2017年高考真题分类汇编(理

合集下载

2017年高考数学真题合集(含解析)

2017年高考数学真题合集(含解析)
附&若随机变量 < 服从 正 态 分 布 1 $!#"$%#则 6$!0("#<#!
/("%'#!332-##!332-!& 3#!3"3$#槡#!##.3#!#3!
$!!$本小题满分!$分%已知函数 ,$#%'+;$# /$+0$%;# 0#! $!%讨论 ,$#%的单调性' $$%若 ,$#%有两个零点#求+ 的取值范围!
"!*!12$%&'() $"%& *+,-".'()/01*2 3 - !''() '+! 415*6789:;789<='()*5>?5> @ AB
- ""



)
*
p


:
-
"4
! "
4
".+4"
'!"!
"# *!
,$-.
,!5!12U- P J * r (- 0"- .!### * [
的太极图!正 方 形 内 切 圆 中 的 黑 色 部 分 和 白
色部分关于 正 方 形 的 中 心 成 中 心 对 称!在 正
方形内随机 取 一 点#则 此 点 取 自 黑 色 部 分 的
概 率 是 $! ! %
)%!- !
*%.
第$题图
+%!$ (!设 有 下 面 四 个 命 题
,%-
'!
&若
出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的

近五年(2017-2021)高考数学真题分类汇编07 数列

近五年(2017-2021)高考数学真题分类汇编07 数列
(2)已知数列{bn}满足: ,其中Sn为数列{bn}的前n项和.
①求数列{bn}的通项公式;
②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当k≤m时,都有 成立,求m的最大值.
53.(2019·北京(文))设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.
A.1盏B.3盏
C.5盏D.9盏
二、填空题
22.(2020·海南)将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.
23.(2020·浙江)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列 就是二阶等差数列,数列 的前3项和是________.
A.2a4=a2+a6B.2b4=b2+b6C. D.
7.(2020·全国(文))设 是等比数列,且 , ,则 ()
A.12B.24C.30D.32
8.(2020·全国(文))记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则 =()
A.2n–1B.2–21–nC.2–2n–1D.21–n–1
近五年(2017-2021)高考数学真题分类汇编
七、数列
一、单选题
1.(2021·全国(文))记 为等比数列 的前n项和.若 , ,则 ()
A.7B.8C.9D.10
2.(2021·浙江)已知 ,函数 .若 成等比数列,则平面上点 的轨迹是()
A.直线和圆B.直线和别解答,则按第一个解答计分.
43.(2021·全国(理))记 为数列 的前n项和, 为数列 的前n项积,已知 .
(1)证明:数列 是等差数列;

2017全国新课标1高考真题数学理(含解析)

2017全国新课标1高考真题数学理(含解析)

