2014高考数学一轮复习课件2.3函数的奇偶性与周期性

合集下载

高考数学一轮复习讲义 第二章 2.4 函数的奇偶性与周期性课件

高考数学一轮复习讲义 第二章 2.4 函数的奇偶性与周期性课件
解析 由已知,可得 f(x+4)=f[(x+2)+2] =-f(x+1 2)=--1f(1x)=f(x).
故函数的周期为 4. ∴f(105.5)=f(4×27-2.5)=f(-2.5).
∵2≤2.5≤3,由题意,得 f(2.5)=2.5.
∴f(105.5)=2.5.
答题规范
02 等价转换要规
(16 分)函数 f(x)的定义域 D={x|x≠0},且满足对于任意 x1, x2∈D.有 f(x1·x2)=f(x1)+f(x2). (1)求 f(1)的值; (2)判断 f(x)的奇偶性并证明; (3)如果 f(4)=1,f(3x+1)+f(2x-6)≤3,且 f(x)在(0,+∞) 上是增函数,求 x 的取值范围.
17<x<0}.
函数的奇偶性与周期性
例 3 设 f(x)是定义在 R 上的奇函数,且对任意实数 x,恒有 f(x+2)=-f(x).当 x∈[0,2]时,f(x)=2x-x2. (1)求证:f(x)是周期函数; (2)当 x∈[2,4]时,求 f(x)的解析式; (3)计算 f(0)+f(1)+f(2)+…+f(2 011).
(3)由4|x-+x32|≥-03≠0 ,得-2≤x≤2 且 x≠0.
∴f(x)的定义域为[-2,0)∪(0,2],关于原点对称.
∴f(x)=(x+4-3)-x23=
4-x2 x.
∴f(x)=-f(-x),∴f(x)是奇函数.
探究提高
判断函数的奇偶性,其中包括两个必备条件: (1)定义域关于原点对称,这是函数具有奇偶性的必要不充分 条件,所以首先考虑定义域对解决问题是有利的; (2)判断 f(x)与 f(-x)是否具有等量关系.在判断奇偶性的运 算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(- x)=0(奇函数)或 f(x)-f(-x)=0(偶函数))是否成立. 分段函数指在定义域的不同子集有不同对应关系的函数,分 段函数奇偶性的判断,要分别从 x>0 或 x<0 来寻找等式 f(- x)=f(x)或 f(-x)=-f(x)成立,只有当对称的两个区间上满 足相同关系时,分段函数才具有确定的奇偶性.

