MSDC讲义.高中物理.动量定理.(A).学生版

MSDC讲义.高中物理.动量定理.(A).学生版
MSDC讲义.高中物理.动量定理.(A).学生版

知识点1 冲量 1. 定义

力F 和该力作用时间t 的乘积Ft 叫做该力的冲量,通常用符号I 表示,即I Ft =.单位:牛·秒,符号是N s ?. 2. 理解要点

(1)矢量性:冲量的方向由力的方向决定,如果力的方向不变,则冲量的方向跟力的方向相同;如果

力的方向是变化的,则要借助于动量定理来确定,为此段时间内平均作用力的方向.冲量的运算遵循矢量运算的平行四边形定则.

(2)冲量的时间性.冲量是描述力F 对作用时间t 的累积效果的,是一个过程量.有力且有作用时间

就有冲量,与物体的运动状态无关. (3)冲量的计算

①恒力的冲量,应用公式I Ft =计算. ②变力的冲量可利用动量定理进行计算.

F

t -图象中F 图线与时间t 轴所围面积就等于F

在该段时间内的冲量.如图所示,F t -图线下的面积就等于变力F 在O 至1t 时间内的冲量.

(4)区别冲量和功

冲量、功是两个重要的物理量,两者之间既有相似之处,又有相异之点.相似之处:①都跟力有关,是过程量;②都能引起物体的机械运动状态发生变化.相异之点:①冲量是力的时间积累I Ft =,功是力的空间积累W =Fs ;②冲量是矢量,功是标量;③两者单位不同,冲量单位为

N s ?,功单位为J ;④作用效果不同.冲量引起物体动量变化(动量定理),功引起物体动能变化

知识框架

考试要求

动量定理

(动能定理).只有深刻理解两者的异同,才能正确判断那些似有而非的问题.要注意的是:恒力在一段时间内可能不做功,但一定有冲量.

【例1】 下列关于力的冲量的说法中正确的是( )

A .作用在物体上的力大,力的冲量不一定大

B .恒力的作用时间越长,则它的冲量就越大

C .1F 与其作用的时间1t 的乘积11F t 等于2F 与其作用的时间2t 的乘积22F t ,则这两个冲量相同

D .置于水平面上的物体在水平力F 作用下仍然静止,则力F 的冲量一定为零

【例2】 放在水平面上的物体,用水平推力F 推它t 秒,物体始终不动,则在这t 秒内,关于合力的冲量

与摩擦力冲量的大小,下列说法正确的是( ) A .合力的冲量及摩擦力的冲量大小均为零 B .合力的冲量及摩擦力的冲量大小均为F t ? C .合力的冲量大小为零,摩擦力的冲量大小为F t ? D .合力的冲量大小为F t ?,摩擦力的冲量大小为0

【例3】 如图所示,重为100N 的物体,在与水平方向成060角的拉力10F N =作用下,

以2/m s 的速度匀速运动,在10s 内,拉力F 的冲量大小等于______N S ?,摩擦力的冲量大小等于______N S ?。

【例4】 斜面倾角为37θ=?,有一物体质量为2kg 放在斜面上,它和斜面间的动摩擦因数为0.2μ=,物

体沿斜面下滑2s ,求这段时间内物体所受各力的冲量和合外力的冲量.

【例5】 如图所示,物体在粗糙的水平面上向右做直线运动.从a 点开始受到一个水平向左的恒力F 的作

用,经过一段时间后又回到a 点,则物体在这一往返运动的过程中,下列说法中正确的是( ) A .恒力F 对物体做的功为零 B .摩擦力对物体做的功为零 C .恒力F 的冲量为零 D .摩擦力的冲量为零

例题精讲

知识点2 动量 1. 动量概念

动量是描述运动特征的物理量,表达式p mv =,是矢量,方向为该状态速度的方向.物体的动量总是指物体在某一时刻的动量,计算时相应的速度应取这一时刻的瞬时速度.由于物体的运动速度与参考系的选取有关,所以物体的动量具有相对性. 2. 动量的变化p ?

动量的变化是指某段过程(或时间间隔)末状态的动量p '跟初状态的动量p 的差.即p p p '?=-.由于动量是矢量,求动量变化时,应利用矢量运算定则——平行四边形定则,如果物体

在同一直线上运动,那么选定正方向后,动量的方向可以用正、负号表示,将矢量运算化为代数运算.

【例6】 若两个物体的动量相同,则( )

A .两物体的质量一定相等

B .两物体的速度一定相等

C .两物体的运动方向一定相同

D .质量大的物体的运动速度小

【例7】 两个质量不同的物体:

A .若它们的动量大小相等,则两物体的动能与它们的质量成正比

B .若它们的动量大小相等,则两物体的动能与它们的质量成反比

C .若它们的动能相等,则两物体的动量的大小与它们的质量成正比

D .若它们的动能相等,则两物体的动量的大小与它们的质量的平方根成正比

【例8】 A 物体的质量是2kg ,速度是3m /s ,方向向东;B 物体质量是3kg ,速度是4m /s ,方向向西.它

们的动量之和是多少?动能之和是多少?

【例9】 一个质量是0.1kg 的钢球,以6/m s 的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿

着同一直线以6/m s 的速度水平向左运动,碰撞前后钢球的动量各是多少?碰撞前后铜球的动量变化了多少?

