非欧几何的诞生的意义
数学史复习资料

一、单项选择题1.关于古埃及数学的知识,主要来源于( )。
A.埃及纸草书和苏格兰纸草书B.兰德纸草书和莫斯科纸草书C.莫斯科纸草书和希腊纸草书D. 兰德纸草书和尼罗河纸草书2.以“万物皆数”为信条的古希腊数学学派是( )。
A.爱奥尼亚学派B.伊利亚学派C.诡辩学派D.毕达哥拉斯学派3.最早记载勾股定理的我国古代名著是( )。
A.《九章算术》B.《孙子算经》C.《周髀算经》D.《缀术》4.首先使用符号“0”来表示零的国家或民族是( )。
A.中国B.印度C.阿拉伯D.古希腊5.欧洲中世纪漫长的黑暗时期过后,第一位有影响的数学家是( )。
A.斐波那契B.卡尔丹C.塔塔利亚D.费罗6.对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是( )。
A.伽利略B.哥白尼C.开普勒D.牛顿7.对古代埃及数学成就的了解主要来源于( )A.纸草书B.羊皮书C.泥版D.金字塔内的石刻8.公元前4世纪,数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?( )A.不可公度数B.化圆为方C.倍立方体D.三等分角9.《九章算术》中的“阳马”是指一种特殊的( )A.棱柱B.棱锥C.棱台D.楔形体10.印度古代数学著作《计算方法纲要》的作者是( )A.阿耶波多B.婆罗摩笈多C.马哈维拉D.婆什迦罗11.射影几何产生于文艺复兴时期的( )A.音乐演奏B.服装设计C.雕刻艺术D.绘画艺术12.微分符号“d”、积分符号“”的首先使用者是( )A.牛顿B.莱布尼茨C.开普勒D.卡瓦列里13.作为“非欧几何”理论建立者之一的年轻数学家波尔约是( )A.俄国人B.德国人C.葡萄牙人D.匈牙利人14.最早证明了有理数集是可数集的数学家是( )A.康托尔B.欧拉C.魏尔斯特拉斯D.柯西15.在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家( )A.希尔伯特B.庞加莱C.罗素D.克莱因16.《周髀算经》和()是我国古代两部重要的数学著作。
非欧几里得几何学(non-Euclidean

⾮欧⼏⾥得⼏何学(non-Euclidean geometry)⾮欧⼏⾥得⼏何学(non-Euclidean geometry)不同于欧⼏⾥得⼏何学的⼏何体系。
简称为⾮欧⼏何。
⼀般是指罗巴切夫斯基⼏何(双曲⼏何)和黎曼的椭圆⼏何。
它们与欧⽒⼏何最主要的区别在于公理体系中采⽤了不同的平⾏公理。
⾮欧⼏何起源于对欧⼏⾥得平⾏公设的讨论。
公元前3世纪初,欧⼏⾥得《⼏何原本》问世,开篇列出定义、公理和公设,其中第五公设是:同⼀平⾯内⼀条直线与另外两条直线相交,若在某⼀侧的两个内⾓之和⼩于⼆直⾓,则这⼆直线经过⽆限延长后在这⼀侧相交。
它不像其他公设那样显然,因此很快就引起⼈们的争议,认为欧⼏⾥得把它放在公理(公设)之列,不是因为它不能证明,⽽是找不到证明,这是欧⼏⾥得⼏何体系的唯⼀“污点”。
2000多年来,许多⼏何学家⽤不同的⽅法试图证明第五公设,可是都失败了,因为在他们的每⼀个所谓“证明”中都引进⼀个新的假定,⽽这个假定等价于第五公设。
公元2世纪,古希腊数学家托勒密试图从欧⼏⾥得其他9个公理、公设以及与平⾏公设⽆关的欧⼏⾥得命题1~28来证明平⾏公设,但假设了两直线平⾏后,另⼀与之相交直线⼀侧内⾓成⽴的东西也必在另⼀侧同样成⽴。
公元5世纪的普罗克洛斯基于亚⾥⼠多德⽤于证明宇宙有限的公理来证明平⾏公设,实际上是把⼀个有问题的公理⽤另⼀个来代替09世纪阿拉伯数学家塔⽐·伊本·库拉在《欧⼏⾥得著名的公设证明》中假设:如果两条直线与第三条直线相交,并且它们在(第三条直线的)某⼀侧靠近或相离,则它的(在第三条直线的)另⼀侧就相离或靠近。
13世纪的纳西尔丁在《平⾏线问题释疑》中也应⽤了这样的假设:同⼀平⾯上的若⼲直线,若在⼀个⽅向上是分离的,则它们在这个⽅向上就不会靠近。
他在此基础上证明了垂线与斜线⼀定相交,⾃⾓内任⼀点必可作⼀直线与⾓的两边都相交等命题,这些都与第五公设等价。
纳西尔丁的⼯作于1663年由英国数学家沃利斯重新阐发,引起欧洲⼈的重视。
非欧几何诞生的意义.doc

非欧几何诞生的意义谈及非欧几何我们就得从它的基础学科——欧式几何入手。
几何学的发源可以追溯的古埃及,几何学的本意是测量的意思,它是古埃及人进行土地测量时的各种经验成果的总结。
“据希腊历史学家Herodotus说,埃及是因为尼罗河每年涨水后需要重定农民土地的边界才产生几何的。