2017年全国高考新课标(一)理科数学第一部分(选择题共分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选出符合题目要求的一项.1.设复数满足,则().A.B.C.D.2.().A.B.C.D.3.设命题,则为().A.B.C.D.4.投篮测试中,每人投次,至少投中次才能通过测试.已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为().A.B.C. D5.已知是双曲线上的一点,是上的两个焦点,若,则的取值范围是().A.B.C.D.6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为尺,米堆的高为尺,问米堆的体积和堆放的米各为多少?”已知斛米的体积约为立方尺,圆周率约为,估算出堆放的米约有().A.斛B.斛C.斛D.斛7.设为所在平面内一点,则().A.B.C.D.8.函数的部分图像如图所示,则的单调递减区间为().A.B.C.D.9.执行右面的程序框图,如果输入的,则输出的().A.B.C.D.10.的展开式中,的系数为().A.B.C.D.11.圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为,则().A.B.C.D.12.设函数,其中,若存在唯一的整数,使得,则的取值范围是().A.B.C.D.第二部分(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若函数为偶函数,则__________.14.一个圆经过椭圆的三个顶点,且圆心在轴的正半轴上,则该圆的标准方程为.15.若实数满足约束条件,则的最大值为.16.在平面四边形中,,,则的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(本小题满分12分)为数列的前项和.已知,.(1)求的通项公式:(2)设,求数列的前项和18.(本小题满分12分)如图,四边形为菱形,,是平面同一侧的两点,⊥平面,平面,.(1)证明:平面平面.(2)求直线与直线所成角的余弦值.19.(本题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.表中,(1)根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)(2)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程;(3)已知这种产品的年利率与的关系为.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:20.(本小题满分12分)在直角坐标系中,曲线与直线交于两点,(1)当时,分别求在点和处的切线方程;(2)轴上是否存在点,使得当变动时,总有?说明理由.21.(本小题满分12分)已知函数.(1)当为何值时,轴为曲线的切线;(2)用表示,中的最小值,设函数,讨论零点的个数.请考生在(22)(23)(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,是的直径,是的切线,交于点(1)若为的中点,证明:是的切线;(2)若,求的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中.直线,圆,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)若直线的极坐标方程为,设与的交点为,,求的面积24.(本小题满分10分)选修4—5:不等式选讲已知函数(1)当时,求不等式的解集;(2)若的图像与轴围成的三角形面积大于,求的取值范围2017年全国高考新课标(一)理科数学一、选择题(满分60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A D C A A B A D C C B D二、填空题(满分30分)13.14.15.16.