例题精讲

【例10】 以初速度0v 竖直上抛一物体,物体的质量为m ,不计空气阻力,从抛出到落回抛出点的过程中,

有 ( )

A .物体动量变化的大小为零

B .物体动量变化的大小为2mv 0,方向竖直向下

C .物体动量变化的大小为mv 0,方向竖直向上

D .物体动量变化的大小为mv 0,方向竖直向下

【例11】 质量为m 的质点以速度v 绕半径R 的圆周轨道做匀速圆周运动,在半个周期内动量的改变量大小

为( )

A .0

B .mv

C .2mv

D .条件不足,无法确定

【例12】 将质量为0.5kg 的小球以20m/s 的初速度竖直向上抛出,不计空气阻力,g 取210m/s .以下判断

正确的是( )

A .小球从抛出至最高点受到的冲量大小为10N s ?

B .小球从抛出至落回出发点动量的增量大小为0

C .小球从抛出至落回出发点受到的冲量大小为0

D .小球从抛出至落回出发点受到的冲量大小为20N s ?

【例13】 如图所示的四个图描述的是竖直上抛物体的动量增量随时间变化的曲线和动量变化率随时间变

化的曲线。若不计空气阻力,取竖直向上为正方向,那么正确的是:

D

C

B

A

知识点3 动量定理

1. 内容:物体所受合外力的冲量等于物体的动量变化,即'0Ft mv mv =-. 2. 理解要点

(1)公式'0Ft mv mv =-是矢量式,两边不仅大小相等,而且方向相同.公式中Ft 是物体所受合外力的

冲量.可以先求出物体的合外力,若为恒力,则直接代入公式用I Ft =求得;若不能求出合力,则先求出每一个分力的冲量,再将诸个分力的冲量合成,亦可得合外力的冲量.

(2)公式'F t p p ?=-除表明两边大小、方向关系外,还说明了两边的因果关系,即合外力的冲量是动

量变化的原因.

(3)动量定理说明的是合外力的冲量与动量变化的关系,反映力对时间的积累效果,与物体的初、末

动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.

(4)定理不仅适用于单个物体,亦适用于物体系.对物体系,只需分析系统受的外力,而不必考虑系

统内力,系统内力不改变系统的总动量.

(5)动量定理不仅适用于宏观物体的低速运动,对于微观现象和高速运动仍然适用.

(6)动力学问题中的应用:在不涉及加速度和位移的情况下,研究运动和力的关系时,用动量定理求

解一般较为方便.因为动量定理不仅适用于恒力作用,也适用于变力,而且也不需要考虑运动过程的细节.

【例14】 下面关于物体动量和冲量的说法正确的是( )

A .物体所受合外力冲量越大,它的动量也越大

B .物体所受合外力冲量不为零,它的动量一定要改变

C .物体动量增量的方向,就是它所受合冲量的方向

D .物体所受合外力越大,它的动量变化就越快

【例15】 A 、B 两个物体都静止在光滑水平面上,当分别受到大小相等的水平力作用,经过相等时间,则

下述说法中正确的是( )

A .A 、

B 所受的冲量相同 B .A 、B 的动量变化相同

C .A 、B 的末动量相同

D .A 、B 的末动量大小相同

【例16】 做平抛运动的物体,在相等的时间内,物体动量的变化量 ( )

A .始终相同

B .只有大小相同

C .只有方向相同

D .以上说法均不正确

【例17】 在课外活动中,甲、乙两同学站在旱冰场的水平面上,开始时都是静止的.两人互推后,甲、乙

反向做直线运动,甲的速率为0.1m/s ,乙的速率为0.2m/s .已知甲的质量为60kg ,乙的质量为30kg ,假设互推的时间为0.01s ,忽略摩擦力及空气阻力,则下列说法中正确的是( )

A .甲、乙所受的平均推力均为600N ,方向相反

B .甲、乙所受的平均推力均为500N ,方向相反

C .甲受的平均推力为600N ,乙受的平均推力为500N ,方向相反

D .甲受的平均推力为500N ,乙受的平均推力为600N ,方向相反

例题精讲

知识点4 动量定理的应用

1. 用动量定理解释现象

用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小;另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.分析问题时,要把哪个量变化搞清楚. 2. 应用动量定理解题的步骤

(1)合理选取研究对象.

(2)确定所研究的物理过程及其始、终状态. (3)分析研究对象在所研究的物理过程中的受力情况. (4)规定正方向,根据定理列式. (5)解方程,统一单位,求得结果. 3. 应用动量定理解题的技巧

(1)应用I p =?求变力的冲量.

如果物体受到变力作用,则不直接用I F t =?求变力的冲量,这时可以求出该力作用下物体动量的变化p ?,等效代换变力的冲量I .

(2)应用p F t ?=?求恒力作用下的曲线运动中物体动量的变化.曲线运动中物体速度方向时刻在改

变,求动量变化'p p p ?=-需要应用矢量运算方法,比较复杂.如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化.

(3)应用动量定理求变质量(如流体)问题。研究对象是“变质量”的“连续”流体(如:水流、

空气流等),一般要假设一段时间t ?内流出的流体,其长度为v t ??,流体底面积为S ,流体的体积为V S v t =???,流体的质量为m V S v t ρρ?=?=????,再对质量为m ?的水柱应用动量定理求解。

(4)对全过程使用动量定理 “'1122F t F t p p ?+?+

=-” 可使问题简化.

