高考数学排列组合、概率统计练习题

合集下载

上海市高三数学 排列组合 二项式 概率统计复习题(含解析)沪教版(1)

上海市高三数学 排列组合 二项式 概率统计复习题(含解析)沪教版(1)

排列组合二项式概率统计概念:1、排列数:!(1)(2)(1)()!mn n P n n n n m n m =---+=-2、组合数:(1)(2)(1)!!!()!m mn nm m P n n n n m n C P m m n m ---+===-,规定01n C =。

3、组合数的性质:m n m n n C C -=, 111m m m n n n C C C ++++=,11k k n n kC nC --=, 1121m m mm m m m m n n C C C C C ++++++++=。

4、排列与组合的关系m m mn n m P C P =5、二项式定理:011222()n n n n r n r rn nn n n n n a b C a C a b C a b C a b C b---+=+++++6、1r n r rr n T C a b -+= b 的指数与组合数的上标一致。

7、 ○1二项展开式的各二项式系数之和0122nn n n n n C C C C ++++=○2二项展开式的奇数项之和024n n n C C C +++=偶数项之和13512n n n n C C C -+++=8、 总体平均数121()N x x x Nμ=++9、 总体中位数的意义:从小到大的次序排列,位于正当中位置的数是中位数,当N 为偶数时,当中位置的两个数的平均数是总体中位数 10、总体方差2222121[]N x x x Nσμμμ=-+-++-()()()=2222121N x x x Nμ=+++-()11、样本方差(总休标准差的点估计值):s =12、随机抽样(抽签法、随机数表法):13、系统抽样:等间隔抽样,(每一个间隔抽取一个) 14、分层抽样:按比例抽样,比例n =N nk N=样本数总体数(一)排列与组合1、在一块并排10垄的田地中,选择两垄分别种植A 、B 两种作物,每种作物种植一 垄,为有利于作物生长,要求A 、B 两种作物的间隔不小于6 ,不同的种植方法共有多少种?解:第一步:选垄 ,分类完成。

2023高考数学试题汇编(排列组合统计概率)

2023高考数学试题汇编(排列组合统计概率)

2023高考数学试题汇编(无答案)排列与组合1. (2023甲卷理科T9)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为A.120B.60C.40D.302. (2023乙卷理科T7)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种3. (2023新一卷T7)记S n 为数列{a n }的前n 项和,设甲:{a n }为等差数列:乙:{nn S }为等差数列,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件4. (2023新一卷T13)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有 种(用数字作答)5. (2023新二卷T3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同抽样结果共有( )A.1520045400C C ⋅种 B.4020020400C C ⋅种 C.3020030400C C ⋅种 D.2020040400C C ⋅种 6. (2023上海卷T10)已知(1+2023x )100+(2023−x )100=a 0 +a 1x +a 2x 2+…+a 100x 100,其中a 0,a 1,a 2…a 100∈R若0≤k ≤100且k ∈N,当a k <0时,k 的最大值是 .7. (2023上海卷T12)空间内存在三点A 、B 、C,满足AB=AC=BC=1,在空间内取不同两点(不计顺序),使得这两点与A 、B 、C 可以组成正四棱锥,求方案数为 .8. (2023天津卷T11)在(2x 3-x1)6的展开式中,x 2项的系数为 . 概率与统计1. (2023甲卷理科T6)有50人报名足球俱乐部,60人报名乒乓球俱乐部,结束70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球,俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.12. (2023甲卷文科T4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为3. (2023乙卷理科T5,文科T7)设O 为平面坐标系的坐标原点,在区域{(x,y)|1≤x 2+y 2≤4}内随机取一点,记该点为A,则直线OA 的倾斜角不大于4的概率为 ( )4. (2023乙卷文科T9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A. B. C. D.5. (2023新一卷T 9)有一组样本数据x 1,x 2,…,x 6,其中x 1是最小值,x 6是最大值,则A.x 2,x 3,x 4,x 5的平均数等于x 1,x 2,…,x 6的平均数B.x 2,x 3,x 4,x 5的中位数等于x 1,x 2,…,x 6的中位数C.x 2,x 3,x 4,x 5的标准差不小于x 1,x 2,…,x 6的标准差D.x 2,x 3,x 4,x 5的极差不大于x 1,x 2,…,x 6的极差6. (2023新二卷T12)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输,单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码:三次传输时,收到的信专中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率7.(2023上海卷T9)国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总额为8.(2023上海卷T14)根据身高和体重散点图,下列说法正确的是( )A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关9.(2023天津卷T7)调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数r ,下列说法正确的是( )0.8245A. 花瓣长度和花萼长度没有相关性B. 花瓣长度和花萼长度呈现负相关C. 花瓣长度和花萼长度呈现正相关D. 若从样本中抽取一部分,则这部分的相关系数一定是0.824510.(2023天津卷T13)甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.11.(2023甲卷理科T19)为探究某药物对小鼠的生长作用,将40只小鼠均分为两组,分别为对照组(不药物)和实验组(加药物)(1)设其中两只小鼠中对照组小鼠数目为X,求X的分布到和数学期望:(2)测得40只小鼠体重如下(单位:g):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.2,14.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0(i)求40只小鼠体重的中位数m,并完成下面2×2列联表:(i)根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用参考数据:12.(2023甲卷文科T19)一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g)试验,结果如下:对照组的小白鼠体重的增加量从小到大排序为:15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数(2)(i)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表(∈)根据(∈)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()()22n ad bc a b c d a c b d χ-=++++13. (2023乙卷理科T17文科T17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,y(i=1,2,…10),试验结果如下记zi=xi -yi(i=1,2,…,10),记z 1,z 2,…,z 1的样本平均数为z ,样本方差为s 2,(1)求z ,s 2 (2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2102s ,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)14. (2023新一卷T21)甲、两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮,无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率:(3)已知:若随机变量x 服从两点分布,且P(x i =1)=1−P(x i =0)=q i,i=1,2,…,n,则∑∑=n i ni i i q X )(E ,.记前n 次(即从第1次到第n 次)投篮中甲投篮的次数为Y ,求E(Y)15. (2023新二卷T19)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图: 利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将患者判定为阳性的概率,记为q(c).假设数据在组内均匀分布,以事件发生的概率作为相应事件发生的概率(1)当漏诊率p(c)=0.5%时,求临界值c 和误诊案q(c);(2)设函数f(c)=p(c)+q(c).当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值16.(2023上海卷T19)21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到的模型为红色外观,事件B取到模型有棕色内饰,求P(B)、P(B/A),并据此判断事件A和事件B是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:1、拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及仅外观或仅内饰同色;2、按结果的可能性大小,概率越小奖项越高;(3)奖金额为一等奖600元,二等奖300元,三等奖150元,请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望。