三、解答题(满分70分)17.(本小题满分12分)解:(Ⅰ)由,可知,可得,即.由于,可得.又,解得(舍去),.所以是首项为,公差为的等差数列,通项公式为.(Ⅱ)由可知,.设数列的前项和为,则.18.(本小题满分12分)解:(Ⅰ)设连结,设,连结,,.在菱形中,不妨设.由,可得.由平面,,可知.又,所以,且.在中,可得,故.在中,可得.在直角梯形中,由,,可得.从而,所以.又,可得平面.因为平面,所以平面平面.(Ⅱ)如图,以为坐标原点,分别以,的方向为轴,轴正方向,为单位长,建立空间直角坐标系.由(Ⅰ)可得,,,,所以,.故.所以直线与直线所成角的余弦值为.19.(本小题满分12分)解:(Ⅰ)由散点图可判断,适宜作为年销售量关于年宣传费的回归方程类型.(Ⅱ)令,先建立关于的线性回归方程.由于,,所以关于的线性回归方程为,因此关于的线性回归方程为.(Ⅲ)由(Ⅱ)知,当时,年销量的预报值,年利润的预报值.根据(Ⅱ)的结果知,年利润的预报值.所以当,即时,取最大值.故年宣传费为千元时,年利润的预报值最大.20.(本小题满分12分)解:(Ⅰ)由题设可得, ,或,又,故在处的导数值为,在点处的切线方程为,即.在处的导数值为,在点处的切线方程为,即.故所求切线方程为和.(Ⅱ)存在符合题意的点,证明如下:设为符合题意的点,直线的斜率分别为.将带入的方程得.故,,从而.故的单调递增区间为,,单调递减区间为.当时,由则直线的倾角与直线的倾角互补,故所以点符合题意.21.(本小题满分12分)解:(Ⅰ)设曲线与轴相切于点,则即,解得,.因此,当时,轴为曲线的切线.(Ⅱ)当时,从而,故在无零点.当时,若,则,故是的零点;若,则,故不是的零点.当时,所以只需考虑在的零点个数.若或,则在无零点,故在单调.而,,所以当时,在有一个零点;当时,在上没有零点.若,则在单调递减,在单调递增,故在中,当时,取得最小值,最小值为.若,即,在无零点;若,即,则在有唯一零点;若,即,由于,,所以当时,在由两个零点;当时,在由一个零点.综上,当或时,有一个零点;当或时,有两个零点;当时,有三个零点.22.解:(Ⅰ)连结,由已知得,,.在中,由已知得,,故.连结,则.又,所以,故,是的切线.(Ⅱ)设,,由已知得,.由射影定理可得,,所以,即.可得,所以.23.解:(Ⅰ)因为,,所以的极坐标方程为,极坐标方程为.(Ⅱ)将代入,得,解得,.故,即.由于的半径为1,所以的面积为.24.解:(Ⅰ)当时,化为.当时,不等式化为,无解;当时,不等式化为,解得;当时,不等式化为,解得;所以的解集为.(Ⅱ)由题设可得,所以函数的图像与轴围成三角形的三个顶点分别为,,,的面积为.由题设得,故.所以的取值范围为.2017年全国新课标1卷数学(理科)选填解析一、选择题1.【答案】A【解析】设,所以由已知可得.,解得.所以.故选A.2.【答案】D【解析】原式.故选D.3.【答案】C【解析】由题意可得即为答案.4.【答案】A【解析】该同学通过测试有两种情况:(1)投中两次,概率为;(2)投中三次,概率为.所以.故选A5.【答案】A【解析】令,,所以解得.故选A.6.【答案】B【解析】由已知可得,而.故答案为B.7.【答案】A【解析】8.【答案】D【解析】由已知可得周期为,所以.又由已知图像可得在区间上单调递减故答案选D.9.【答案】C【解析】由题意运行该程序框图可得当时,循环结束,此时输出.10.【答案】C【解析】由已知可得这一项为,故选C.11.【答案】B【解析】则由上图可知12.【答案】【解析】,因为,所以,,可知先负后正,先减后增,若要保证在上只有一个值,只需要,由此可得二、填空题13.【答案】【解析】为偶函数,,,14.【答案】【解析】假设圆经过的三个顶点为,,,则可知圆心在轴上,所以经过的点只能是,,设圆心为,可得,所以解得,由此可知,故圆的标准方程是15.【答案】【解析】目标区域如下图所示,因为是目标区域内的点与连线的斜率,故的最大值为与点连线斜率,为316.【答案】【解析】因为, , , ,为四边形所以、边要存在长度所以当点位于图中点处时,的长度最小,,解得;当点位于图中点处时,的长度最大,,解得所以得范围为。