”古希腊人继承和发展了古埃及的几何学,爱奥尼亚学派的领袖和创立人泰勒斯(Thales)和他的学生毕达哥拉斯(Pythagoras)等著名的哲学家和数学家用演绎法将古埃及的“试验几何学”改造为“推理几何学”,晚期的毕达哥拉斯学派(公元前400年左右)已要求数学结果应当根据明白规定的公理用演绎法推出。
欧几里得(Euclid BC330-BC275)集几何学之大成,将前人分散的几何学成果概括总结加以系统化,写成了《几何原本》这部影响历史的著作。
《几何原本》共十三卷,其中五卷为平面几何,五卷为立体几何,三卷为数和比例。
欧几里得几何学是科学史上第一个公理化演绎系统,欧几里得从二十三个名词定义、五条公理(一切科学所共有的真理)、五条公设(只是为某一门科学所接受的第一性原理),共推导出467条定理。
《几何原本》虽然是前人成果的概括总结,“但整部书的陈述方式——一开头就摆出所有的公理,明确提出所有的定义,和有条不紊的一系列定理——这是欧几里得所独创的,此外,定理的《几何原本》的证明有一些遗漏和错误,并且在论证过程中引入了很多没有提出的假定,这些假定是因为在图形上看或直观上显然的事实而无意中用上去的。
另外,欧几里得时代并不十分看重演绎推理,“事实上,希腊人对于从简单演绎法得出的命题是不很看得起的。
希腊人把那些能从定理直接推出的结果称作系或衍论。
Proclus把这种无需非多大力气得出的结果陈作横财或红利。
”《几何原本》中的公设五是欧几里得自己提出的,它的内容是“若一直线与两直线相交且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点。
非欧几何的有什么作用

非欧几何的有什么作用黎曼几何本身也是一个自洽的知识体系。
黎曼几何和罗氏几何由于得出的很多结论都不符合欧氏几何,因此它们被统称为非欧几何。
为什么数学家们要“吃饱了撑的”,把我们生活的三维扭曲成各种形状,这种虚构出来的几何学体系有用么?要知道,欧几里得所确定的公理已经经过了两千多年的实践检验。
应该讲,罗巴切夫斯基和黎曼在构建各自的几何学体系时,也不知道它们有多少实际用途。
不过,黎曼作为数学家,他希望一些涉及到曲面的数学问题在解决的时候简单一些。
比如在一个三维的欧几里得空间,一个球面的方程是x^2+y^2+z^2=25,而在黎曼空间中,它就是R=5这么简单。
虽然它们在数学上是等价的,但是形式上差异很大。
黎曼就希望在解决球面和其它曲面的问题时,最好有形式上比较简单一致的表述方式。
但是,在黎曼几何诞生之后的半个多世纪里,它也没有找到太多实际的用途,真正让它为世人知晓的并非其他数学家,而是著名的物理学家爱因斯坦。
在爱因斯坦著名的广义相对论中,所采用的数学工具就是黎曼几何。
根据爱因斯坦的理论,一个质量大的物体(比如恒星),会使得周围的时空弯曲,牛顿所说的万有引力被描述为弯曲时空的一种几何属性,即它的曲率。
爱因斯坦用一组方程,把时空的曲率,其中的物质,能量和动量联系在一起。
之所以采用黎曼几何这个工具,而不是欧氏几何来描述广义相对论,是因为时空和物质的分布是互相影响的,并不像牛顿力学里面所认为的时空是固定的。
特别是在大质量星球的附近,空间被它的引力场弯曲了:在这样扭曲的空间里,光线走的其实是曲线,而不是直线。
1918年,爱丁顿爵士利用日食观察星光曲线的轨迹,证实了爱因斯坦的理论。
这件事也让黎曼几何成为了理论物理学家们很常用的工具。
比如,在过去30年中,物理学家对超弦的理论极度着迷,而黎曼几何(以及由它派生出的共形几何),则是这些理论的数学基础。
此外黎曼几何在计算机图形学和三维地图绘制等领域有广泛的应用。
特别是在计算机图形学中,今天计算机动画的生成离不开它。
欧氏几何与非欧几何

欧氏几何欧几里得几何学,简称欧氏几何,主要是以欧几里得平行公理为基础的几何学。
欧几里得他把当代希腊数学家积累的几何知识和逻辑推理的思想方法加以系统化,初步奠定了几何学的逻辑结构的基础。
19世纪末期,德国数学家希尔伯特于1899年发表了著名的著作《几何基础》,书中提出了一个欧几里得几何的完整的公理体系。
从此人们把满足希尔伯特公理系统中的结合公理、顺序公理、合同公理、平行公理、连续公理等五组公理以及由其导出的一切推论组成的几何学叫做欧几里得几何学。
特别指出的是,平行公理在欧几里得几何中有着很重要的作用。
凡与平行公理有关的命题,都是欧几里得几何学的结论。
如三角形三条高线共点;过不共线的三点恒有一圆;任何三角形三内角之和等于180°;存在相似形;勾股定理成立。
1872年,德国数学家克莱茵在爱尔朗根大学提出著名的“爱尔朗根计划书”,明确了采用几何变换对各种几何进行分类。
指出,如果一种几何变换,它的全体组成一个“群”,就相应有一种几何学。
在每一种几何中主要研究在相应的变换下的不变性和不变量。