高三数学排列、组合、概率练习

高三数学排列、组合、概率练习

排列、组合、概率练习120分一、选择题(10×5'=50')1. 8本不同的书分给甲、乙、丙3人;其中有两人各得3本;一人得2本;则不同的分法共有( ) A.560种 B.280种 C.1 680种 D.3 360种2.从不同号码的5双鞋中任取4只;其中恰好有一双的取法种数为( ) A.120 B.240 C.180 D.603.停车场划出一排12个停车位置;今有8辆车需要停放;要求空车位连在一起;不同的停车方法有( )A.A 88种B.A 812种C.A 88·C18种D.A 88·C 19种M ={a |a ∈N ;1≤a ≤10};A 是M 的三元素子集且至少有两个偶数元素;则这样的集合A 的个数是( )5.某单位有三个科室;为实现减员增效;每科室抽调2人去参加再就业培训;培训后这6人中有2人返回单位;但不回到原科室工作;且每科室至多安排一人;问共有多少种不同的安排方法( ) A.75种 B.42种 C.30种 D.15种6.两个事件对立是这两个事件互斥的 ( )7.打靶时;甲每打10次可中靶8次;乙每打10次可中靶7次;若两人同时射击一次;他们都中靶的概率为 ( ) A.53 B. 43 C. 2512 D.2514 21;他连续测试2次;则恰有1次获得通过的概率为 ( ) A.41 B. 31C. 21D. 34 9.一个小组有8个学生在同年出生;每个学生的生日都不相同的概率是 ( )A. 83658365C C B.3658C. 88365365AD.88365365C10.在正方体8个顶点中任取4个;其中4点恰好能构成三棱锥的概率是 ( ) A.3532 B. 3531 C. 3528 D. 3529二、填空题(4×3'=12')11.将数字1、2、3、4、5、6、7填入一排编号1、2、3、4、5、6、7的七个方格中;现要适当调换;但每次调换时;恰有四个方格中的数字不变;共有不同的调换方式种数为 .12.在分别标有2、4、6、8、11、12、13的七张卡片中任取两张;用卡片上的两个数组成一个分数;在所得分数中既约分数的概率为 .13.有6群鸽子任意分群放养在甲、乙、丙3片不同的树林里;则甲树林恰有3群鸽子的概率为.14.电子设备的某一部件由9个元件组成;其中任何一个元件损坏了;这个部件就不能工作.假定每个元件能使用3 000小时的概率为0.99;则这个部件能工作3 000小时的概率为(结果保留两位有效数字).三、解答题(10'+4×12'=58')15.从7个班中抽出10名学生去做某项工作;每班至少抽出1人;若只考虑各班抽出的人数;而不考虑具体人选;有几种不同抽法?16.已知函数y=f(x)的定义域为A={x|1≤x≤7,x∈N};值域为B={0;1}.(1)试问这样的函数有多少个?(2)使定义域中恰有4个不同元素;对应的函数值都是1;这样的函数有多少个?17.一批高梁种子;其发芽率是0.8;现每穴种3粒.问:(1)一穴中有两粒出芽的概率是多少?(2)一穴中小于3粒出芽的概率是多少?18.排队人数0 1 2 3 4 5人以上概率0.1求:(1)至多有2个人排队的概率;(2)至少有2人排队的概率.19.一个口袋内装有大小相同的7个白球和3个黑球;从中任意摸出2个;得到1个白球和1个黑球的概率是多少?排列、组合、概率练习120分答案1.C33223538A A C C ••=1 680.2.C 2C 11·C 24+C 25·C 12·C 13=180或C 15·C24·2·2=180.3.D 插空法.空车位插入8辆车的9个空格;故有C 19·A 88..M 中有5个奇数;5个偶数;至少取2个偶数;∴C 25C 15+C 35C 05=60个.5.B分两类:(1)返回两人来自同一科室;返回有A 22种;故有C 13·A22=6;(2)两人来自不同的科室;返回有2+1=3,故有(C 26C 13)·3=36种.共有42种.