高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理

高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理

2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。

高考数学(文通用)一轮复习课件:第二章第4讲函数的奇偶性及周期性

高考数学(文通用)一轮复习课件:第二章第4讲函数的奇偶性及周期性

第二章基本初等函数、导数及其应用函数的奇偶性及周期性教材回顾▼夯实基础课本温故追根求源和课梳理1.函数的奇偶性2. 周期性(1)周期函数:对于函数j=/(x),如果存在一个非零常数T,那么就称函数y=/a )为周期函数,称F 为这个函数的周期.(2)最小正周期:如果在周期函数/(兀)的所有周期中存在一个正周期.要点整會尸1. 辨明三个易误点 (1)应用函数的周期性时,应保证自变量在给定的区间内.使得当兀取定义域内的任何值时,都有 f(x+T)=f(x)的正数,那么这个最小 正数就叫做沧)的最小(2)判断函数的奇偶性,易忽视函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (3)判断函数/(兀)是奇函数,必须对定义域内的每一个x,均有/(一兀)=一/(兀),而不能说存在丸使/(一兀0)=—/(兀0),对于偶函数的判断以此类推.2.活用周期性三个常用结论对/(*)定义域内任一自变量的值(1)®f(x+a)= —f(x)9则T=2a;i⑵若Z(x+a)=y (乂),则T=2a; (1)(3)若f(x-\-a)=—屮(比)“,则T= 2a.3.奇、偶函数的三个性质(1)在奇、偶函数的定义中,f(-x)=-f(x)^ 定义域上的恒等式.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法.(3)设心),g(x)的定义域分别是Di,6,那么在它们的公共定义域上:奇+奇=奇,奇><奇=偶,偶+偶=偶,偶X偶 =偶,奇乂偶=奇.(2015•高考福建卷)下列函数为奇函数的是(D B. y=e D. j=e x -e"x 双基自测 C ・ j=cosx1.2.已知/(x)=«x 2+Z»x 是定义在[«-1,加]上的偶函数,那 么"+方的值是(B )解析:因为f(x)=ax 2-\-bx 是定义在[«-1,加]上的偶函数, 所以a~l+2a=0,所以 a =-. 3X/(—x)=/(x),所以方=0,所以a+b=£ 3 A.D. 3 23.(2016•河北省五校联盟质量监测)设/(兀)是定义在R上的周期为3的函数,当xe[ - 2, 1)时,f(x)=4x2— 2, — 2WxW 0,X, 0<x<l,B. 1A. 0D. -1解析:因为心)是周期为3的周期函数,所以龙)=/(一扌+3)4.(必修1 P39习题1.3B组T3改编)若/(x)是偶函数且在(0,+ 8)上为增函数,则函数心)在(一8, °)上捋函数5.(必修1 P39习题X3A组T6改编)已知函数/(x)是定义在R 上的奇函数,当xMO时,gx) = x(1+x),则xVO时,/(x) = x(l—x)解析:当xVO时,则一x>0,所以/(—x) = (—x)(1—x)・又/(X)为奇函数,所以/(-x) = -/(x) = (-x)(1-x),所以/(X)=x(1—X)・國例1 (2014-高考安徽卷)若函ft/(x)(xe R)是周期为4的典例剖析护考点突破」 考点一函数的周期性名师导悟以例说法奇函数,且在[0 , 2]上的解析式为/(x)=\x (1—x) , OWxWl, 、sin Ji x, 1<X W2, 5/?)+眉)=—^因为当 1 <xW2 时,/(x)=sin Tix,所以 XS =sinZ r =_2-所以 3因为当 OWxWl 时,/(x)=x(l-x), 所以简兮X 。

2014版高考数学一轮总复习 第6讲 函数的性质(二)奇偶性、周期性、对称性课件 理 新人教A版

2014版高考数学一轮总复习 第6讲 函数的性质(二)奇偶性、周期性、对称性课件 理 新人教A版

【分析】 (1)用赋值法; (2)依题设构造 f(-x)与 f(x)的关系; (3)存在型问题,可由存在入手推导相关结论.
【解析】 (1)证明:令 x=y=0,则 2f(0)=2f2(0). 又 f(0)≠0,所以 f(0)=1. (2)令 x=0,则 f(y)+f(-y)=2f(0)f(y)=2f(y), 所以 f(y)=f(-y),即 f(x)=f(-x), 又 x∈R,所以 f(x)为偶函数.

函数奇偶性的应用
【例 2】 f(x)=x5+ax3+bx+3 在(0, 若 +∞)上的
最大值是 8,求 f(x)在(-∞,0)上的最小值.
【分析】 注意到 g(x)=x5+ax3+bx 是奇函数, 则 g(-x)+g(x)=0.
【解析】当 x>0 时,f(x)≤8,则当 x<0 时,-x>0, f(-x)≤8,设 x∈(-∞,0),则 f(x)=x5+ax3+bx+3 =-[(-x)5+a(-x)3+b(-x)+3]+6 =-f(-x)+6≥-8+6=-2. 所以 f(x)在(-∞,0)上的最小值是-2.
(4)当 x>0 时,-x<0, 则 f(-x)=-(-x)2-2=-(x2+2)=-f(x); 当 x<0 时,-x>0, 则 f(-x)=(-x)2+2=x2+2=-(-x2-2)=-f(x); 当 x=0 时,f(x)=0=-f(-x). 综上有,对一切实数 x,f(-x)=-f(x)恒成立,
C C (3)①证明:用 x+ 2 , 2 (C>0)替换 x,y, C C C C C C 则 f(x+ 2 + 2 )+f(x+ 2 - 2 )=2f(x+ 2 )· 2 ). f( C 又 f( 2 )=0,所以 f(x+C)+f(x)=0, 即 f(x+C)=-f(x); ② 由 ① 的 结 论 知 f(x + 2C) = - f(x + C) = f(x)(C>0), 所以 f(x)是周期函数,2C 就是它的一个周期.