(5)动量定理还有分量形式.F t mv ?=?是矢量式,在应用动理定理时,应该遵循矢量运算的平行四

边形法则.也可以采用正交分解法,把矢量运算转化为标量运算.假设用x F (或y F )表示合外力在x (或y )轴上的矢量,0x v (或0y v )和x v (或y v )表示物体的初速度和末速度在x (或y )轴上的分量,则:0x x x F t mv mv ??=-,0y y y F t mv mv ?=-.

上述两式表明,合外力的冲量在某一坐标轴上的分量等于物动量的增量在同一坐标轴上的分量.在写动量定理的分量方程式时,对于已知量,凡是与坐标轴正方向同向者取正值,凡是与坐标轴正方向反向者取负值;对未知量,一般先假设为正方向,若计算结果为正,说明实际方向与坐标轴正方向一致,若计算结果为负,说明实际方向与坐标轴正方向相反.

【例18】 从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是( )

A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小

B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小

C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢

D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,掉在草地上的玻璃杯与地面接触时间长

【例19】 一个笔帽竖立于放在水平桌面的纸条上,将纸条从笔帽下抽出时,如果缓慢拉动纸条笔帽必倒;

若快速拉纸条,笔帽可能不倒,以下说法中正确的是( ) A .缓慢拉动纸条时,笔帽受到的冲量小

B .缓慢拉动纸条时,纸对笔帽水平作用力大,笔帽必倒

C .快速拉动纸条时,笔帽受到的冲量小

D .快速拉动纸条时,纸条对笔帽水平作用力小

【例20】 把质量为10kg 的物体放在光滑的水平面上,如图所示,在与水平方向成53?角、大小为10N 的力

F 作用下从静止开始运动,在2s 内力F 对物体的冲量为多少?物体获得的动量是多少?

【例21】 质量为m 的小球在水平面内做半径为r 的匀速圆周运动,它的角速度为ω,周期为T ,在12

T 时

间内,小球受到的冲量的大小为( )

A .2m r ω

B .m r πω

C .

22T m r ω D .22

T

m ω

【例22】 质量相等的物体P 和Q ,并排静止在光滑的水平面上,现用一水平恒力F 推物体P ,同时给Q 物

体一个与F 同方向的瞬时冲量I ,使两物体开始运动,当两物体重新相遇时,所经历的时间为 A .

I F B .2I F C .2F I D .F

I

例题精讲

【例23】 质量为7810kg ?的列车,从某处开始进站并关闭动力,只在恒定阻力作用下减速滑行.已知它开

始滑行时的初速度为20m/s ,当它滑行了300m 时,速度减小到10m/s ,接着又滑行了一段距离后刚好到达站台停下,那么

(1)关闭动力时列车的初动能为多大? (2)列车受到的恒定阻力为多大? (3)列车进站滑行的总时间为多大?

【例24】 质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v 。

在碰撞过程中,钢球受到的冲量的方向和大小为

A .向下,12()m v v -

B .向下,12()m v v +

C .向上,12()m v v -

D .向上,12()m v v +

【例25】 质量为10kg 的铁锤,从某一高度处落下后与立在地面上的木桩相碰,碰前速度大小为10/m s ,

碰后静止在木桩上,若铁锤与木桩的作用时间为0.1s ,重力加速度取210/g m s =。求:铁锤受到的平均冲力。

【例26】 质量为1.0kg 的小球从高20m 处自由下落到软垫上,反弹后上升的最大高度为5.0m ,小球与软垫

接触的时间为1.0s ,在接触时间内小球受到合力的冲量大小和方向为(空气阻力不计,取

210/g m s =) ( )

A .10N s ?

B .30N s ?

C .向上

D .向下

【例27】 一位质量为m 的运动员从下蹲状态向上起跳,经t ?时间,身体伸直并刚好离开地面,速度为v 。

在此过程中,( )

A .地面对他的冲量为mv mg t +?,地面对他做的功为21

2

mv

B .地面对他的冲量为mv mg t +?,地面对他做的功为零

C .地面对他的冲量为mv ,地面对他做的功为21

2

mv

D .地面对他的冲量为mv mg t -?,地面对他做的功为零

【例28】 人从高处跳到低处时,为了延长碰撞时间,保护身体不受伤,脚着地后便自然地下蹲.

(1)人的这种能力是

A .应激性

B .反射

C .条件反射

D .非条件反射

(2)某质量为50kg 的飞行员,从5m 高的训练台上跳下,从脚着地到完全蹲下的时间约为1s ,则地面对他的作用力为多大?(210/g m s =)

(3)假如该飞行员因心理紧张,脚着地后未下蹲,他和地碰撞的时间为0.01s ,则此时地对人的力又是多大?

【例29】 将质量为0.10kg 的小球从离地面20m 高处竖直向上抛出,抛出时的初速度为15m/s ,当小球落地

时,求:

(1)小球的动量;

(2)小球从抛出至落地过程中动量的增量; (3)小球从抛出至落地过程中受到的重力的冲量.