由定义知选A .7.D ∵54×107=2514,∴选D. 8.C ∵21×21+21×21=21,∴选C.8个学生的生日占用8天;每个学生的生日都有365种可能.10.D 所有4点的组合数为48C ;共面的情况:6个面、6个对角面;三棱锥的4个顶点不共面;故所求概率为48C -1235294844=C C .11.70 从7个方格选出3个方格;有C 37;3个方格的数字重排;但没有一个数字与先前数字相同有2种;故共有C 37·2=70(种).12.2111 从中取一奇数、一偶数组成的分数既约;又11、13互质;∴概率为2722221215A A A C C +=2111. 13.729160 ∵72916032C 6336=•.14. 0.91 因为各元件能否正常工作是相互独立的;所以所求概率P 9≈0.91.“1,1,1”或“2,1,0”或“3,0,0”.因此可分三类:第一类:若再从7个班中抽出3个班每班1人;有C 37种方法.第二类:若再从7个班中抽出2个班每班分别有2人或1人;有A27种方法.第三类:若再从7个班中抽出1个班;从中抽出3人;有C 17种方法.根据加法原理共有:N=C 37+P 27+C 17=84种方法.解析二:[隔板法]本题相当于将10个名额分成7组(每组至少1个名额)对应7个班.因此;可作如下考虑:10人形成9个相邻空位;欲分成7部分;需用6个“隔板”任意插入9个空位中;不同的插入方法共有:C 69=84(种).点评:本例由于只考虑人数;而不考虑具体人选.即元素之间不可区分;故才可用上述两种方法.16.(1)先对A 中7个元素分为两组有C 17+C27+C37=63种;再将每次分组分别对应0;1有A 22种;故共有63×2=126个这样的函数.(2)从B 中0;1分别在A 中选元素入手;由(1)先有C 47种;第二步由0选只有1种;故共有C 47=35种.17.事件A 恰好发生k 次的概率为k n C P k (1-P )n-k ;事件A 发生偶数次的概率为 0nC P 0(1-P )n +2n C P 2(1-P )n -2+ 4n C ·P (1-P )n -4+…+[(1-P )+P ]n =0n C (1-P )n P 0+1n C (1-P )n -1P +2n C ·(1-P )n -2·P 2+3n C (1-P )n -3P 3+… ①[(1-P )+(-P )]n =0n C (1-P )n (-P )n +1n C (1-P )n -1·(-P )+ 2n C (1-P )n -2(-P )2+3n C (1-P )n -3(-P )3+… ② ①+②得[(1-P )+P ]n +[(1-P )+(-P )]n =2[0n C (1-P )n P 0+0n C (1-P )n -2·P 2+…]. 所以0n C (1-P )n ·P 0+2n C (1-P )n -2·P 2+…=21[1+(1-2P )n ]. 故事件A 发生偶次的概率为2)21(1nP -+.18.(1)设没有人排除为事件A ;1个人排队为事件B ;2个人排队为事件C ;则P (A )=0.1, P (B )=0.16, P (C )=0.3;依题意A 、B 、C 彼此互斥;所以至多2个人排队的概率为: P (A +B +C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56. (2)设至少2个人排队为事件D ;则D 为至多1个人排队;即D =A +B ;因此 P (D )=1-P (D )=1-P (A +B )=1-[P (A )+P (B )]=1-(0.1+0.16)=0.74.19. 我们想像着给白球编号;于是有白1;白2;白3;白4;白5;白6;白7共7个白球;又想像着给黑球编号;有黑1;黑2;黑3共3个黑球.从这十个不同的球中;任意取出两个球的取法共有12910210⨯⨯=C =45种.每一种取法就是一个基本事件.由于这些球大小相同;我们认为取得白1和白2的可能性与取得黑1和黑2的可能性是相等的.这就是说;这45种取法中;每两种的可能性都是相等的.这样就得到一个含有45个基本事件的等可能基本事件集.这样来假设等可能性就合乎情理了.取得一个黑球和白球的取法共有多少呢?根据分步计数原理;共有⨯=⨯71317C C 3=21种取法.∴P (摸得一个白球和一个黑球)=1574521=.。