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第6讲 函数的奇偶性与周期性

【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第6讲 函数的奇偶性与周期性

返回目录
第6讲
函数的奇偶性与周期性
点 面 讲 考 向
[思考流程] (1)第一步,分析分段函数的性质,当 x≥4 时,f(x)是周期函数;第二步,根据周期函数的性质,将求 f(2015)的值转化为求当 x∈[0,4)时的函数值,第三步,根 据表达式当 x∈[0,4)时,f(x)=x3 求得函数值. (2)第一步,讨论函数的性质和方程的根的个数的求解 方法;第二步,f(x)是周期函数,写出 f(x)的表达式,作出 1 函数 f(x)和 y=10x 的图像;第三步,根据图像得出结论.
返回目录
第6讲
双 向 固 基 础
函数的奇偶性与周期性
4.若奇函数 f(x)在区间(-2,-1)上是增函数,则在区 间(1,2)上是________函数.
[答案] 增
[解析] 根据奇函数的对称关系知,若奇函数 f(x)在区间 (-2,-1)上是增函数,则在区间(1,2)上也是增函数.
返回目录
第6讲
2.利用定义判断函数奇偶性的步骤 定义域 , 并 判 断 其 是 否 关 于 (1) 首 先 确 定 函 数 的 ________ 原点 ________ 对称; f(x) 与________ f(-x) 的关系; (2)确定________ (3)作出相应结论:在定义域关于原点对称的条件下, 若 f(-x)=f(x)或 f(-x)-f(x)=0,则 f(x)是偶函数; 若 f(-x)=-f(x)或 f(-x)+f(x)=0,则 f(x)是奇函数.
返回目录
第6讲
双 向 固 基 础
函数的奇偶性与周期性
5.重要类型函数的奇偶性 函数类型 f(x)=ax+a-x(a>0 且 a≠1) f(x)=ax-a-x(a>0 且 a≠1)

高三数学一轮复习 2.3函数的奇偶性与周期性课件

高三数学一轮复习 2.3函数的奇偶性与周期性课件

③函数y=f(x)满足f(-x)=f(x);
④函数y=f(x)满足f(x+2)=f(x).
A.①③
B.②④
C.①②
D.③④
【解析】选C.根据图象知函数f(x)的图象关于原点对称,故为奇 函数,所以①正确;又其图象关于直线x=1对称,所以②正确.
5.(2013·山东高考)已知函数f(x)为奇函数,且当x>0时,
f(1)=1,f(2)=2,则f(8)-f(14)=
.
【解析】f(8)=f(5+3)=f(3)=f(3-5)=f(-2)=-f(2)=-2,
f(14)=f(15-1)=f(-1)=-f(1)=-1,
所以f(8)-f(14)=-2-(-1)=-1.
答案:-1
考点1 确定函数的奇偶性
【典例1】(1)(2013·广东高考)定义域为R的四个函数
【规范解答】(1)选C.y=x3,y=2sinx是奇函数,y=x2+1是偶函
数,y=2x是非奇非偶函数. (2)①要使f(x)有意义,则 1 ≥ 0x ,
1 x
解得-1<x≤1,显然f(x)的定义域不关于原点对称,
所以f(x)既不是奇函数,也不是偶函数.
②因为
4
x
2
0,
x 3 3 ,
所以-2≤x≤2且x≠0.
函数f(x)为奇函数 关于_原__点__对称
函数f(x)为偶函数 关于_y_轴__对称
2.函数的周期性 (1)周期函数:T为函数f(x)的一个周期,则需满足的条件: ①T≠0; ②_f_(_x_+_T_)_=_f_(_x_)_对定义域内的任意x都成立. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个 _最__小__的__正__数__,那么这个_最__小__的__正__数__就叫做它的最小正周期. (3)周期不唯一:若T是函数y=f(x)(x∈R)的一个周期,则 nT(n∈Z,且n≠0)也是f(x)的周期,即f(x+nT)=f(x).