根据这种观点,欧几里得几何学就是研究图形在合同变换下(或在运动变换下)不变的科学。
欧几里得著有《几何原本》一书,该书共13卷,除第5、7、8、9、10卷是用几何方法讲述比例和算术理论以外,其他各卷都是论述几何问题的。
《几何原本》共有23个定义,5条公设,5条公理,他力图把几何学建立在这些原始的定义、公理和公设的基础上,然后以这些显然的假设为依据推证出体系里的一切定理。
在第1卷开始他首先提出23个定义,前6个定义是:①点没有大小;②线有长度没有宽度; ③线的界是点;④直线上的点是同样放置的;⑤面只有长度和宽度;⑥面的界是线。
在定义之后,有5个公设:①从任意点到另一点可以引直线;②有限直线可以无限延长;③以任意点为圆心,可用任意半径作圆;④所有直角都相等;⑤如果两条直线与另一条直线相交,所成的同侧内角的和小于两直角,那么这两条直线在这一侧必相交。
非欧几何的诞生及其给我们的启示论文

非欧几何的诞生及其给我们的启示摘要:数学史上,非欧几何占有特殊的地位.以非欧几何的发明过程为基本线索,探讨了其对数学学科本身、人类文化、哲学思想的影响;对数学科研者、数学教育工作者及高校学生的启示.关键词:非欧几何;罗巴切夫斯基几何;黎曼几何1 非欧几何的发展史1.1 问题的提出非欧几何的发展源于2 000 多年前的古希腊数学家的欧几里得的《几何原本》.其中公设五是欧几里得自己提出的,它的内容是“若一条直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点”.这一公设引起了广泛的讨论,因为它不如其他公理、公设那样简明,欧几里得本人也不满意这条公设,他在证完了所有不需要平行公设的定理后才使用它,怀疑它可能不是一个独立的公设,或许能用其它公设或公理代替.从古希腊时代开始到19 世纪的2000 多年来数学家们始终对这条公设耿耿于怀,孜孜不倦的试图解决这个问题.数学家们主要沿2 条研究途径前进:一条途径是寻找一条更为自明的命题代替平行公设;另一条途径是试图从其他9 条公理、公设推导出平行公设来.沿第一条途径找到的第五公设最简单的表述是1795 年苏格兰数学家普雷菲尔(J.Playfair 1748-1819)给出的:“过直线外一点,有且只有一条直线与原直线平行”也就是我们今天中学课本里使用的平行公理.但实际上古希腊数学家普罗克鲁斯在公元5 世纪就陈述过它.然而问题是,所有这些替代公设并不比原来的第五公设更好接受,更“自然”.历史上第一个证明第五公设的重大尝试是古希腊天文学家托勒玫(Ptolemy,约公元150 年)做出的,后来普罗克鲁斯指出托勒玫的“证明”无意中假定了过直线外一点只能作一条直线与已知直线平行,这就是上面提到的普雷菲尔公设.1.2 问题的解决1.2.1 非欧几何的萌芽沿第二条途径论证第五公设的工作在18 世纪取得突破性进展.首先是意大利人萨凯里(Saccharin 1667-1733)提出用归谬法证明第五公设,萨凯里从四边形ABCD开始,如果角A 和角B 是直角,且AC=BD,容易证明角C等于角D.这样第五公设便等价于角C 和角D 是直角这个论断.萨凯里提出另2 个假设:(1)钝角假设:角C 和角D 都是钝角;(2)锐角假设:角C 和角D 都是锐角.最后在锐角假设下,萨凯里导出了一系列结果,因为与经验认识违背,使他放弃了最后结论.但是从客观上为非欧几何的创立提供了极有价值的思想方法,开辟了一条不同于前人的新途径.其后瑞士数学家兰伯特(Lambert1728-1777)所做的工作与萨凯里相似.他也考察了一类四边形,其中3 个角为直角,而第5 个角有3 种可能性:直角、钝角和锐角.他同样在锐角假设下得到“三角形的面积取决于其内角和;三角形的面积正比于平角与内角和的差.他认为只要一组假设相互没有矛盾,就提供了一种几何的可能.著名的法国数学家勒让德(A.M.Legendar1752-1833)对平行公设问题也十分关注,他得到的一个重要定理:“三角形内角之和不能大于两直角”.这预示着可能存在着一种新几何.19 世纪初,德国人萨外卡特(schweikart 1780-1859)使这种思想更加明朗化.他通过对“星形几何”的研究,指出:“存在两类几何:狭义的几何(欧氏几何)星形几何.在后一个里面,三角形有一个特点,就是三角形内角之和不等于两直角”.1.2.2 非欧几何的诞生前面提到的一些数学家尤其是兰伯特,都是非欧几何的先驱,但是他们都没有正式提出一种新几何并建立其系统的理论.而著名的数学家高斯(Gauss 1777-1855)、波约(Bolyai 1802-1860)、罗巴切夫斯基(Lobatchevsky1793-1856)就这样做了,成为非欧几何的创始人.高斯是最早指出欧几里得第五公设独立于其他公设的人.