数学中的排列组合与概率运算测试题

数学中的排列组合与概率运算测试题

数学中的排列组合与概率运算测试题在我们的日常生活和学术研究中,数学中的排列组合与概率运算扮演着至关重要的角色。

它们不仅是数学学科的重要组成部分,还在众多领域如统计学、物理学、计算机科学等中有着广泛的应用。

为了帮助大家更好地理解和掌握这部分知识,下面为大家准备了一份测试题,一起来挑战一下吧!一、选择题(每题 5 分,共 30 分)1、从 5 个不同的元素中取出 3 个元素的排列数为()A 60B 10C 20D 1202、从 10 名学生中选出 3 名参加某项活动,不同的选法有()种。

A 120B 720C 100D 3603、有 5 本不同的书,从中任选 3 本送给 3 个同学,每人一本,不同的送法有()种。

A 60B 120C 10D 204、一个袋子里有 3 个红球和 2 个白球,从中任取 2 个球,恰好都是红球的概率是()A 3/10B 3/5C 9/25D 3/255、掷两枚骰子,点数之和为 7 的概率是()A 1/6B 1/9C 1/3D 1/126、从 5 个男生和 4 个女生中选出 3 个男生和 2 个女生排成一排,共有()种不同的排法。

A 7200B 3600C 14400D 720二、填空题(每题 5 分,共 30 分)1、从 8 个不同的元素中取出 2 个元素的组合数为_____。

2、有 4 个不同的小球,放入 3 个不同的盒子中,每个盒子至少放一个小球,共有_____种放法。

3、从 1、2、3、4、5 这五个数字中,任取三个数字组成没有重复数字的三位数,其中是奇数的有_____个。

4、一批产品共有 10 件,其中次品有 3 件,从这批产品中任取 3 件,恰好有 1 件次品的概率是_____。

5、一个口袋里有 5 个红球和 3 个白球,从中任取 3 个球,至少有1 个红球的概率是_____。

6、展开式\((x + 2)^6\)中\(x^3\)的系数是_____。

三、解答题(每题 20 分,共 40 分)1、 7 个人排成一排,其中甲、乙两人必须相邻,有多少种不同的排法?2、某班级有 10 名男生和 8 名女生,从中任选 4 名学生参加数学竞赛,求至少有 1 名女生的概率。

高考数学复习排列、组合、二项式、概率与统计单元测试 试题

高考数学复习排列、组合、二项式、概率与统计单元测试 试题

智才艺州攀枝花市创界学校2021高考数学复习排列、组合、二项式、概率与统计单元测试一、选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面。