【例30】 质量为m 的物体以初速度0v 开始做平抛运动,经过时间t ,下降的高度为h ,速度变为v ,在这

段时间内物体动量变化量的大小为( )

A .0()m v v -

B .mgt

C .

D .

【例31】 在距地面h 高处以0v 水平抛出质量为m 的物体,当物体着地时和地面碰撞时间为t ?,则这段时

间内物体受到地面给予竖直方向的冲量为( )

A. B.mg t ?? C.mg t ?? D.mg t ??-

【例32】 自地面上高度为H 的一点下落一物体,不计空气阻力,物体与地面碰撞后又弹回到同样的高度,

则全过程中物体的动量随时间变化的函数关系是图中的(以向下方向为正方向)?( )

【例33】 两物体甲和乙分别在恒力

1F 和2F 的作用下沿同一直线运动,它们的动量随时

间变化关系如图所示,设甲在1t 时间内受到的冲量大小为1I ,乙在2t 时间内受到的冲量大小为2I ,则由图可知( ) A .12F F >,12I I = B .12F F <,12I I = C .12F F =,12I I > D .12F F =,12I I <

【例34】 据报道,一辆轿车在高速强行超车时,与迎面驰来的另一辆轿车相撞,两车身因碰撞挤压,皆缩

短了约0.5m ,据测算相撞时两车的速度均为109/km s ,试求碰撞过程中车内质量60kg 的人受到的平均冲击力约为多少?

【例35】 一质量为M 的汽艇,在静水中航行时能达到的最大速度为10m/s .假设航行时,汽艇的牵引力F

始终恒定不变,而且汽艇受到的阻力f 与其航速v 之间,始终满足关系:f kv =,其中

100N s /m k =?,求:

(1)该汽艇的速度达到5m/s 的瞬时,汽艇受到的阻力为多大? (2)该汽艇的牵引力F 为多大?

(3)若水被螺旋桨向后推出的速度为8m/s ,汽艇以最大速度匀速行驶时,在3秒钟之内,估算

螺旋桨向后推出的质量m 为多少?(提示:①推算水的质量时,可以将水的粘滞力忽略;②以上速度均以地面为参考系)

1. 如图所示质量为m 的物块沿倾角为θ的斜面由底端向上滑去,经过时间1t 速度为

零后又下滑,经过时间2t 回到斜面底端,在整个运动过程中,重力对物块的总冲量为( )

A .0

B .12sin ()mg t t θ??+

C .12sin ()mg t t θ??-

D .12()mg t t ?+

2. 两个具有相等动量的物体A 、B ,质量分别为A m 和B m ,且A B m m >,比较它们的动能()

A .

B 的动能较大 B .A 的动能较大

C .动能相等

D .不能确定

3. 质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v ,在碰

撞过程中,地面对钢球的冲量的方向和动量变化的大小为( )

A .向下,12()m v v -

B .向下,12()m v v +

C .向上,12()m v v -

D .向上,12()m v v +

4. 质量为5kg 的物体,原来以5/v m s =的速度做匀速直线运动,现受到跟运动方向相同的冲量15N s ?的

作用,历时4s ,物体的动量大小变为

A .80/kg m s ?

B .160/kg m s ?

C .40/kg m s ?

D .10/kg m s ?

课堂检测

5. 质量为1kg 的物体从离地面5m 高处自由下落,与地面碰撞后上升的最大高度为3.2m ,设球与地面作

用时间为0.2s ,则小球对地面的平均冲力为(210/g m s =) ( ) A .90N B .80N C .110N D .100N

6. 以初速度v 水平抛出一质量为m 的石块,不计空气阻力,则对石块在空中运动过程中的下列各物理量

的判断正确的是( )

A .在两个相等的时间间隔内,石块受到的冲量相同

B .在两个相等的时间间隔内,石块动量的增量相同

C .在两个下落高度相同的过程中,石块动量的增量相同

D .在两个下落高度相同的过程中,石块动能的增量相同

1. 如图所示,倾角为α的光滑斜面,长为s ,一个质量为m 的物体自A 点从

静止滑下,在由A 到B 的过程中,斜面对物体的冲量大小是 ,重力冲量的大小是 。物体受到的合冲量大小是 (斜面固定不动).

2. 一个物体的质量是2kg ,沿竖直方向下落,以10/m s 的速度碰到水泥地面上,随后又以8/m s 的速度

被反弹回,若取竖直向上为正方向,则小球与地面相碰前的动量是_______/kg m s ?,相碰后的动量是_______/kg m s ?,小球的动量变化是_______/kg m s ?。

3. 使质量为2kg 的物体做竖直上抛运动,4s 后回到出发点,不计空气阻力,在此过程中物体动量的变化

和所受的冲量分别是( )

A .80kg m/s ?,方向竖直向下;80N s ?,方向竖直向上

B .80kg m/s ?,方向竖直向上;80N s ?,方向竖直向下

C .80kg m/s ?和80N s ?,方向均竖直向下

D .40kg m/s ?和40N s ?,方向均竖直向下

4. 请解释下列现象:

(1)在桌子上放一个纸带,在纸带上放一个重物,若用水平力缓缓拉动纸带,则重物跟着纸带一起

运动,若迅速抽动纸带,则纸带可能会从重物下抽出,请解释这种现象.