中地理高考高考地理真题分类汇编(2017-2021)第3讲 地球的宇宙环境和地球的圈层结构(学生版)

中地理高考高考地理真题分类汇编(2017-2021)第3讲 地球的宇宙环境和地球的圈层结构(学生版)

高考地理五年真题分类汇编(2017-2021)第3讲地球的宇宙环境和地球的圈层结构一、判断题1.(2017·江苏)剧烈的太阳活动会影响地面无线电短波通信。

()二、单选题2.(2020·浙江选考)月球与八大行星一样作自西向东公转,在地球.上的观测者可以观测到月球、地内行星经过太阳表面的天象,且前者比后者经过日面的时间短。

下图为甲地观测到的正午、子夜太阳高度年内变化示意图。

完成下面小题。

(1)若h为11°,则该地夏至日正午太阳高度为()A.18°B.23.5°C.29°D.34.5°(2)若观测者在甲地某日先后观测到月球、水星经过太阳表面的天象,则第二天正午三大天体在星空中的位置可能是()A.B.C.D.3.(2020·北京)下图为我国某地立秋至处暑期间天气晴好条件下辐射量日变化示意图。

读图,完成下列小题。

(1)代表太阳辐射变化的曲线是()C.③D.④(2)该地最可能位于()A.珠江三角洲B.河西走廊C.松嫩平原D.钓鱼岛4.(2019·浙江会考) 2019年1月,“嫦娥四号”月球探测器首次实现在月球背面着陆。

读图完成24、25题。

(1)“嫦娥四号”探测的目标天体属于()A.恒星B.卫星C.行星D.彗星(2)在月球绕地运行过程中,月球探测器()A.在①处经受太阳高温考验B.在①处观测不到水星和金星C.在②处能拍摄到地球照片D.在②处可以观测到太阳黑子5.(2019·浙江选考)月球表面既无大气,又无液态水。

我国“嫦娥四号”是人类首次成功着陆于月球背向地球一面的航天器。

图1为地月系示意图,图2为某时刻月球远离地球的一端看到的太阳系中的明亮天体。

完成下列各题。

(1)图2时刻,月球可能位于轨道上的位置是()C.③D.④(2)嫦娥四号在月面上可观察到()A.地球遮住银河系的光芒B.流星拖着亮线飞过头顶C.太阳在月面上西升东落D.水星金星太阳同在星空6.(2019·北京)莫霍面深度不一,下图为长江中下游某区域莫霍面的等深线分布图。

2017-2022年近6年全国卷高考物理真题分类汇编:牛顿运动定律(Word版含答案)

2017-2022年近6年全国卷高考物理真题分类汇编:牛顿运动定律(Word版含答案)

2017-2022年近6年全国卷高考物理真题分类汇编:牛顿运动定律学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共6小题)1.(2022·全国·高考真题)如图,一不可伸长轻绳两端各连接一质量为m的小球,初始时整个系统静置于光滑水平桌面上,两球间的距离等于绳长L。