只有一项为哪一项哪一项符合题目要求的.1.(理)以下随机变量中,不是离散型随机变量的是〔〕A .从10只编号的球(0号到9号)中任取一只,被取出的球的号码ξB .抛掷两个骰子,所得的最大点数ξC .[0,10]区间内任一实数与它四舍五人取整后的整数的差值ξD .一电信局在将来某日内接到的呼叫次数ξ(文)现有10张奖票,只有1张可中奖,第一人与第十人抽中奖的概率为 〔〕A .101,21 B .21,101 C .101,101 D .101,109 2.为了让人们感知丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢的塑料袋的数量,结果如下(单位:个):33、25、28、26、25、31.假设该班有45名学生,那么根据提供的数据估计本周全班同学各家一共丢弃塑料袋〔〕A .900个B .1080个C .1260个D .1800个3.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行, 从一间蜂房爬到与之相邻的右方蜂房中去,从最初位置爬到4号蜂房 中,那么不同的爬法有〔〕A .4种B .6种C .8种D .10种 4.A 21+n 与A 3n 的大小关系是〔〕A .A 21+n >A 3nB .A 21+n <A 3n C .A 21+n =A 3nD .大小关系不定5.(理)假设f (m )=∑=ni i n i C m 0,那么)1(log )3(log 22f f 等于〔〕A .2B .21 C .1D .3〔文〕某校从8名老师中选派4名老师同时去4个遥远地区支教(每地1人),其中甲和乙不同去,那么不同的选派方案一共有种A .1320B .288C .1530D .6706.(理)在二项式(3x -i )6的展开式中(其中2i =-1),各项系数的和为〔〕A .64iB .-64iC .64D .-64〔文〕(2a 3+a1)n的展开式的常数项是第7项,那么正整数n 的值是 〔〕 A .7B .8C .9D .107.右图中有一个信号源和五个接收器。

高考数学排列组合与概率统计专题突破卷(附答案)

高考数学排列组合与概率统计专题突破卷(附答案)

高考数学排列组合与概率统计专题突破卷(附答案)一、单选题1.将3个1和2个0随机排成一行,则2个0不相邻的概率为( )A. 0.3B. 0.5C. 0.6D. 0.82.将4个1和2个0随机排成一行,则2个0 不相邻的概率为( ) A. 13 B. 25 C. 23 D. 453.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图: 根据此频率分布直方图,下面结论中不正确的是( ) A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%C. 估计该地农户家庭年收入的平均值不超过6.5万元D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间4.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A. 60种B. 120种C. 240种D. 480种5.在区间(0, 12 )随机取1个数,则取到的数小于 13 的概率为( )A. 34B. 23C. 13D. 166.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于 74 的概率为( )A. 74B. 2332C. 932D. 297.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立 8.某物理量的测量结果服从正态分布 N(10,σ2) ,下列结论中不正确的是( )A. σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B. σ越小,该物理量在一次测量中大于10的概率为0.5C. σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等9.从某网格平台推荐的影视作品中抽取400部,统计其评分分数据,将所得400个评分数据分为8组:[66,70),[70,74),⋯,[94,98],并整理得到如下的费率分布直方图,则评分在区间[82,86)内的影视作品数量是()A. 20B. 40C. 64D. 80二、多选题10.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数,则()A. 两组样本数据的样本平均数相同B. 两组样本数据的样本中位数相同C. 两组样本数据的样本标准差相同D. 两组样本数据的样本极差相同11.下列统计量中,能度量样本x1,x2,⋯,x n的离散程度的是()A. 样本x1,x2,⋯,x n的标准差B. 样本x1,x2,⋯,x n的中位数C. 样本x1,x2,⋯,x n的极差D. 样本x1,x2,⋯,x n的平均数12.设正整数n=a0⋅20+a1⋅2+⋯+a k−1⋅2k−1+a k⋅2k,其中a i∈{0,1},记ω(n)=a0+a1+⋯+a k.则()A. ω(2n)=ω(n)B. ω(2n+3)=ω(n)+1C. ω(8n+5)=ω(4n+3)D. ω(2n−1)=n三、填空题13.(x3−1x)4展开式中常数项为________.14.袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m−n=________,E(ξ)=________.15.已知多项式(x−1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=________,a2+a3+ a4=________.16.甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为________,3次活动中,甲至少获胜2次的概率为________ .17.在 (2x 3+1x )6 的展开式中, x 6 的系数是________. 四、解答题18. 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附: K 2=n(ad−bc)2(a +b )(c +d )(a +c )(b +d )19.某厂研究了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为 x̅ 和 y̅ ,样本方差分别记为s 12和s 22 (1)求 x̅ , y̅ , s 12 , s 22; (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果 y ̅ - x̅ ≥ 2√s 12+s 222 ,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).20.一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数, P(X =i)=p i (i =0,1,2,3) .(1)已知 p 0=0.4,p 1=0.3,p 2=0.2,p 3=0.1 ,求 E(X) ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程: p 0+p 1x +p 2x 2+p 3x 3=x 的一个最小正实根,求证:当 E(X)≤1 时, p =1 ,当 E(X)>1 时, p <1 ;(3)根据你的理解说明(2)问结论的实际含义.21.某学校组织"一带一路”知识竞赛,有A ,B 两类问题・每位参加比赛的同学先在两类问题中选择类并从中随机抽収一个问题冋答,若回答错误则该同学比赛结束;若 回答正确则从另一类问题中再随机抽取一个问題回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分。