(2)杂技表演时,用铁锤猛击放在“大力士”身上的大石块,石裂而人不伤,请解释这种现象.

课后作业

5.质量相等的物体P和Q,并排静止在光滑的水平面上,现用一水平恒力F推物体P,同时给Q物体一个与F同方向的瞬时冲量I,使两物体开始运动,当两物体重新相遇时,所经历的时间为

A.I

F

B.

2I

F

C.

2F

I

D.

F

I

6.质量为1kg的物体从高5m处的平台以1/

m s的速度水平抛出,不计空气阻力,求物体落地时的动量。

(2

10/

g m s

)

高考物理复习之动量 动量定理

2007年高考物理复习之动量动量定理 复习要点 1、掌握动量、冲量概念 2、了解动量与冲量间关系,掌握动量定理及其应用 3、掌握动量守恒定律及其应用 4、熟悉反冲运动,碰撞过程 二、难点剖析 1、动量概念及其理解 (1)定义:物体的质量及其运动速度的乘积称为该物体的动量P=mv (2)特征:①动量是状态量,它与某一时刻相关;②动量是矢量,其方向质量物体运动速度的方向。 (3)意义:速度从运动学角度量化了机械运动的状态动量则从动力学角度量化了机械运动的状态。 2、冲量概念及其理解 (1)定义:某个力与其作用时间的乘积称为该力的冲量I=F△t (2)特征:①冲量是过程量,它与某一段时间相关;②冲量是矢量,对于恒力的冲量来说,其方向就是该力的方向。 (3)意义:冲量是力对时间的累积效应。对于质量确定的物体来说,合外力决定看其速度将变多快; 合外力的冲量将决定着其速度将变多少。对于质量不确定的物体来说,合外力决定看其动量将变多快;合外力的冲量将决定看基动量将变多少。 3、关于冲量的计算 (1)恒力的冲量计算 恒力的冲量可直接根据定义式来计算,即用恒 力F乘以其作用时间△t而得。 (2)方向恒定的变力的冲量计算。 如力F的方向恒定,而大小随时间变化的情况 如图—1所示,则该力在时间 △t=t2-t1内的冲量大小在数值上就等于图11—1中阴影 部分的“面积”。图—1 (3)一般变力的冲量计算 在中学物理中,一般变力的冲量通常是借助于动量定理来计算的。 (4)合力的冲量计算 几个力的合力的冲量计算,既可以先算出各个分力的冲量后再求矢量和,又可以先算各个分力的合力再算合力的冲量。 4、动量定理 (1)表述:物体所受合外力的冲量等于其动量的变化 I=△P F△t=mv-mv。 (2)导出:动量定理实际上是在牛顿第二定律的基础上导出的,由牛顿第二定律 F=mv 两端同乘合外力F的作用时间,即可得 F△t=ma△t=m(v-v0)=mv-mv0 (3)物理:①动量定理建立的过程量(I=F△t)与状态量变化(△P=mv-mv0)间的关系,这就提供了一种“通过比较状态以达到了解过程之目的”的方法;②动量定理是矢量式,这使得在运用动量应用于一维运动过程中,首先规定参考正方向以明确各矢量的方向关系是十分重要的。

高中物理动量定理解题技巧讲解及练习题(含答案)及解析

高中物理动量定理解题技巧讲解及练习题(含答案)及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求: (i )C 与A 碰撞前的速度大小 (ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是 32 mv 0. 【解析】 【分析】 【详解】 试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3? 0m m v mv -+= 解得:10 v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得: 012 3(3)mv mv m m v =+- 在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032 CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032 mv . 方向为负. 考点:动量守恒定律 【名师点睛】 本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择. 3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小

河南省高考物理总复习讲义 第13章 第1讲 动量定理 动量守恒定律

第1讲 动量定理 动量守恒定律 知识一 冲量和动量定理 1.冲量 (1)定义:力F 与力的作用时间t 的乘积. (2)定义式:I =Ft . (3)单位:N·s (4)方向:恒力作用时,与力的方向相同. (5)物理意义:是一个过程量,表示力在时间上积累的作用效果. 2.动量定理 (1)内容:物体所受合力的冲量等于物体的动量变化. (2)表达式:? ?? ?? Ft =mv 2-mv 1 I =Δp 知识二 动量和动量守恒定律 1.动量 (1)定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p 来表示. (2)表达式:p =mv . (3)单位:kg·m/s . (4)标矢性:动量是矢量,其方向和速度方向相同. 2.动量守恒定律 (1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变,这就是动量守恒定律. (2)表达式 m 1v 1+m 2v 2=m 1v ′1+m 2v ′2,即相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和. 3.动量守恒定律的适用条件 (1)理想守恒:系统不受外力或所受外力的合力为零. (2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力. 知识三 碰撞、反冲和爆炸问题 1.弹性碰撞和非弹性碰撞 动量是否守恒 机械能是否守恒 弹性碰撞 守恒 守恒 非完全弹性碰撞 守恒 有损失 完全非弹性碰撞 守恒 损失最大 2.