高考数学一轮复习课件23函数的奇偶性与周期性

高考数学一轮复习课件23函数的奇偶性与周期性
即 f(-x)-b=-(f(x)-b),
即 f(-x)+f(x)=2b 是偶数.
∵f lg
1

=f(-lg a),
∴f(lg a)+f lg
1

是偶数,排除 A,B,故 C,D 可能满足条件.故选 CD.
-18-
考点1
考点2
考点3
考点4
思考函数的奇偶性有哪几个方面的应用?
解题心得1.函数奇偶性的应用主要有:利用函数的奇偶性求函数
解析:(1)因为f(x)=x2+g(x),且函数f(x)为偶函数,所以有(-x)2+g(x)=x2+g(x),即g(-x)=g(x),所以g(x)为偶函数,由选项可知,只有选项B
中的函数为偶函数,故选B.
(2)因为函数 y=f(x+1)-2 为奇函数,所以函数 f(x)的图象关于点(1,2)
2-1
解:由题意知函数f(x)的定义域为R,关于原点对称.因为f(-x)=(-x)3(-x)=-x3+x=-(x3-x)=-f(x),所以函数f(x)为奇函数.
-15-
考点1
考点2
考点3
考点4
B
(2)(2019 福建漳州质检二,16)已知函数 y=f(x+1)-2 是奇函
2-1
数,g(x)= -1 ,且 f(x)与 g(x)的图象的交点为(x1,y1),(x2,y2),…,(xn,yn),则
故对于x∈(-∞,0)∪(0,+∞),均有f(-x)=-f(x),即函数f(x)是奇函数.
4- 2 ≥ 0,
(3)∵
| + 3| ≠ 3,
∴-2≤x≤2,且 x≠0.
∴函数的定义域关于原点对称.

高考数学一轮复习-2-3函数的奇偶性与周期性课件-理

高考数学一轮复习-2-3函数的奇偶性与周期性课件-理
•由f(x)是定义在R上的奇函数,且满足f(x-4)= -f(x),得f(11)=f(3)=-f(-1)=f(1). •∵f(x)在区间[0,2]上是增函数,
•f(x)在R上是奇函数, •∴f(x)在区间[-2,2]上是增函数, •∴f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).
基础诊断
考点突破
课堂总结
考点二 函数周期性的应用 【例 2】(1)(2014·安徽卷)若函数 f(x)(x∈R)是周期为 4 的奇函
数,且在[0,2]上的解析式为 f(x)=xsin1-πxx,,1<0≤x≤x≤2,1, 则 f 249+f 461=________. (2)已知 f(x)是定义在 R 上的偶函数,且 f(x+2)=-f(x),当 2≤x≤3 时,f(x)=x,则 f(105.5)=________.
• 第3讲 函数的奇偶性与周期性
基础诊断
考点突破
课堂总结
• 考试要求 1.函数奇偶性的含义及判断,B级 要求;2.运用函数的图象理解、研究函数的奇 偶性,A级要求;3.函数的周期性、最小正周 期的含义,周期性的判断及应用,B级要求.
基础诊断
考点突破
课堂总结
• 知识梳理 • 1.函数的奇偶性
奇偶 性
基础诊断
考点突破
课堂总结
【训练 2】 (2014·南通模拟)已知函数 f(x)是定义在 R 上的奇函数, 且是以 2 为周期的周期函数.若当 x∈[0,1)时,f(x)=2x-1,则
f(log16)的值为________.
2
解析 ∵f(x)是周期为 2 的奇函数.
∴f(log16)=f
2
log1
2
法二 易知 f(x)的定义域为 R. ∵f(-x)+f(x)=log2[-x+ -x2+1]+ log2(x+ x2+1)=log21=0,即 f(-x)=-f(x), ∴f(x)为奇函数. 对于 g(x),由|x-2|>0,得 x≠2. ∴g(x)的定义域为{x|x≠2}. ∵g(x)的定义域关于原点不对称, ∴g(x)为非奇非偶函数. 答案 (1)① (2)奇 非奇非偶
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2013·福州模拟)设f(x)是定义在R上的奇函数,且对 任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x -x2. (1)求证:f(x)是周期函数; (2)计算f(0)+f(1)+f(2)+…+f(2 013). 【思路点拨】 证明f(x+4)=f(x),进而运用周期性与
移一个单位得到的,而y=f(x)的图象的对称轴为x=0. 【答案】 B
3.已知定义在R上的奇函数f(x),满足f(x+4)=f(x),
则f(8)的值为(
A.-1 【解析】
)
B.0 ∵f(x+4)=f(x), C.1 D.2
∴f(x)是以4为周期的周期函数,∴f(8)=f(0). 又函数f(x)是定义在R上的奇函数, ∴f(8)=f(0)=0. 【答案】 B
第三节
函数的奇偶性与周期性
1.奇函数、偶函数的定义
奇 偶性 奇函数 偶函数
如果对于函数f(x)的定义域内的任意一个x