一大小为F的水平恒力作用在轻绳的中点,方向与两球连线垂直。

当两球运动至二者相距35L时,它们加速度的大小均为()A.58FmB.25FmC.38FmD.310Fm2.(2019·全国·高考真题)如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上.若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2(F2>0).由此可求出A.物块的质量B.斜面的倾角C.物块与斜面间的最大静摩擦力D.物块对斜面的正压力3.(2019·全国·高考真题)如图所示,在倾角为30 的足够长的光滑的斜面上有一质量为m的物体,它受到沿斜面方向的力F的作用.力F可按图(a)、(b)(c)、(d)所示的四种方式随时间变化(图中纵坐标是F与mg的比值,力沿斜面向上为正).已知此物体在t=0时速度为零,若用v1、v2、v3、v4分别表示上述四种受力情况下物体在3秒末的速率,则这四个速率中最大的是()A.v B.v C.v D.v4.(2018·全国·高考真题)如图,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态.现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定的偏离竖直方向某一角度(橡皮筋在弹性限度内).与稳定在竖直位置时相比,小球高度A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定5.(2018·全国·高考真题)如图,轻弹簧的下端固定在水平桌面上,上端放有物块P,系统处于静止状态,现用一竖直向上的力F作用在P上,使其向上做匀加速直线运动,以x表示P离开静止位置的位移,在弹簧恢复原长前,下列表示F和x之间关系的图像可能正确的是()A.B.C.D.6.(2018·全国·高考真题)如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2.下列反映a1和a2变化的图线中正确的是()A .B .C .D .二、多选题(本大题共8小题)7.(2021·全国·高考真题)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动,物体通过的路程等于0s 时,速度的大小为0v ,此时撤去F ,物体继续滑行02s 的路程后停止运动,重力加速度大小为g ,则( )A .在此过程中F 所做的功为2012mv B .在此过中F 的冲量大小等于032mvC .物体与桌面间的动摩擦因数等于2004v s gD .F 的大小等于物体所受滑动摩擦力大小的2倍8.(2021·全国·高考真题)水平地面上有一质量为1m 的长木板,木板的左端上有一质量为2m 的物块,如图(a )所示。

新高中地理高考高考地理五年真题分类汇编(2017-2021)第11讲 大规模的海水运动(教师版)

新高中地理高考高考地理五年真题分类汇编(2017-2021)第11讲 大规模的海水运动(教师版)

高考地理五年真题分类汇编(2017-2021)第11讲大规模的海水运动一、单选题1.(2020·浙江)下图为两极地区多年平均海冰面积年内变化图。

对比两极地区年内海冰消融速度差异,原因可能是()A. 南极地区受西风漂流影响,海冰消融慢B. 北极地区受北大西洋暖流影响,海冰消融快C. 南极地区下垫面比热小,吸热升温快,海冰消融快D. 北极地区臭氧空洞小,太阳辐射强度大,海冰消融慢【答案】C【考点】大气受热过程,世界洋流分布规律及其对地理环境的影响【解析】【分析】温度高会导致海冰融化,左图8、9月份海冰面积最小,说明8、9月份气温高,应该北极附近;右图2月份海冰面积最小,说明2月份气温高,应该是南极附近。

据图分析北极附近海冰3月份达到13百万km2,9月份达到5百万km2,6个月消融了8百万km2;南极附近海冰9月份达到16百万km2,2月份达到2百万km2,7个月消融了14百万km2;对比可知,应该是南极附近海冰消融速度快,AB错误。

北极附近是海洋,南极附近是大陆,南极附近下垫面比热小,吸热升温快,导致海冰消融快,C 正确。

南极附近有臭氧层空洞,若北极地区臭氧层空洞小,到达地面的紫外线少,太阳辐射应该比南极较弱,D错误。

故答案为:C。

【点评】陆地的比热容较海洋小,近地面吸收相同的太阳辐射能量,升温快,气温高于海洋,当近地面释放能量时,陆地降温较海洋快,气温低于海洋,因此陆地气温日较差、年较差大于海洋。

2.(2020·浙江)下图为世界部分区域洋流分布示意图,图中虚线代表洋流。

完成下面小题。

(1)图中甲洋流()A.位于副极地环流圈B.呈逆时针方向流动C.受极地东风影响大D.在性质上属于寒流(2)关于图中洋流的影响,叙述正确的是()A.①处夏季时温和多雨B.②处分布着峡湾地貌C.③处行船时流急浪高D.④处有世界著名渔场【答案】(1)D(2)C【考点】世界洋流分布规律及其对地理环境的影响【解析】【分析】(1)图中甲洋流是西风漂流,位于南半球,南半球中高纬度没有副极地环流圈,A错误。

2017年高考真题全国1卷理科数学(附答案解析)

2017年高考真题全国1卷理科数学(附答案解析)
(1)证明:平面 PAB⊥平面 PAD;
(2)若 PA=PD=AB=DC, ∠APD = 90o,求二面角 A−PB−C 的余弦值.
19.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取
16 个零件,并测量其尺寸(单位: cm ).根据长期生产经验,可以认为这条生产线正
( ) 常状态下生产的零件的尺寸服从正态分布 N µ,σ 2 .
x − y ≤ 0
15.已知双曲线 C

x2 a2

y2 b2
= 1(a
> 0,b > 0) 的右顶点为
A ,以
A 为圆心, b
为半径作
圆 A ,圆 A 与双曲线 C 的一条渐近线于交 M 、 N 两点,若 ∠MAN = 60o,则 C 的离心
率为__________.
16.如图,圆形纸片的圆心为 O,半径为 5 cm,该纸片上的等边三角形 ABC 的中心为 O.D,E,F 为圆 O 上的点,△DBC,△ECA,△FAB 分别是以 BC,CA,AB 为底边的 等腰三角形.沿虚线剪开后,分别以 BC,CA,AB 为折痕折起△DBC,△ECA,△FAB, 使得 D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm3) 的最大值为______.
(1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在
( µ − 3σ , µ + 3σ ) 之外的零件数,求 P ( X ≥ 1) 及 X 的数学期望; (2)一天内抽检零件中,如果出现了尺寸在 ( µ − 3σ , µ + 3σ ) 之外的零件,就认为这
条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的 16 个零件的尺寸:

【数学】2017年高考真题——全国III卷(理)(解析版)

【数学】2017年高考真题——全国III卷(理)(解析版)

2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22(,)1=+=A x y x y ,{}(,)==B x y y x ,则A B 中元素的个数为( )A .3B .2C .1D .0 2.设复数z 满足(1+i)z =2i ,则∣z ∣=( )A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4. 5()(2)+-x y x y 的展开式中33x y 的系数为( ) A.-80 B.-40 C.40 D.805.已知双曲线C:22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆 221123x y += 有公共焦点,则C 的方程为( ) A.221810x y -= B. 22145x y -= C. 22154x y -= D. 22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是( ) A .f (x )的一个周期为−2π B .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N的最小值为( )A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4 C.π2 D.π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( ) A.-24 B.-3 C.3 D.810.已知椭圆C :22221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )C.3D.1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =( )A.12-B.13C.12D.1 12. 在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上. 若AP AB AD λμ=+,则λμ+的最大值为( )A.3C. D.2二、填空题:本题共4小题,每小题5分,共20分.13. 若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34=-z x y 的最小值为________.14.设等比数列{}n a 满足121+=-a a ,133-=-a a ,则4=a ________.15.设函数10()20xx xf xx+≤⎧=⎨>⎩,,,,则满足1()()12f x f x+->的x的取值范围是_________.16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所称角的最小值为45°;④直线AB与a所称角的最小值为60°;其中正确的是________.(填写所有正确结论的编号)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin A cos A=0,a,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处学科#网理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?19.(12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD ⊥平面ABD ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.20.(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ,求m 的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ, M 为l 3与C 的交点,求M 的极径.23.[选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围.参考答案1.【答案】B 【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B表示两直线与圆的交点,由图可知交点的个数为2,即AB 元素的个数为22.【答案】C 【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则22112z + 3.【答案】A 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误, 4.【答案】C 【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y ⋅-+⋅-=,则33x y 的系数为40,故选C.5.【答案】B 【解析】∵双曲线的一条渐近线方程为5y =,则5b a =又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B. 6.【答案】D 【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.7.【答案】D【解析】程序运行过程如下表所示:S Mt初始状态 0 100 1 第1次循环结束 100 10-2 第2次循环结束9013此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8. 【答案】B 【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径221312r ⎛⎫=-= ⎪⎝⎭则圆柱体体积23ππ4V r h ==,故选B.9.【答案】A 【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d . 则2326a a a =⋅,即()()()211125a d a d a d +=++ 又∵11a =,代入上式可得220d d += 又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A. 10.【答案】A 【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴222ab d a a b==+又∵0,0a b >>,则上式可化简为223a b = ∵222b ac =-,可得()2223a a c=-,即2223c a =∴63c e a ==,故选A 11.【答案】C【解析】因为f (x )=x 2﹣2x +a (e x ﹣1+e﹣x +1)=﹣1+(x ﹣1)2+a (e x ﹣1+)=0,所以函数f (x )有唯一零点等价于方程1﹣(x ﹣1)2=a (e x ﹣1+)有唯一解,等价于函数y =1﹣(x ﹣1)2的图象与y =a (e x ﹣1+)的图象只有一个交点.①当a =0时,f (x )=x 2﹣2x ≥﹣1,此时有两个零点,矛盾;②当a <0时,由于y =1﹣(x ﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减, 且y =a (e x ﹣1+)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y =1﹣(x ﹣1)2的图象的最高点为A (1,1),y =a (e x ﹣1+)的图象的最高点为B (1,2a ),由于2a <0<1,此时函数y =1﹣(x ﹣1)2的图象与y =a (e x ﹣1+)的图象有两个交点,矛盾;③当a >0时,由于y =1﹣(x ﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减, 且y =a (e x ﹣1+)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y =1﹣(x ﹣1)2的图象的最高点为A (1,1),y =a (e x ﹣1+)的图象的最低点为B (1,2a ),由题可知点A 与点B 重合时满足条件,即2a =1,即a =,符合条件;综上所述,a =,故选:C . 12.【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE . 以A 为原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系,则C 点坐标为(2,1). ∵||1CD =,||2BC =. ∴22125BD =+=. ∵BD 切C 于点E . ∴CE ⊥BD .∴CE是Rt BCD△中斜边BD上的高.12||||22||||||BCDBC CDSECBD BD⋅⋅⋅====△即C∵P 在C上.∴P点的轨迹方程为224(2)(1)5-+-=x y.设P点坐标00(,)x y,可以设出P点坐标满足的参数方程如下:21xyθθ⎧=⎪⎪⎨⎪=⎪⎩而00(,)AP x y=,(0,1)AB =,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB ADλμλμμλ=+=+=∴112xμθ==+,1yλθ==.两式相加得:112)2sin()3λμθθθϕθϕ+=+++=++=++≤(其中sinϕcosϕ=)当且仅当π2π2kθϕ=+-,k∈Z时,λμ+取得最大值3.二、填空题:(本题共4小题,每小题5分,共20分)13.【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,z 值越小. 由图可知:z 在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.14.【答案】8-【解析】{}n a 为等比数列,设公比为q .121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②, 显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =, ()3341128a a q ∴==⨯-=-.15.