在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开.这类问题相互作用的过程中系统的动能增大,且常伴有其他形式能向动能的转化. 3.爆炸问题 爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒,爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动. 考点一 对动量定理的理解及应用 一、适用范围 适用于恒力作用也适用于变力作用,适用于直线运动也适用于曲线运动,适用于受持续的冲量作用,也适用于受间断的多个冲量的作用. 二、解释现象 一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小. 三、解题的基本思路 1.确定研究对象:一般为单个物体或由多个物体组成的系统. 2.对物体进行受力分析.可以先求每个力的冲量,再求各力冲量的矢量和;或先求合力,再求其冲量. 3.抓住过程的初末状态,选好正方向,确定各动量和冲量的正负号. 4.根据动量定理列方程代入数据求解. 排球运动是一项同学们喜欢的体育运动.为了了解排球的某些性能,某同学让 排球从距地面高h 1=1.8 m 处自由落下,测出该排球从开始下落到第一次反弹到最高点所用时间为t =1.3 s ,第一次反弹的高度为h 2=1.25 m .已知排球的质量为m =0.4 kg ,g 取10 m/s 2 ,不计空气阻力.求: (1)排球与地面的作用时间; (2)排球对地面的平均作用力的大小. 【解析】 (1)排球第一次落到地面的时间为t 1,第一次反弹到最高点的时间为t 2, 由h 1=12gt 21,h 2=12 gt 2 2,得 t 1=0.6 s ,t 2=0.5 s 所以排球与地面的作用时间Δt =t -t 1-t 2=0.2 s. (2)方法一:设排球第一次落地的速度大小为v 1,第一次反弹离开地面时的速度大小为v 2,则有: v 1=gt 1=6 m/s ,v 2=gt 2=5 m/s 设地面对排球的平均作用力的大小为F ,以排球为研究对象,取向上为正方向,则在排球与地面的作用过程中,由动量定理得: (F -mg )Δt =mv 2-m (-v 1) 解得:F =m v 2+v 1 Δt +mg 代入数据得:F =26 N 根据牛顿第三定律得:排球对地面的平均作用力为26 N. 方法二:全过程应用动量定理 取竖直向上为正方向,从开始下落到第一次反弹到最高点的过程用动量定理得F (t -t 1 -t 2)-mgt =0

高考物理高考物理动量定理解题技巧分析及练习题(含答案)

高考物理高考物理动量定理解题技巧分析及练习题(含答案) 一、高考物理精讲专题动量定理 1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停 在沙坑里.求: ⑴沙对小球的平均阻力F ; ⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122 () mg t t t + (2)1mgt 【解析】 试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得: 方向竖直向上 ⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理 点评:本题考查了利用冲量定理计算物体所受力的方法. 2.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=?,右侧斜面的中间用阻值为2R =Ω的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=?。其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。

1动量竞赛讲义动量定理

高中物理奥赛讲义·动量与能量 第一讲、动量定理 一.冲量:力对时间的累积效应;I =Ft 变力冲量的求解:重视F -t 图的物理意义 二.动量:物体的质量与速度的乘积;P =mv 质点系(系统)的动量:P =i i v m 三.动量定理: 1.动量定理的基本形式与表达式:I 合=ΔP 2.单方向动量定理的表达式:I x 合=ΔP x ,I y 合=ΔP y … 3.质点系动量定理:I 外合=P t 总—P 0总 1.微元模型 例1.一根均匀柔软的链条悬挂在天花板上,且下端正好触地。若松开悬点,让链条自由下落。试证 明,在下落过程中,链条对地板的作用力等于已落在地板上的那段链条重力的三倍。 例2.一根均匀柔软的绳子长为l 、质量为m ,对折后两端固定在一个钉子上。其中一端突然从钉子 上脱落。求下落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力。 2.整体与局部 例3.质量为M 的金属球和质量为m 的木球以细线相连,细线绷直且全部没入水中,从静止开始以 加速度a 在水中下沉,经时间t 1细线断开,再经时间t 2木球停止下沉,求此时金属球M 的下沉速度。

3.某一方向上动量定理 例4.三个质点A、B、C质量分别为m1、m2、m3,位于光滑水平面上,用已拉直的不可伸长的柔软细绳AB和BC连接,∠ABC=π-α,α为锐角,如图所示。现有一冲量为I的冲击力沿BC方向作用于C点,求A的速度。例5.如图所示,四个质量均为m的质点,用同样长度且不可伸长的轻绳联结成菱形ABCD,静止放在水平光滑的桌面上。若突然给质点A一个历时极短的沿CA方向的冲击,当冲击结束的时刻,质点A的速度为v,其他质点也获得一定的速度,∠BAD=2α(α<π/4)。求此质点系统受到冲击后所具有的总动量和总能量。

高中物理专题汇编动量定理(一)

高中物理专题汇编动量定理(一) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:

最新高中物理动量定理专题训练答案

最新高中物理动量定理专题训练答案 一、高考物理精讲专题动量定理 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211 222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上. 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

动能及动量定理复习讲义

动能及动量定理复习讲义 1 知识结构示意图 2 推导过程及应用举例 ①动能定理 推导:==- 结论1: 结论2: 简述:该推导过程看似简单,其实是一举两得。一来寻找到了动能的表达式,即 (结合“功是能量转化的量度”来讲述);二来整个表达式也是个有用的定理,即动能定理。虽然是牛顿第二定律加运动学公式的推论,但功能更强。 例1:如图所示,一光滑圆弧槽固定于水平地面上,半径为R。现从左侧无初速度释放一小球,试问当该小球滑至槽底时,速度为多少?