排列组合与概率练习

排列组合与概率练习

排列组合与概率练习《排列组合与概率练习》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!测试卷《排列组合》习题一、选择题(每题5分,计60分)1、书架上同一层任意立放着不同的10本书,那么指定的3本书连在一起的概率为(A)A、1/15B、1/120C、1/90D、1/302、甲盒中有200个螺杆,其中有160个A型的,乙盒中有240个螺母,其中有180个A型的,现从甲乙两盒中各任取一个,则能配成A型的螺栓的概率为(C)A、1/20B、15/16C、3/5D、19/203、一个小孩用13个字母:3个A,2个I,2个M,2个J其它C、E、H、N各一个作组字游戏,恰好组成“MATHEMATICIAN”一词的概率为(D)A、B、C、D、4、袋中有红球、黄球、白球各1个,每次任取一个,有放回地抽取3次,则下旬事件中概率是8/9的是(B)A、颜色全相同B、颜色不全相同C、颜色全不同D、颜色无红色5、某射手命中目标的概率为P,则在三次射击中至少有1次未命中目标的概率为(C)A、P3B、(1—P)3C、1—P3D、1—(1-P)36.2004年7月7日,甲地下雨的概率是0.15,乙地下雨的概率是0.12。

假定在这天两地是否下雨相互之间没有影响,那么甲、乙都不下雨的概率是(C)(A)0.102(B)0.132(C)0.748(D)0.9827.电灯泡使用时数在1000小时以上的概率为0.8,则3个灯泡在使用1000小时后坏了1个的概率是(D)(A)0.128(B)(C)0.104(D)0.3848.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率BA.小B.大C.相等D.大小不能确定9.16支球队,其中6支欧洲队、4支美洲队、3支亚洲队、3支非洲队,从中任抽一队为欧洲队或美洲队的概率为(D)10.两袋分别装有写着0、1、2、3、4、5六个数字的6张卡片,从每袋中各任取一张卡片,所得两数之和等于7的概率为(B)11.在100个产品中有10个次品,从中任取4个恰有1个次品的概率为(D)12.某人有9把钥匙,其中一把是开办公室门的,现随机取一把,取后不放回,则第5次能打开办公室门的概率为(A)二、填空题(每题5分,计20分)13.两名战士在一次射击比赛中,甲得1分,2分,3分的概率分别是0.2,0.3,0.5,乙得1分,2分,3分的概率分别是0.1,0.6,0.3,那么两名战士哪一位得胜的希望较大_____战士甲________.14.有两组问题,其中第一组中有数学题6个,物理题4个;第二组中有数学题4个,物理题6个。