早在1792 年他就已经有一种思想,去建立一种逻辑几何学,其中欧几里得第五公设不成立.1794 年高斯发现在他的这种几何中,四边形的面积正比于2 个平角与四边形内角和的差,并由此导出三角形的面积不超过一个常数,无论其顶点相距多远.后来他进一步发展了他的新几何,称之为非欧几何.他坚信这种几何在逻辑上是无矛盾的,并且是真实的,能够应用的,为此他还测量了3个山峰构成的三角形内角,他相信内角和的亏量只有在很大的三角形中才能显露出.但他的测量因为仪器的误差而宣告失败.遗憾的是高斯在生前没有任何关于非欧几何的论著.人们是在他逝世后,从他与朋友的来往函件中得知了他关于非欧几何的研究结果和看法.匈牙利青年数学家波约在研究欧几里得第五公设的基础上建立了一种新几何,他称之为“绝对空间中的几何”,并写了一篇26 页的论文《绝对空间的科学》.本论文出版时作为附录附于其父的书《为好学青年的数学原理论著》.当时的波约已建立起非欧几何的思想,并且相信新几何不是自相矛盾的,在1823-11-23 给他父亲的信中,波约写道:“我已得到如此奇异的发现,使我自己也为之惊讶不止”[1],在非欧几何的3 个发明人中,只有罗巴切夫斯基最早且系统地发表了自己的研究成果.罗巴切夫斯基曾卓越的指出:“直到今天,几何学中的平行线理论还是不完善的,从欧几里得时代以来,两千多年来徒劳无益的努力,促使我们怀疑在概念本身之中并未包括那样的真实情况,它是大家想要证明的,也是可以像别的物理规律一样单用实验(如天文检测)来检验.最后,我肯定了推测的真实性,而且认为困难的问题完全解决了”,“不论是如何给出的,只可以认为是说明,而且数学证明的完整意义不是不应该获得尊重的”[2].他的工作是在前人的基础上,引用与欧氏第五公设相矛盾的命题,即直线外1 点可作2 条平行线为假设,并且把他同欧氏几何中其它公设和公理相联系.经过推理后,得出3 个结论:(1)用欧氏几何其它公设和公理不能证明欧氏第五公设,即第五公设是独立的;(2)与第五公设相矛盾的公设同欧氏几何其它公设、公理相结合,展开一系列推理,获得了许多在逻辑上无矛盾的定理,构成了不同于欧氏几何的新的几何学;(3)这种逻辑上无矛盾的几何学的真理性同物理学中的定理一样,只能凭实验,例如用天文观测来检验.这3条结论显然与欧氏几何不同,是一种全新的几何体系,是罗氏独创性思维的结晶.他的结论是在1826 年2 月的一次学术报告上以《简要叙述平行定理的一个严格证明》为题报告的.由于罗巴切夫斯基对非欧几何的特殊贡献,人们把这种几何称为罗氏几何.1.2.3 非欧几何的发展与确认非欧几何要获得人们的普遍接受,需要确实的建立非欧几何自身的无矛盾性和现实意义.罗巴切夫斯基终其一身努力最后并没有实现这个目标.1854 年,黎曼(G.F.B.Riemann 1826-1866)摆脱高斯等前人把几何对象局限在3 维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间.黎曼仿照传统的微分几何定义流形上2 点之间的距离、流形上的曲线和曲线之间的夹角.并以这些概念为基础,展开对n 维流形几何性质的研究.在n 维流形上他也定义类似于高斯在研究一般曲面时刻画曲面弯曲程度的曲率.他指出对于3 维空间,有以下3 种情形:(1)曲率为正常数;(2)曲率为负常数;(3)曲率恒等于0.黎曼指出后2 种情形分别对应于罗巴切夫斯基的非欧几何和通常的欧氏几何学,而第一种情形则是黎曼本人的创造,它对应于另一种非欧几何学.黎曼创造的几何中的一条基本规定是:在同一平面内任何2 条直线都有公共点(交点).在黎曼几何学中不承认平行线的存在.它的另一条公设讲:直线可以无限延长,但总的长度是有限的.黎曼几何的模型是一个经过适当“改进”的球面.19 世纪70 年代以后,意大利数学家贝尔特拉米、德国数学家克莱茵和法国数学家庞加莱等人先后在欧几里得空间中给出了非欧几何的直观模型,从而揭示出非欧几何的现实意义.贝尔特拉米的模型是一个叫“伪球面”的曲面,它由平面曳物线绕其渐近线旋转一周而得.贝尔特拉米证明,罗巴切夫斯基平面片上的所有几何关系与适当的“伪球面”片上的几何关系相符合:也就是说,对应于罗巴切夫斯基几何的每一断言,就有一个伪球面上的内蕴几何事实.这使罗巴切夫斯基几何立刻就有了现实意义.克莱茵的模型比贝尔特拉米的简单明了.在普通欧氏平面上取1 个圆,并且只考虑整个圆的内部.他约定把圆的内部叫“平面”,圆的弦叫“直线”(根据约定将弦的端点除外).可以证明,这种圆内部的普通(即欧氏)几何事实就变成罗巴切夫斯基几何的定理,而且反过来,罗巴切夫斯基几何中的每个定理都可以解释成圆内部的普通几何事实.