分析:用动能定理求解即可,解略。 答案: 总结:此题简单易做,目的在于告诉学生牛顿第二定律加运动学公式(匀变速直线)不能解决的问题,其推论动能定理却能轻松求解。 例2:若上题中圆弧槽是出粗糙的,且已知小球滑至槽底时速度为V,求该过程中,摩擦力对其做功为多少? 分析:求变力做功,用动能定理的第二种结构,即 解:由动能定理可知, 得: 答案: 需要说明,非恒力是不适于用这个公式来求做功的,此时往往要借助于动能定理。但有些不是恒力的情况,却也能用其他公式来展开。比如公式:以及.前者针对的是以恒定功率启动的汽车,后者尤其适合于非均匀电场中的电场力做功。而对于弹簧做功,有时会用初、末弹力之和的一半,做为平均值,方能代入求解。 ②动量定理

推导: 结论1: 结论2: 简述:大家现在已经知道,都能得到具有特定含义的物理量。那么,运动学所 涉及的物理量还有t,若是尝试把力和时间积累,是否也可以得出具有特定含义的物理量呢?该定理的推导过程即可顺理成章地引入了。类比动能定理讲解。 例3:如图所示,两质量为m的相同物块竖直悬挂,现把之间连线剪断,且知当下方物块下落至速度为V时,上方物块刚好弹到最高处。求此过程中,弹簧弹力对上方物块的冲量为多大? 分析:变力冲量,用动量定理求解,其中的分力是恒力的,可将其冲量用Ft展开。 解:根据题意,设弹簧弹力对物块冲量为I,且该过程时间为t,则由动量定理可知,对上方物块: 对下方物体,由运动学公式可得: 两式联立可得:

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编(含答案) 一、高考物理精讲专题动量定理 1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=?,右侧斜面的中间用阻值为2R =Ω的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=?。其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。 (1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量; (3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】 (1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得: sin θF T BIl =+ cos θT mg = 解得: tan θ 1.50.5F mg BIl I =+=+ 由图乙可知: 1.50.2F t =+ 则有: 0.4I t = cd 棒上的电流为:

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

高考物理动量定理基础练习题

高考物理动量定理基础练习题 一、高考物理精讲专题动量定理 1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。求: (1)C的质量m C; (2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I; (3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。 【答案】(1)2kg ;(2)27J,36N·S;(3)9J 【解析】 【详解】 (1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒 m C v1=(m A+m C)v2 解得C的质量m C=2kg。 (2)t=8s时弹簧具有的弹性势能 E p1=1 2 (m A+m C)v22=27J 取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小 I=(m A+m C)v3-(m A+m C)(-v2)=36N·S (3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大 (m A+m C)v3=(m A+m B+m C)v4 1 2(m A+m C)2 3 v= 1 2 (m A+m B+m C)2 4 v+E p2 解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。 2.如图所示,质量为m=245g的木块(可视为质点)放在质量为M=0.5kg的木板左端,足够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为μ= 0.4,质量为m0 = 5g的子弹以速度v0=300m/s沿水平方向射入木块并留在其中(时间极短),子弹射入后,g取10m/s2,求: (1)子弹进入木块后子弹和木块一起向右滑行的最大速度v1 (2)木板向右滑行的最大速度v2

高中物理动量定理试题经典及解析(1)

高中物理动量定理试题经典及解析(1) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.

高中物理动量定理解题技巧讲解及练习题(含答案)

高中物理动量定理解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量定理 1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122E m v m v = + 其中 121 4m m = 12m m m =+ 联立解得 1120m/s v =

230m/s v = 之后两物块做平抛运动,则 竖直方向有 212 h gt = 水平方向有 12s v t v t =+ 由以上各式联立解得 s=900m 2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。求 (1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。 【答案】(1)20N ?s ,方向竖直向下(2 )m/s ?, 与水平方向的夹角为45° 【解析】 【详解】 (1)物体做平抛运动,则有: 212 h gt = 解得: t =2s 则物体从抛出到落到地面过程重力的冲量 I=mgt =1×10×2=20N?s 方向竖直向下。 (2)在竖直方向,根据动量定理得 I=p y -0。 可得,物体落地时竖直方向的分动量 p y =20kg?m/s 物体落地时水平方向的分动量 p x =mv 0=1×20=20kg?m/s 故落地时物体的动量 m/s p = =? 设落地时动量与水平方向的夹角为θ,则 1y x p tan p θ= = θ=45°

高考物理动量定理基础练习题及解析

高考物理动量定理基础练习题及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122 E m v m v = + 其中 121 4m m = 12m m m =+

高中物理二轮复习 专项训练 物理动量定理

高中物理二轮复习 专项训练 物理动量定理 一、高考物理精讲专题动量定理 1.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2. (1)求物块与地面间的动摩擦因数μ; (2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】 试题分析:(1)对A 到墙壁过程,运用动能定理得: , 代入数据解得:μ=0.32. (2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N . 2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。 (1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。 (2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。请运用所学物理知识分析说明这样做的道理。 【答案】详情见解析 【解析】 【详解】 (1)根据牛顿第二定律F ma =,加速度定义0i v v a t -=解得 0=-i Ft mv mv 即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理 0=-i Ft mv mv 在动量变化相等的情况下,作用时间越长,作用力越小。充满气体的塑料袋富有弹性,在