高考数学排列组合与概率统计专题卷

高考数学排列组合与概率统计专题卷

高考数学排列组合与概率统计专题卷一、单选题1.某汽车的使用年数x与所支出的维修费用y的统计数据如表:根据上表可得y关于x的线性回归方程= x﹣0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用()A. 8年B. 9年C. 10年D. 11年2.在5×5的棋盘中,放入3颗黑子和2颗白子,它们均不在同一行且不在同一列,则不同的排列方法种数为( )A. 150B. 200C. 600D. 12003.(x2+2)()5的展开式的常数项是()A. ﹣3B. ﹣2C. 2D. 34.的展开式中的常数项为()A. 12B. -12C. 6D. -65.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A. B. C. D.6.若,则的值为( )A. 2B. 0C. -1D. -27.二项式(x2﹣)11的展开式中,系数最大的项为()A. 第五项B. 第六项C. 第七项D. 第六和第七项8.从4男2女共6名学生中选派2人参加某项爱心活动,则所选2人中至少有1名女生的概率为()A. B. C. D.9.将个正整数1、2、3、…、()任意排成n行n列的数表.对于某一个数表,计算各行和各列中的任意两个数a、b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”最大值为( )A. B. C. 2 D. 310.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A. 26,16,8B. 25,17,8C. 25,16,9D. 24,17,911.下列四个命题中,正确的有( )①两个变量间的相关系数r越小,说明两变量间的线性相关程度越低;②命题p:“,”的否定:“,”;③用相关指数来刻画回归效果,若越大,则说明模型的拟合效果越好;④若,,,则c<a<b.A. ①③④B. ①④C. ③④D. ②③12.利用计算机在区间上产生两个随机数和,则方程有实根的概率为()A. B. C. D.二、填空题13.在一场比赛中,某篮球队的11名队员共有9名队员上场比赛,其得分的茎叶图如图所示.从上述得分超过10分的队员中任取2名,则这2名队员的得分之和超过35分的概率为________.14.已知、是互斥事件,,,则________15.已知一组样本数据按从小到大的顺序排列为-1,0,4. ,这组数据的平均数与中位数均为5,则其方差为________.16.某中学采用系统抽样方法,从该校高三年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是42,则在第1小组1~16中随机抽到的数是________.17.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为“阳爻”和“阴爻”,如图就是重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是________.18.如果把四个面都是直角三角形的四面体称为“三节棍体”,那么从长方体八个顶点中任取四个顶点,则这四个顶点是“三节棍体”的四个顶点的概率为________.19.若的展开式中含有非零常数项,则正整数的最小值为________.20.若,则的值为________.三、解答题21.在一次射击考试中,编号分别为A 1 , A 2 , A 3 , A 4的四名男生的成绩依次为6,8,8,9环,编号分别为B 1 , B 2 , B 3的三名女生的成绩依次为7,6,10环,从这七名学生中随机选出二人. (1)用学生的编号列出所有的可能结果;(2)求这2人射击的环数之和小于15的概率.22.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率; (2)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.23.某企业有甲、乙两条生产线生产同一种产品,为了检测两条生产线产品的质量情况,随机从两条生产线生产的大量产品中各抽取了40件产品作为样本,检测某一项质量指标值 ,得到如图所示的频率分布直方图,若 ,亦则该产品为示合格产品,若,则该产品为二等品,若,则该产品为一等品.(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好; (3)从甲生产线的样本中,满足质量指标值 在的产品中随机选出3件,记为指标值 在中的件数,求的分布列和数学期望•24.在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以 (斤)(其中 )表示米粉的需求量,(元)表示利润.X 1 2 3 4 Y 51 48 45 42(1)估计该天食堂利润不少于760元的概率;(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求的分布列和数学期望.25.在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:(参考公式:= ,= ﹣)参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.(1)求数学成绩y关于物理成绩x的线性回归方程= x+ (精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.答案一、单选题1. D2. D3.D4. A5. D6.C7. C8.B9. A 10. B 11. C 12. A二、填空题13.14. 15.16. 10 17. 18.19.5 20.三、解答题21.解:(1){A1,A2},{A1,A3},{A1,A4},{A1,B1},{A1,B2},{A1,B3},{A2,A3},{A2,A4},{A2,B1},{A2,B2},{A2,B3},{A3,A4},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{B1,B2},{B1,B3},{B2,B3}(2)以上21个结果对应的射击环数之和依次为14,14,15,13,12,16,16,17,15,14,18,17,15,14,18,16,15,19,13,17,16.其中环数之和小于15的结果为{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,B2},{A3,B2},{B1,B2}共7个所以这2人射击的环数之和小于15的概率为22.(1)解:所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为= ;(2)解:先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)= 得P(X=1)= ,P(X=2)= ,P(X=3)= = ,P(X=4)= =∴所求的分布列为数学期望为E(Y)=51× +48× +45× +42× =4623.(1)解:由频率分布直方图可知,甲生产线中二等品的概率为,—等品的概率为,乙生产线中二等品的概率为,一等品的概率为,所以两件产品中一件为二等品,一件为一等品的概率为.(2)解:设两条生产线样本的平均值分别为,则,,由频率分布直方图可知,甲生产线的数据较为分散,乙生产线的数据较为集中,所以甲生产线的数据方差大于乙生产线的数据方差,所以乙生产线更好.(3)解:甲生产线样本质量指标值在的件数为,质量指标值在的件数为,由题意可知的取值为0,1,2,3;所以,,,.所以的分布列为:的数学期望. 24.(1)解:一斤米粉的售价是元.当时,. 当时,.故设利润不少于760元为事件,利润不少于760元时,即.解得,即.由直方图可知,当时,.(2)解:当时,;当时,;当时,;当时,.所以可能的取值为460,660,860,960.,,,.故的分布列为25.(1)解:根据表中数据计算= ×(90+85+74+68+63)=76,= ×(130+125+110+95+90)=110,=902+852+742+682+632=29394,=90×130+85×125+74×110+68×95+63×90=42595,= = = ≈1.5,= ﹣=110﹣1.5×76=﹣4;∴x、y的线性回归方程是=1.5x﹣4,当x=80时,=1.5×80﹣4=116,即某位同学的物理成绩为80分,预测他的数学成绩是116(2)解:抽取的五位学生中成绩高于100分的有3人,X表示选中的同学中高于100分的人数,可以取1,2,3,P(X=1)= = ,P(X=2)= = ,P(X=3)= = ;故X的分布列为:X的数学期望值为E(X)=1× +2× +3× =1.