f(-x)=-f(x)
f(-x)=f(x)
都有______________, 都有_____________, 那么函数f(x)是奇函数 那么函数f(x)是偶函数.
2.奇、偶函数的性质
【解析】
依题意b=0,且2a=-(a-1), 1 ∴b=0且a= , 3 1 则a+b= . 3
【答案】 B
2.已知y=f(x)是偶函数,则函数y=f(x+1)的图象的 对称轴是( ) A.x=1 B.x=-1 1 1 C.x= D.x=- 2 2
【解析】 y=f(x+1)的图象是由y=f(x)的图象向左平
4-(-x)2 4-x2 又∵f(-x)= =- =-f(x), x -x ∴函数f(x)为奇函数. (2)f(x)的定义域为R,当x>0时,f(-x)=-(-x)2-2= -(x2+2)=-f(x); 当x<0时,f(-x)=(-x)2+2=-(-x2-2)=-f(x). 但f(0)=-2≠0,所以函数f(x)为非奇非偶函数.
奇偶性把自变量转化到区间[0,1]上.
(2)根据f(-x)=-f(x)求解.
【尝试解答】
(1)用转化与化归思想将f(
3 2
)转化到
x∈[0,1]上. 当x∈[-1,0]时,-x∈[0,1], ∵f(x)为偶函数, ∴f(x)=f(-x)=-x+1. 3 3 1 1 3 ∴f( )=f( -2)=f(- )=-(- )+1= . 2 2 2 2 2 (2)由f(-x)=-f(x), 1 -x x -2x a-2x 2 -a 2 -a a 得 -x =- x ,即 = x, 1 2 +a 2 +a a+2 +2x a
1.本题第(1)题,若盲目化简:f(x)= x-1 (x+1) · = x+1
2
x2-1 将扩大函数的定义域,作出
错误判断.第(2)题易忽视定义域无从入手. 2.判断函数的奇偶性,首先看函数的定义域是否关于 原点对称;在定义域关于原点对称的条件下,再化简解析 式,根据f(-x)与f(x)的关系作出判断,对于分段函数,应 分情况判断.
判断下列函数的奇偶性. 4-x2 (1)f(x)= . |x+3|-3
x2+2(x>0), (2)f(x)= -x2-2(x≤0).
【解析】
4-x2≥0 (1)由 ,得-2≤x≤2且x≠0. |x+3|≠3
∴函数f(x)的定义域关于原点对称, 4-x2 4-x2 f(x)= = , x x+3-3
∴2是f(x)(x≥0)的一个周期,
又∵f(x)是(-∞,+∞)上的偶函数, ∴f(-2 011)+f(2 012)=f(2 011)+f(2 012) =f(1)+f(0)=log22+log21=1. 【答案】 C
函数的定义域关于原点对称是函数具有奇偶性的必要不
充分条件.
1.若奇函数f(x)在x=0处有定义,则f(0)=0. 2.设f(x),g(x)的定义域分别是D1,D2,那么在它们的 公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶 ×偶=偶,奇×偶=奇.
(1)(2012· 浙江高考)设函数f(x)是定义在R上的周期为2 3 的偶函数,当x∈[0,1]时,f(x)=x+1,则f( )= 2 ________. 2x-a (2)(2013· 清远调研)已知函数f(x)= x 在其定义域上 2 +a 为奇函数,则a=________.
【思路点拨】 (1)先根据周期性缩小自变量,再根据
b +2 b+4 1 1 1 2 又因为f(- )=- a+1,f( )= = , 2 2 2 1 3 +1 2 b+4 1 所以- a+1= . 2 3 ∴3a+2b=-2.
【答案】
-2
错因分析:(1)转化能力差,不能把所给区间和周期联 系起来. (2)挖掘不出f(-1)=f(1),从而无法求出a、b的值. 防范措施:(1)对于周期函数,应注意所给区间包含几 个周期,有助于我们挖掘隐含条件. (2)对于两个字母的求值,应列两个方程求解,这也是
判断函数的奇偶性,一般有三种方法:(1)定义法;(2) 图象法;(3)性质法.
1.若对于R上的任意的x都有f(2a-x)=f(x)或f(直线x=a对称.
2.若f(x+a)=f(x+b)(a≠b),那么函数f(x)是周期函 数,其中一个周期为T=2|a-b|.
3.周期性
3.周期性 f(x+T)=f(x) 若f(x)对于定义域中任意x均有_______________ (T为不 等于0的常数),则f(x)为周期函数. 若T是函数y=f(x)的一个周期,则nT(n∈Z,且n≠0)也 是f(x)的周期.
1.奇函数、偶函数的定义域具有什么特点?它是函数
具有奇偶性的什么条件? 【提示】 定义域关于原点对称,必要不充分条件.
(2013·惠州模拟)已知函数f(x)是(-∞,+∞)上的偶函
数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x) =log2(x+1),则f(-2 011)+f(2 012)的值为( A.-2 【解析】 B.-1 C.1 ) D.2
∵对于x≥0时,都有f(x+2)=f(x),
1.根据函数的周期性和奇偶性求给定区间上的解析式 时,转化区间应根据周期性或奇偶性,不能随便转化. 2.若对于函数f(x)的定义域内任一个自变量的值x都有 1 1 f(x+a)=-f(x)或f(x+a)= 或f(x+a)=- (a是 f(x) f(x) 常数且a≠0),则f(x)是以2a为一个周期的周期函数.
4.(2012· 陕西高考)下列函数中,既是奇函数又是增函 数的为( ) A.y=x+1 B.y=-x3 1 C.y= D.y=x|x| x
【解析】 数. 【答案】 D A选项中的函数为非奇非偶函数.B、C、D
选项中的函数均为奇函数,但B、C选项中的函数不为增函
判断下列各函数的奇偶性: (1) f(x)=(x+1) 1-x ; 1+x
lg(1-x2) (2)f(x)= ; |x-2|-2
【思路点拨】
先求定义域,看定义域是否关于原
点对称,在定义域下,带绝对值符号的要尽量去掉.
【尝试解答】
1+x≠0, (1)由 1-x 得,定义域为(-1, 1+x≥0
1],关于原点不对称,故f(x)为非奇非偶函数. 1-x2>0 (2)由 得,定义域为(-1,0)∪(0,1). |x-2|≠2 ∴x-2<0,∴|x-2|-2=-x, lg(1-x2) ∴f(x)= . -x lg[1-(-x)2] lg(1-x2) 又∵f(-x)= =- =-f(x), x -x ∴函数f(x)为奇函数.
时有定义,则f(0)=0.
(1)(2013· 珠海调研)已知函数f(x)=
x2+x,x≤0, 2 ax +bx,x>0
为奇
函数,则a+b=________. (2)(2013· 揭阳质检)已知定义在R上的奇函数满足f(x)= x2+2x(x≥0),若f(3-a2)>f(2a),则实数a的取值范围是 ________.