高中物理动量定理专题(问题详解)-word

动量和动量定理的应用 知识点一——冲量(I) 要点诠释: 1.定义:力F和作用时间的乘积,叫做力的冲量。 2.公式: 3.单位: 4.方向:冲量是矢量,方向是由力F的方向决定。 5.注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力,无论是力的方向还是大小发生变化时,都不能用直接求出 1.推导: 设一个质量为的物体,初速度为,在合力F的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 可得, 即 (为末动量,P为初动量) 2.动量定理:物体所受合外力的冲量等于物体的动量变化。 3.公式: 或 4.注意事项: ①动量定理的表达式是矢量式,在应用时要注意规定正方向; ②式中F是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; ④不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。 5.应用: 在动量变化一定的条件下,力的作用时间越短,得到的作用力就越大,因此在需要增 大作用力时,可尽量缩短作用时间,如打击、碰撞等由于作用时间短,作用力都较大,如冲压工件; 在动量变化一定的条件下,力的作用时间越长,得到的作用力就越小,因此在需要减 小作用力时,可尽量延长作用时间,如利用海绵或弹簧的缓冲作用来延长作用时间,从而减小作用力,再如安全气囊等。 规律方法指导 1.动量定理和牛顿第二定律的比较 (1)动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2)由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式, 即:物体所受的合外力等于物体动量的变化率。 (3)在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4.应用动量定理解题的步骤 ①选取研究对象; ②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体合力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,A对;只要有力作用在物体上,

(山东省专用)201X-201x学年高中物理 第十六章 动量守恒定律 第2节 动量和动量定理讲义(含

第2节动量和动量定理 1.物体质量与速度的乘积叫动量,动量的方向与速度方向相同。 2.力与力的作用时间的乘积叫冲量,冲量的方向与力的方向相同。 3.物体在一个过程始末的动量变化量等于它在这个过程中所受合力 的冲量,动量变化量的方向与合力的冲量方向相同。 一、动量及动量的变化 1.动量 (1)定义:物体的质量和速度的乘积。 (2)公式:p=mv。 (3)单位:千克·米/秒,符号:kg·m/s。 (4)矢量性:方向与速度的方向相同。运算遵守平行四边形定则。 2.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式)。 (2)动量始终保持在一条直线上时的动量运算:选定一个正方向,动量、动量的变化量用带正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小)。 二、冲量 1.定义:力与力的作用时间的乘积。 2.公式:I=F(t′-t)。 3.单位:牛·秒,符号是N·s。 4.矢量性:方向与力的方向相同。 5.物理意义:反映力的作用对时间的积累效应。 三、动量定理

1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。

2.表达式:mv′-mv=F(t′-t)或p′-p=I。 1.自主思考——判一判 (1)动量的方向与速度方向一定相同。(√) (2)动量变化的方向与初动量的方向一定相同。(×) (3)冲量是矢量,其方向与力的方向相同。(√) (4)力越大,力对物体的冲量越大。(×) (5)若物体在一段时间内,其动量发生了变化,则物体在这段时间内的合外力一定不为零。(√) 2.合作探究——议一议 (1)怎样理解动量的矢量性? 提示:动量是物体的质量与速度的乘积,而不是物体的质量与速率的乘积,动量的方向就是物体的速度方向,动量的运算要遵守矢量法则,同一条直线上的动量的运算首先要规定正方向,然后按照正负号法则运算。 (2)在地面上垫一块较厚的软垫(如枕头),手拿一枚鸡蛋轻轻的释放让它落到软垫上,鸡蛋会不会破?动手试一试,并用本节知识进行解释。 提示:鸡蛋不会破。因为软垫延长了与鸡蛋的作用时间,根据动量定理得F=Δp Δt,即鸡蛋 受到的冲击力减小,故不会破。 对动量、冲量的理解 1.动量的性质 (1)瞬时性:通常说物体的动量是物体在某一时刻或某一位置的动量,动量的大小可用p =mv表示。 (2)矢量性:动量的方向与物体的瞬时速度的方向相同。 (3)相对性:因物体的速度与参考系的选取有关,故物体的动量也与参考系的选取有关。

高考物理专题汇编动量定理(一)

高考物理专题汇编动量定理(一) 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

在沙坑里.求: ⑴沙对小球的平均阻力F ; ⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1) 122 () mg t t t (2)1mgt 【解析】 试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得: 方向竖直向上 ⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理 点评:本题考查了利用冲量定理计算物体所受力的方法. 3.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块 A 相碰,并立即与A 粘在一起不分开,C 的v -t 图象如图乙所示.求: (1)C 的质量m C ; (2)t =8s 时弹簧具有的弹性势能E p 1 (3)4—12s 内墙壁对物块B 的冲量大小I 【答案】(1) 2kg (2) 27J (3) 36N s × 【解析】 【详解】 (1)由题图乙知,C 与A 碰前速度为v 1=9m/s ,碰后速度大小为v 2=3m/s ,C 与A 碰撞过程动量守恒 m C v 1=(m A +m C )v 2

高中物理动量定理专题训练答案(1)

高中物理动量定理专题训练答案(1) 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰 撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上.

相关文档
最新文档