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合、概率统计一、选择题1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种2.如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A .24B .18C .12D .93.从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4n mB .2n mC .4m nD .2m n4.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著.B .2007年我国治理二氧化硫排放显现成效.G•F•E•C.2006年以来我国二氧化硫年排放量呈减少趋势.D.2006年以来我国二氧化硫年排放量与年份正相关.5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.456.将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有()A. 12种 B. 10种 C. 9种 D. 8种7.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.34二、填空题1.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D X=.2.有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是. 3.从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=______.4.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作. 设三个电子元件的使用寿命(单位:小时)服从正态分布N(1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为.三、解答题1.淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比学|科网,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)22()()()()()n ad bc K a b c d a c b d -=++++2.某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4≥5保费0.85a a 1.25a 1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数 0 1 2 3 4 ≥5概率0.300.150.200.200.100. 05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.3.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89区B地73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79区(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:不低于90分满意度评分低于70分70分到89分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.4.某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:年份2007 2008 2009 2010 2011 2012 2013年份代号 1 2 3 4 5 6 7(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121ˆnii i ni i tty y bt t ==--=-∑∑,ˆˆa y bt=-.6. (2012·18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理.t(Ⅰ)若花店某天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.7.(2011·19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表B配方的频数分布表(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为2(94)2(94102)4(102),t<y,t<,t-⎧⎪=≤⎨⎪≥⎩,从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)排列组合、概率统计(解析版) 一、选择题1.【解析】解法一:将三人分成两组,一组为三个人,有336A =种可能,另外一组从三人在选调一人,有133C =种可能;两组前后在排序,在对位找工作即可,有222A =种可能;共计有36种可能.解法二:工作分成三份有246C =种可能,在把三组工作分给3个人有336A =可能,共计有36种可能.2.B 解析:E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法,故选B .3.C 解析:由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .4.)D 解析:由柱形图可知,从2006年以来,我国二氧化硫排放量呈下降趋势,所以二氧化硫排放量与年份负相关,故选D.5.A 解析:设A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P AB P B A P A ===. 6.A 解析:只需选定安排到甲地的1名教师2名学生即可,共有1224C C 种安排方案.7.A 解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,故选A. 二、填空题1.1.96【解析】随机变量()100,0.02∽B X ,()()1 1.96D X np p =-=.2.(1,3)解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足;若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3). 3.)8解析:从1,2,…,n 中任取两个不同的数共有2C n 种取法,两数之和为5的有(1,4),(2,3),共2种,所以221C 14n=,即24111142n n n n ==(-)(-),亦即n 2-n -56=0,解得n =8.4.38解析:由已知可得,三个电子元件使用寿命超过1000小时的概率均为12,所以该部件的使用寿命超过1000小时的概率为2113[1(1)]228--⨯=.三、解答题1.淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比学|科网,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)22()()()()()n ad bc K a b c d a c b d -=++++(2017·18)解析:(Ⅰ)旧养殖法的箱产量低于50kg 的频率为0.012×5+0.014×5+0.024×5+0.034×5+0.040×5=0.62,由于两种养殖方法的箱产量相互独立,于是P (A )=0.62×0.66=0.4092(Ⅱ)旧养殖法的箱产量低于50kg 的有100×0.62=62箱,不低于50kg 的有38箱,新养殖法的箱产量不低于50kg 的有100×0.66=66箱,低于50kg 的有34箱,得到2×2列联表如下:箱产量<50kg箱产量≥50kg合计 旧养殖法 62 38 100 新养殖法 34 66 100 合计96104200所以22200(62663438)122515.7059610410010078K ⨯⨯-⨯==≈⨯⨯⨯ 2 6.635K ∴>,所以有99%的把握认为箱产量与养殖方法有关。

相关文档
最新文档