又因为f(-1)=f(1), b+2 所以-a+1= ,即b=-2a. 2 将②代入①,得a=2,b=-4. 所以a+3b=2+3×(-4)=-10.

【答案】
-10
1.(2012·山东高考)定义在R上的函数f(x)满足f(x+6)= f(x),当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x) =x.则f(1)+f(2)+f(3)+…+f(2 012)=( A.335 B.338 C.1 678 ) D.2 012
奇偶性求解.
【尝试解答】
(1)∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x).
∴f(x)是周期为4的周期函数. (2)f(0)=0,f(2)=0,f(1)=1,f(3)=f(-1)=-1. 又f(x)是周期为4的周期函数. ∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7) =…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0. ∴f(0)+f(1)+f(2)+…+f(2 013)=f(0)+f(1)=1.
2.(1)若y=f(x+a)是偶函数,函数y=f(x)的图象有什么 对称性?(2)如果y=f(x+b)是奇函数,函数f(x)的图象有什
么对称性?
【提示】 (1)f(x)的图象关于直线x=a对称;(2)f(x)的
图象关于点(b,0)中心对称.
1.(人教A版教材习题改编)已知f(x)=ax2+bx是定义 在[a-1,2a]上的偶函数,那么a+b的值是( ) 1 1 1 1 A.- B. C. D.- 3 3 2 2
促使我们挖掘隐含条件的动力.
【正解】 因为f(x)的周期为2, 3 3 1 所以f( )=f( -2)=f(- ), 2 2 2 1 1 即f( )=f(- ). 2 2 1 1 又因为f(- )=- a+1, 2 2
相关文档
最新文档