【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.16. 【答案】②③【解析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1, 故||1AC =,2AB =,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴正方向,CB 为y 轴正方向, CA 为z 轴正方向建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)=a ,||1=a .B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)=b ,||1=b . 设B 点在运动过程中的坐标(cos ,sin ,0)B θθ', 其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--,||2AB '=. 设AB '与a 所成夹角为π[0,]2α∈,则(cos ,sin ,1)(0,1,0)22cos |sin |[0,]22a AB θθαθ--⋅==∈'. 故ππ[,]42α∈,所以③正确,④错误.设AB '与b 所成夹角为π[0,]2β∈,cos (cos ,sin ,1)(1,0,0)|cos |2'⋅='-⋅='=βθθθAB b b AB b AB .当AB'与b 夹角为60︒时,即π3α=,sin 32πθα===. ∵22cos sin 1θθ+=,∴|cos |θ=∴1cos |cos |22βθ==. ∵π[0,]2β∈.∴π=3β,此时AB '与b 夹角为60︒. ∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分.17. 解:(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈, ∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵12,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-==∵AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得CD =由勾股定理AD 又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABD S AD AB =⋅⋅=△18.解:(1)易知需求量x 可取200,300,500()21612003035P X +===⨯()3623003035P X ===⨯ ()257425003035P X ++===⨯.则分布列为:⑵①当200n ≤时:,此时max 400,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦ 880026800555n n n -+=+=此时max 520Y =,当300n =时取到.③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦ 320025n-=此时520Y <.④当500n ≥时,易知Y 一定小于③的情况.综上所述:当300n =时,Y 取到最大值为520.19. 解:(1)取AC 中点为O ,连接BO ,DO ;ABC ∆为等边三角形∴BO AC ⊥ ∴AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩∴∆≅∆ABD CBD . ∴AD CD =,即ACD ∆为等腰直角三角形, ADC ∠为直角又O 为底边AC 中点 ∴DO AC ⊥令AB a =,则AB AC BC BD a ====易得:22OD a =,32OB a = ∴222OD OB BD +=由勾股定理的逆定理可得2DOB π∠=即OD OB ⊥OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面OD ABC ∴⊥平面 又∵OD ADC ⊂平面由面面垂直的判定定理可得ADC ABC ⊥平面平面 (2)由题意可知--=D ACE B ACE V V 即B ,D 到平面ACE 的距离相等 即E 为BD 中点以O 为原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,30,,02B a ⎛⎫ ⎪ ⎪⎝⎭,30,,44a E a ⎛⎫ ⎪ ⎪⎝⎭ 易得:3,,244a a AE a ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭ 设平面AED 的法向量为n 1,平面AEC 的法向量为n 2,则110⎧⋅=⎪⎨⋅=⎪⎩AE n AD n ,解得()13,1,3=n220⎧⋅=⎪⎨⋅=⎪⎩AE n OA n ,解得()20,1,3=-n 若二面角D AE C --为θ,易知θ为锐角,则12127cos 7⋅==⋅θn n n n20.解:(1)显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y xx my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-. 1212OA OBx x y y ⋅=+ 12(2)(2)my my =++21212(1)2()4m y y m y y =++++24(1)2(2)4m m m =-+++0=∴OA OB ⊥,即O 在圆M 上. (2)若圆M 过点P ,则0AP BP ⋅= 1212(4)(4)(2)(2)0x x y y --+++= 1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++= 化简得2210m m --=解得12m =-或1①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=,半径||r OQ ==则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y , 12012y y y +==,0023x y =+=,半径||r OQ ==则圆22:(3)(1)10M x y -+-=21.解:(1) ()1ln f x x a x =--,0x >则()1a x af x x x-'=-=,且(1)0f = 当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意; 当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意 综上所述1a =.(2)当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k+<,*k ∈N 一方面:221111111ln(1)ln(1)...ln(1)...112222222n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n +++<.另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=>当3n ≥时,2111(1)(1)...(1)(2,e)222n +++∈∵*m ∈N ,2111(1)(1)...(1)222n m +++<,∴m 的最小值为3.22.解:(1)将参数方程转化为一般方程()1:2l y k x =- ……①()21:2l y x k =+ ……② ①⨯②消k 可得:224x y -=即P 的轨迹方程为224x y -=;(2)将参数方程转化为一般方程3:0l x y +-= ……③联立曲线C 和3l 2204x y x y ⎧+=⎪⎨-=⎪⎩解得2x y ⎧=⎪⎪⎨⎪=⎪⎩ 由cos sin x y ρθρθ=⎧⎨=⎩解得ρ=即M.23.解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.(2)不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥. ①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦; ②当12x -<<时,()2max 3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭; ③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦.综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考真题分类汇编(理数):专题2 导数一、单选题(共3题;共6分)1、(2017•浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A、B、C、D、2、(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为()A、﹣1B、﹣2e﹣3C、5e﹣3D、13.二、解答题(共8题;共50分)4、12分)(2017•衡水金卷二模)设函数f(x)=2lnx+x2﹣2ax(a>0).(Ⅰ)若函数f(x)在区间[1,2]上的最小值为0,求实数a的值;(Ⅱ)若x1,x2(x1<x2)是函数f(x)的两个极值点,且f(x1)﹣f(x2)>m恒成立,求实数m的取值范围.5、(2017•山东)已知函数f(x)=x²+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分)(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.6、(2017•北京卷)已知函数f(x)=excosx﹣x.(13分)(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.7、(2017·天津)设a∈Z,已知定义在R上的函数f(x)=2x^4+3x³﹣3x²﹣6x+a在区间(1,2)内有一个零点x。