在克莱茵之后,庞加莱也对罗巴切夫斯基几何给出了模型:在欧氏平面内划1 条直线,而使之分为上、下2 个平面,把不包括这条直线在内的上半平面作为罗氏平面,其上的欧氏点当作罗氏几何的点,把以该直线上任一点为中心,任意长为半径所做出的半圆作为罗氏几何的直线,然后对如此规定了的罗氏元素一一验证罗氏几何诸公理全部成立.这样一来,如果罗氏系统在今后出现了正、反2 个相互矛盾的命题的话,则只要按上述规定之几何元素之间的对应名称进行翻译,立即成为相互矛盾的2 个欧氏几何定理,从而欧氏几何就有矛盾了.因此,只要承诺欧氏几何是无矛盾的,那么罗氏几何一定也是相容的,这就把罗氏几何的相容性证明通过上述庞家莱模型转化为欧氏系统的相容性证明.由于人们承认欧氏几何是相容的,因此,罗氏几何也是相容的.这样一来,就使非欧几何具有了至少与欧氏几何同等的真实性.至此,历经2 000 余a,非欧几何学作为一种几何的合法地位可以说充分建立起来了,也真正获得了广泛的理解,人们最初的愿望终于变成了现实.2 非欧几何发展史的启示非欧几何的诞生,是自希腊时代以来数学中一个重大的革新步骤.在这里我们将沿着事物的历史发展过程来叙述这一历史的重要意义.M.克莱茵(M. Klein)在评价这一段历史的时候说:“非欧几何的历史以惊人的形式说明数学家受其时代精神影响的程度是那么厉害.当时萨凯里曾拒绝过欧氏几何的奇异定理,并且断定欧氏几何是唯一正确的.但在一百年后,高斯、罗巴切夫斯基和波约满怀信心地接受了新几何”.2.1 对数学学科本身2.1.1 数学发展的相对独立性通过逻辑演绎法建立的非欧几何体系为数学的发展提供了一种模式,使人们清楚地看到数学可以有自己的逻辑体系存在,从而独立发展.数学发展的相对独立性突出表现为:数学理论的发展往往具有超前性,它可以独立于物理世界而进行,可以超前于社会实践,并反作用于社会实践,推动数学乃至于整个科学向前发展.19 世纪前,数学始终与应用数学紧密结合在一起,即数学不能离开实用学科而独立发展,研究数学的最终目的是为了解决实际问题.但是非欧几何第一次使数学的发展领先于实用科学,超越人们的经验.非欧几何为数学创造了一个全新的世界:人类可以利用自己的思维,按照数学的逻辑要求自由自在的进行思考.于是数学被认为应当是那些并不是直接地或间接地由于研究自然界的需要而产生出来的任意结构.这种观点逐渐被人们了解,于是造成了今天的纯粹数学与应用数学的分裂[1].2.1.2 数学的本质在于它的充分自由非欧几何的创立,使一直为人们意识到但未曾清楚地认识的区别呈现出来了即数学空间与物理空间的不同.数学家创造出几何理论,然后由此决定他们的空间观.这种建立在数学理论基础上的空间观、自然观,一般并不能否定客观世界的存在等内容,它仅仅强调这样一些事实:人们关于空间的判断所获得的一系列结论纯粹是自己的创造.物质世界现实与这种现实的理论,永远是两回事.正因为如此,人类探索知识、建立理论的认识活动才永远没有尽头.非欧几何的创立使人们认识到数学是人的精神的创造物,而不是对客观现实的直接临摹,这样就使数学获得了极大的自由,同时也使数学丧失了对现实的确定性.数学从自然界和科学中解脱出来,继续着它自己的行程.对此,M.克莱茵说:“数学史的这一阶段,使数学摆脱了与现实的紧密联系,并使数学本身从科学中分离出来了,就如同科学从哲学中分离出来,哲学从宗教中分离出来,宗教从万物有灵论和迷信中分离出来一样.现在可以利用乔治.康托的话了:‘数学的本质在于它的充分自由’”.2.1.3 几何观念的更新非欧几何的出现打破了欧氏几何一统天下的局面,使几何学的观念得到更新.传统欧氏几何认为空间是唯一的,而非欧几何的出现打破了这种观念,促使人们对欧氏几何乃至整个几何学的基础问题作深入探讨.2.2.1 非欧几何是敢于向传统挑战、勇于为科学献身的人类精神的产物高斯、波约、罗巴切夫斯基几乎同时发现了非欧几何,但3 人对待新几何的态度是不同的.高斯很早就意识到了新几何的存在,但他没有向世人公布他的新思想,他受康特(Kant)唯心思想的影响,不敢向传统几何学界达2 000 a 之久的欧氏几何挑战,以致推迟了非欧几何的诞生.波约致力于平行公设的研究,终于发现了新几何.这其中还有一个故事,当高斯决定将自己的发现秘而不宣时,波约却急切的想通过高斯的评价将自己的研究公诸于世,然而高斯回信给他的父亲F.波约中说:“夸奖他就等于称赞我自己.整篇文章的内容,你儿子采取的思路和获得的结果,与我在30 至35 年前的思考不谋而合”[3],波约对高斯的回答深感失望,认为高斯想剽窃自己的成果,特别是在罗巴切夫斯基关于非欧几何的著作出版后,他更决定从此不再发表论文.罗巴切夫斯基在1826 年公开新几何思想后,并没有得到同代人的理解与赞扬,反而遭到讽刺和攻击,“可是没有任何力量可以动摇罗巴切夫斯基的信心,他像屹立在大海中的灯塔,惊涛骇浪的冲击,十足显出他刚毅的意志,他一生始终为新思想而斗争[4]”.