解得:m =2.∴y =-x 2+2x +3=-(x -1)2+4.∴顶点坐标为:(1,4).(2)如图所示,连接BC 交抛物线对称轴l 于点P ,则此时PA +PC 的值最小,设直线BC 的解析式为:y =kx +b , ∵点C (0,3),点B (3,0),∴⎩⎪⎨⎪⎧0=3k +b ,3=b ,解得:⎩⎪⎨⎪⎧k =-1,b =3.∴直线BC 的解析式为:y =-x +3. 当x =1时,y =-1+3=2,∴当PA +PC 的值最小时,点P 的坐标为:(1,2).。

相关文档
最新文档