,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x。

)∪(x。

,2],函数h(x)=g(x)(m﹣x。

)﹣f(m),求证:h(m)h(x。

)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x。

)∪(x。

,2],满足| ﹣x。

|≥8、(2017•江苏)已知函数f(x)=x³+ax²+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于,求a的取值范围.9、(2017•新课标Ⅰ卷)已知函数f(x)=ae²x+(a﹣2)ex﹣x.(12分)(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.10、(2017•新课标Ⅱ)已知函数f(x)=ax²﹣ax﹣xlnx,且f(x)≥0.(Ⅰ)求a;(Ⅱ)证明:f(x)存在唯一的极大值点x。

,且e﹣2<f(x。

)<2﹣2 .11、1. (2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(Ⅰ)若f(x)≥0,求a的值;(Ⅱ)设m为整数,且对于任意正整数n,(1+1/2)(1+1/2²)…(1+ 1/2ⁿ)<m,求m的最小值.12. (2017•衡水金卷二模)已知函数f(x)=|x﹣t|,t∈R(Ⅰ)若t=1,解不等式f(x)+f(x+1)≤2(Ⅱ)若t=2,a<0,求证:f(ax)﹣f(2a)≥af(x)13. (2016•广西质检)已知函数f(x)=ax-1+ax(a>0)在(1,+∞)上的最小值为15,函数g(x)=|x+a|+|x+1|.(1)求实数a的值;(2)求函数g(x)的最小值.14. 已知函数f(x)=|x-a|.(1)若f(x)≤m的解集为x|-1≤x≤5,求实数a,m的值;(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).15. (2017•西安质检)设函数f(x)=x-52+|x-a|,x∈R.(1)求证:当a=-12时,不等式ln f(x)>1成立;(2)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.16. (2016•河北三市二联)设函数f(x)=|x+2|-|x-1|.(1)求不等式f(x)>1的解集;(2)若关于x的不等式f(x)+4≥|1-2m|有解,求实数m的取值范围.一、单选题1、【答案】D【考点】函数的图象,函数的单调性与导数的关系【解析】【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f (x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能2、【答案】A【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值【解析】【解答】解:函数f(x)=(x²+ax﹣1)ex﹣1 ,可得f′(x)=(2x+a)ex﹣1+(x²+ax﹣1)ex﹣1 ,x=﹣2是函数f(x)=(x²+ax﹣1)ex﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)ex﹣1+(x2﹣x﹣1)ex﹣1 ,=(x2+x﹣2)ex﹣1 ,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.【分析】求出函数的导数,利用极值点,求出a,然后判断函数的单调性,求解函数的极小值即可.3、【答案】C【考点】利用导数研究函数的单调性,导数在最大值、最小值问题中的应用,函数的零点与方程根的关系,函数的零点【分析】通过转化可知问题等价于函数y=1﹣(x﹣1)²的图象与y=a(ex-1+ )的图象只有一个交点求a的值.分a=0、a<0、a>0三种情况,结合函数的单调性分析可得结论.二、解答题4、【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)求导数,分类讨论,确定函数的单调性,利用函数f(x)在区间[1,2]上的最小值为0,求实数a的值;(Ⅱ)f(x1)﹣f(x2)=(2lnx1+x12﹣2ax1)﹣(2lnx2+x22﹣2ax2)= ﹣x12+2lnx12,令x12=t,则t>1,g(t)= ﹣t﹣2lnt,x,求导,确定函数的单调性,求最值,即可求实数m的取值范围.【解答】解:(Ⅰ)f′(x)= ,0<a≤2,f′(x)≥0,f(x)在区间[1,2]上单调递增,∴f(x)min=f(1)=1﹣2a=0,∴a= ;a>2,令f′(x)=0,则x1= ,x2= ,2<a<,x1= <1,x2= ∈(1,2),∴函数在(1,x1)内单调递减,在(x1,2)内单调递增,∴f(x)min=f(x1)<f(1)=1﹣2a<0.a≥ ,x1= ,x2= ≥2,∴函数在(1,2)内单调递减,∴f(x)min=f(2)=2ln2+4﹣4a=0.∴a= ln2+1<(舍去)综上所述,a= ;(Ⅱ)x1,x2是f′(x)= 在(0,+∞)内的两个零点,是方程x2﹣ax+1=0的两个正根,∴x1+x2=a>0,x1x2=1,△>0,∴a>2,∴x1>1∴f(x1)﹣f(x2)=(2lnx1+x12﹣2ax1)﹣(2lnx2+x22﹣2ax2)= ﹣x12+2lnx12,令x12=t,则t>1,g(t)= ﹣t﹣2lnt,∴g′(t)=﹣<0,∴g(x)在(1,+∞)上单调递减,∴g(t)>g(1)=0,∴m≤0.【点评】本题考查导数知识的综合运用,考查函数的单调性与最值,正确构造函数,合理求导是关键.5、【答案】解:(Ⅰ)f(π)=π²﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π²﹣2)=2π(x﹣π).化为:2πx﹣y﹣π²﹣2=0.(Ⅱ)h(x)=g (x)﹣a f(x)=ex(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=ex(cosx﹣sinx+2x﹣2)+ex(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(ex﹣a)=2(x﹣sinx)(ex﹣elna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(i)a≤0时,ex﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(ii)a>0时,令h′(x)=2(x﹣sinx)(ex﹣elna)=0.解得x1=lna,x²=0.①0<a<1时,x∈(﹣∞,lna)时,ex﹣elna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,ex﹣elna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,ex﹣elna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,ex﹣elna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,ex﹣elna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,ex﹣elna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].【考点】导数的加法与减法法则,导数的乘法与除法法则,函数的单调性与导数的关系,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数研究曲线上某点切线方程【解析】【分析】(Ⅰ)f(π)=π²﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(Ⅱ)h(x)=g (x)﹣a f(x)=ex(cosx﹣sinx+2x﹣2)﹣a(x²+2cosx),可得h′(x)=2(x﹣sinx)(ex﹣a)=2(x﹣sinx)(ex﹣elna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.6、【答案】(1)解:函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)解:函数f(x)=excosx﹣x的导数为f′(x)=ex(cosx﹣sinx)﹣1,令g(x)=ex(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=ex(cosx﹣sinx﹣sinx﹣cosx)=﹣2ex•sinx,当x∈[0,],可得g′(x)=﹣2ex•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos ﹣=﹣.【考点】利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程【解析】【分析】(1.)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2.)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.7、【答案】(Ⅰ)解:由f(x)=2x^4+3x³﹣3x²﹣6x+a,可得g(x)=f′(x)=8x³+9x²﹣6x ﹣6,进而可得g′(x)=24x²+18x﹣6.令g′(x)=0,解得x=﹣1,或x= .当x变化时,g′(x),g(x)的变化情况如下表:x (-∞,-1) (-1, ) ( ,+∞)g'(x) +-+g(x) ↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x。

相关文档
最新文档