在他双目失明时,还口授完成了《泛几何学》.3 人们发现新几何的过程启示我们:只有突破了对传统、对权威的迷信,才能充分发挥科学的创造性;只有不畏艰难困苦,勇于为科学献身,才能追求、捍卫超越时代的真理.一般认为高斯、波约、罗巴切夫斯基3 人们同时发现了新几何,这是人们对历史的公正,但人们更喜欢称新几何为罗氏几何,这正是人们对罗巴切夫斯基为科学献身精神的高度赞扬.2.2.2 非欧几何精神促使人们树立宽容、包容一切的产物非欧几何的创立,解放了人类思想,新见解、新观点不断涌现,“数学显现为人类思想的自由创造物”[5].数学的发展使康托由衷的说道:“数学的本质在于其自由”.这种思想活跃而且民主的艺术气氛,使数学以前所未有的速度向前发展.非欧几何曲折的创建历程及其所带来的数学的发展,使人们意识到自由创造、百家争鸣对科学发展的重要性,促使人们树立宽容、包容一切的精神与美德[6].2.3 哲学思想方面2.3.1 认识论的变革法国哲学家、数学家彭加莱(Henri Poincare)说过[7]:非欧几何的发现,是认识论一次革命的根源.简单讲,人们可以说,这一发现已经胜利的打破了那个为传统逻辑所要求的,束缚住任何理论的两难论题:即科学的原理要么(感官观察的事实).他指出:原理可能是简单的任意约定,但是这些约定决不是同我们的心灵和自然界无关的,它们只能靠着一切人的默契才能存在,它们并且紧密地依赖着我们所生活的环境中的实际外界条件.事实上正是由于这一点,对于探索未知或目前无法感知的事物,我们可对自然界的认识作某种“默契约定”,这是认识一切事物的开始和基础.另外,我们在理论评判中,放弃非彼即此的评判,爱因斯坦就说过[8]:这种非彼即此的评判是不正确的.这些评判家、数学家的评判无疑是非欧几何创立后,其对思想、理论建立,特别是对认识论有最为直接的影响;更进一步的近代的理论和技术的进步均离不开它的内在影响,像“相对论”的产生、特别是对时空的进一步认识,集合论、现代分析基础、数理逻辑、量子力学等学科建立与发展均可以看成是非欧几何的直接结果.非欧几何的创立所产生的震荡至今余波未消[9,10].2.3.2 打破人类的传统思维方式分析和评价一种理论的首要依据应该是看其是否有“相容性”,即它是否有或会得出自相矛盾的结论.如果一个理论尚不能“自圆其说”,说明这一理论要么还只是人类经验的一种简单表述和列举,还没有进化到“理论”的高度;要么至少还需要进一步完善和改进.本来非欧几_何与欧氏几何理论建立的前提是矛盾的,而欧氏几何已被普遍接受.是否接受非欧几何势必产生这样的问题,矛盾的前提是否一定能够导出矛盾的结果?传统的思维方式认为这是一定的,即矛盾的前提必然导致矛盾的结果.接受非欧几何就意味着要冲破这一传统思维方式的束缚.随着时间的推移,特别是非欧几何的成果的广泛应用,使人们认识到:我们在建立理论的过程中不能保证矛盾的前提一定能导出矛盾的结果.因此,在理论的建立过程中,相容性是必须具备的[11],特别是在导出某个结论的过程中,我们必须清醒的认识到建立的理论体系是否具有无矛盾性、是否具有排中性.2.4 对数学科研者2.4.1 勇敢面对在科学探索路途上的暴风雨在科学探索的征途上,一个人经得住一时的挫折和打击并不难,难的是勇于长期甚至终生在逆境中奋斗.罗巴切夫斯基的新学说,违背了2 000 多a 来的传统思想,动摇了欧氏几何“神圣不可侵犯”的权威基础,同时也违背了人们的“常识”.他的学说一发表,社会上的嘲弄、攻击,甚至侮辱、谩骂,暴雨般地袭来:科学院拒绝接受他的论文;大主教宣布他的学说是“邪说”;大多数的权威们称罗巴切夫斯基的学说是“伪科学”,是一场“笑话”;即使那些心肠比较好的人最多也只能抱着“对一个错误的怪人的宽容和惋惜态度”;连不少著名的文学家也起来反对这种新的几何,如德国诗人歌德,在他的名著(浮士德)中写下了这样的诗句:“有几何兮,名曰:‘非欧’,自己嘲笑,莫名其妙”.面对种种攻击、嘲笑,罗巴切夫斯基毫不畏惧,寸步不让,他像屹立在大海中的灯塔,表现出一个科学家“追求科学需要的特殊勇敢”.罗巴切夫斯基坚信自己学说的正确性,为此奋斗一生.从1826 年发表了非欧几何体系后,又陆续出版了《关于几何原本》等8本著作.在他逝世前1 a,他的眼睛差不多瞎了,还口述,用俄、法2 种文字写成他的名著《泛几何学》.罗巴切夫斯基就是在逆境中奋斗终生的勇士.同样,一名数学工作者,特别是声望较高的学术专家,正确识别出那些已经成熟的或具有明显现实意义的科技成果并不难,难的是及时识别出那些尚未成熟或现实意义尚未显露出来的科学成果.数学的发展决不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折甚至会面临更多危机的.我们每一位科学工作者,既应当作一名勇于在逆境中顽强点头的科学探索者,又应当成为一个科学领域中新生事物的坚定支持者.2.4.2 正确对待数学领域里的成就数学是一门历史性或者说积累性很强的学科.重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包含原先的理论.如非欧几何可以看成是欧氏几何的拓广.因此,有的数学史家认为“在大多数的学科里,一代人的建筑为下一代人所拆毁,一个人的创造被下一个人所破坏.惟独数学,每一代人都在古老的大厦上添加一层楼”[12].克莱茵在考察第五公设研究的历史特别是从18~19 世纪非欧几何由“潜”到“显”转变的100 多a 的历史过程时指出:“任何较大的数学分支或较大的特殊成果,都不会只是个人的工作,充其量,某些决定性步骤或证明可以归功于个人.这种数学积累特别适用于非欧几何”.事实上,自从《几何原本》以后到19 世纪,第五公设问题就像一块磁石一样广泛地吸引和激励着各个时代有才华的数学家为之奋斗.这就形成了一个在科学史上时间跨度最长、成员最多,并以传播和研究第五公设为范式的数学共同体.在这个共同体中,数学家相互交流思想,交换研究成果,对研究成果进行评议,形成不断竞争和激励的体制.罗巴切夫斯基也是从前人和自己的失败得到启迪,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明.于是,他便调转思路,着手寻求第五公设不可证的解答.罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现一个新的几何世界的.也可以说,罗氏几何的出现应归功与萨凯里、兰伯特等对第五公设的研究.在今天分支越来越细的数学领域里,精通多个领域的知识的数学家也越来越少.对此,数学科研者应团结,相互进行交流;用平和的心态对待已取得的成绩,不骄不躁.2.5 对数学教师和数学学习者2.5.1 在质疑问难中培养创新思维罗巴切夫斯基认为,作为一名优秀的数学教师,讲授数学必须叙述精确、严密,所有概念都应当完全清晰.因为在他看来,数学课程是以概念为基础的,几何学尤其如此.所以他在备课中,通过对欧氏几何的逻辑结构的全面思考,发现了其逻辑体系的缺陷,使他感到非常困惑.他决心在自己的教学实践中消除那些缺陷.后来他确实编写了一本几何教科书《几何学教程》(1883).他不仅在教材中形成并贯彻了他的非欧几何思想,而且他关于非欧几何的研究,始终是和教学活动相结合的.他关于非欧几何的许多定理都是在授课过程中推导出来的,在学生中交流、修改和完善的.我们可以肯定的说,他创立非欧几何的伟大成果是从几何教育改革的角度切入的,是一个数学教育家取得伟大突破的成功范例.正如数学史家鲍尔加斯指出的“罗巴切夫斯基希望建立起在教学法意义上无可指责的几何学”,“这是促使他改革新几何的重要原因”.“他对教学法的探讨,获得了出色的、开创几何学发展新阶段的、作为人类研究和征服周世界围新方法的科学结论”.所以作为一名21 世纪的数学教师,在平时的教学过程中要不断的学习这个时代的新的知识,要勇于质疑你已经掌握的知识;教学中要引导学生广开思路,重视发散思维;教师要精选一些典型问题,鼓励学生标新立异、大胆猜想、探索,培养学生的创新意识.2.5.2 在教学中训练学生的创新思维罗巴切夫斯基刚开始是循着前人的思路,试图给出第五公设的证明.在仅存下来的他的学生听课笔记中,就记载着他在1816-1817 学年度几何教学中给出的几个证明.但他很快就意识到证明是错误的.前人和自己的失败从反面启迪了他,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明.于是,他便调转思路,着手寻求第五公设不可证的解答.罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现一个新的几何世界的.“学起于思,思源于疑”,我们在探索知识的思维过程总是从问题开始,又在解决问题中得到发展.教师不仅要善于设。
论非欧几何的诞生

论非欧几何的诞生Non-Euclidean geometry又名非欧几里得几何,简称非欧几何。
通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。
非欧几何的发展源于2000多年前的古希腊著名数学家欧几里得的《几何原本》,其中的公式五“若一条直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点。
”从古希腊时代开始到19世纪的2000对年来,数学家们始终对这条公设耿耿于怀,试图解决并证明它,但对第五公设既无法正面证明,也无法从反面推出矛盾。
从《几何原本》出现到19世纪初非欧几何问世,许多杰出的数学家提出了各种“证明”,然而结果却都是错误的。
因为所有这些“证明”中都默认了一条与第五公设相互等价的命题。
通俗地说所谓等价是指含义与本质完全一样只是表述的形式不同而已。
在长达两千年的漫长岁月中整个数学面貌已经焕然一新。
继解析几何和微积分诞生之后,新的数学分支纷纷脱颖而出。
无数困难问题得以解决。
许多数学家创立了复杂艰深的数学理论。
但是人们在看上去极其简单的第五公设问题面前却仍然一筹莫展。
大数学家们也不例外。
法国数学家达朗贝尔在1759年说。
第五公设问题是“几何原理中的家丑”。
18世纪,意大利的萨凯里提出用归谬法试图证明第五公设,萨凯里从四边形开始,如果角A和角B是直角,且AC=BD,容易证明角C等于角D,这样第五公设便等价于角C和角D是直角这个论断。
萨凯里还提出了钝角和锐角的假设,但是因为与经验认识违背,但是放弃了最后结论,但是从客观上为非欧几何的创立提供了极有价值的思想方法。
其后瑞士数学家兰伯特所作的工作与萨凯里相似,他也考察了一类四边形,其中3个角为直角,而第四个角有三种可能性:锐角,直角,钝角。
之后兰贝特否定了钝角假设,也没有轻率地做出锐角假设导致矛盾的结论。
他没有像萨开里那样囿于第五公设真实性的顽固想法,而是大胆对第五公设的可证明性提出了怀疑。
在他的思想中甚至包含了非欧几何学可以存的想法,这是观念上的一个重要冲破。
非欧几何的产生是认识论的转变

非欧几何的产生是认识论的转变【摘要】认识论的演变对几何学的影响是一个重要的话题。
欧几里德几何作为传统几何学的代表,被认为是唯一正确的几何体系。
随着认识论的转变,非欧几何的产生成为可能。
非欧几何的突破性发现颠覆了欧几里德几何的基本假设,为哲学家如尼采提供了新的思考空间。
认识论转变对非欧几何的推动使得非欧几何在现代科学中得以应用。
非欧几何为认识论提供了新的视角,同时也促进了认识论的进一步发展。
认识论与几何学的关系仍有待深入研究,未来研究者需要更多地探索这两者之间的相互作用。
认识论的转变推动了非欧几何的发展,同时非欧几何也为认识论带来了新的启示,为我们提供了更广阔的研究视野。
【关键词】认识论、欧几里德几何、非欧几何、突破性发现、尼采哲学、科学应用、相互作用、转变、发展、新视角、关系、研究。
1. 引言1.1 认识论的演变认识论的演变指的是人类对于认识和知识的理论观点在历史上的发展演变过程。
从古代哲学家对于认识本质的讨论,到近现代科学革命对认识论观念的影响,认识论的演变一直贯穿着人类思想史的长河。
在古代,人们对于认识的探讨主要集中在认识的来源、本质和限度等方面。
古希腊哲学家柏拉图和亚里士多德对于认识的本质有着不同看法,柏拉图认为知识源于感性世界之上的理念世界,而亚里士多德则强调通过感觉和经验获取知识。
这些古代哲学家的思想奠定了后世认识论研究的基础。
随着欧洲文艺复兴和科学革命的兴起,认识论的研究逐渐转向对认识的过程和方法的探讨。
笛卡尔提出的怀疑主义、康德的批判哲学以及对于经验主义和理性主义的论辩,使得认识论观念逐渐趋向于理性主义和经验主义的综合。
这种认识论的发展为后来非欧几何的产生奠定了理论基础。
认识论的演变是人类对认识本质和过程进行思考和探讨的历史过程,它在一定程度上影响着人类对世界的认识和理解。
1.2 欧几里德几何与非欧几何在欧几里德几何与非欧几何的对比中,我们可以看到两者在几何学上的根本差异。
欧几里德几何是传统几何学的基础,以欧几里德公设为基础,建立在几何学的常规观念之上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非欧几何的诞生的意义
朱晨1105 161101150 非欧几何的产生具有三个重大意义:
1、解决了平行公理的独立性问题。
推动了一般公理体系的独立性、相容性、完备性问题的研究,促进了数学基础这一更为深刻的数学分支的形成与发展。
2、证明了对公理方法本身的研究能推动数学的发展,理性思维和对严谨、逻辑和完美的追求,推动了科学,从而推动了社会的发展和进步。
在数学内部,各分支纷纷建立了自己的公理体系,包括被公认为最困难的概率论也在20世纪30年代建立自己的公理体系。
实际上公理化的研究又孕育了元数学的产生和发展。
3、非欧几何实际上预示了相对论的产生,就象微积分预示了人造卫星一样。
非欧几何与相对论和汇合是科学史上划时代的事件。
人们都认为是爱因斯坦创立了相对论,但是,也许爱因斯坦更清楚,是他和一批数学家Poincare,Minkouski, Hilbert等共同的工作。
出现动钟延缓,动尺缩短,时空弯曲等现象。
这些都是非欧几何与相对论的科学发现。