五年级奥数小升初五大模型之蝴蝶模型的应用练习题.ppt

合集下载

小学奥数几何篇 五大模型——蝴蝶定理(附答案)

小学奥数几何篇 五大模型——蝴蝶定理(附答案)

五大模型——蝴蝶模型例1. 四边形ABCD的对角线AC与BD交于点O,如果三角形ABD1,且AO=2,DO=3,那么CO的长的面积等于三角形BCD的面积3度是DO的长度的倍例2. 如图,平行四边形ABCD的对角线交与点O点,△CEF、△OEF、△ODF、△BOE的面积依次是2、4、4和6 求:(1)△OCF 的面积;(2)求△GCE的面积例3.如图,边长为1的正方形ABCD中,BE=3EC,CF=FD,求三角形AEG的面积。

例4. 如图,边长为1的正方形ABCD的边长为10厘米,E为AD 中点,F为CE中点,G为BF中点,求三角形BDG的面积例5. 如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知AOB于BOC的面积分别为25平方厘米于35平方厘米,那么梯形ABCD的面积是平方厘米例6.梯形ABCD的对角线AC与BD交与点O,已知梯形上底为2,2,求三角形AOD与且三角形ABO的面积等于三角形BOC面积的3三角形BOC的面积之比。

例7. 如下图,一个长方形一些直线分成了若干个小块,已知三角形ADG的面积是11,三角形BCH的面积是23,求四边形EGFH 的面积。

例8. 右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米例9. 如图,长方形ABCD被CE、DF分成四块,已知期中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC的面积为平方厘米例10. 如图,正六边形面积为6,那么阴影部分面积为多少?蝴蝶模型习题1、如图,长方形ABCD中,BE:EC=2:3,DF:FC=1:2,三角形DFC面积为2平方厘米,求长方形ABCD的面积.2、梯形的下底是上底的1.5倍,三角形OBC的面积是9cm2,问三角形AOD的面积是多少?3、如图,长方形中,若三角形1的面积与三角形3的面积比为4:5,四边形2的面积为36,则三角形1的面积为4、如图,长方形ABCD中,阴影部分是直角三角形且面积为54,OD的长是16,OB的长是9,那么四边形OECD的面积是多少?5、如图,△ABC是等腰三角形,DEFG是正方形,线段AB与CD相较于K点,已知正方形DEFG的面积48,AK:KB=1:3,则△BKD的面积是多少?答案【例1】因为AO : OC =S∆ABD : S∆BDC= 1: 3 ,所以OC = 2⨯3 = 6 ,所以OC : OD = 6: 3 = 2:1.解法二:作AH ⊥BD于H ,CG ⊥BD 于G .因为S所以S ∆ABD=1S3=1S∆BCD,所以AH =1 CG ,3,∆AOD 3 ∆DOCAO =1CO ,3OC = 2⨯3 = 6 ,OC : OD = 6: 3 = 2:1.C【例2】⑴⑴BCD 的面积为2 + 4 + 4 + 6 =16 ,⑴BCO 和∆CDO 的面积都是16 ÷ 2 = 8 ,所以⑴OCF 的面积为8 - 4 = 4 ;⑴由于⑴BCO 的面积为8,⑴BOE 的面积为6,所以⑴OCE 的面积为8 - 6 = 2 ,根据蝴蝶定理,EG : FG =S∆COE : S∆COF= 2 : 4 = 1: 2所以S∆GCE : S∆GCF=EG : FG = 1: 2 ,S∆GCE =11+ 2S∆CEF=1⨯ 2 =2 .33【例3】A DFB EC 连接EF .因为BE = 2EC ,CF =FD ,所以S∆DEF = (1⨯1⨯1)S2 3 2ABCD=1S12ABCD.因为S∆AED =1S2ABCD,由蝴蝶定理,AG : GF =1 : 12 12= 6 :1 ,所以S∆AGD = 6S∆GDF=6S7∆ADF=6⨯1S74ABCD=3S14ABCD.所以S∆AGE =S∆AED-S∆AGD=1S2ABCD-3 S14ABCD=2S7ABCD=2,7【例4】A E DB C设BD 与CE 的交点为O ,连接BE 、DF .由蝴蝶定理EO : OC =S BED : S BCD ,而SBED =1S4ABCD,SBCD=1S2ABCD,所以EO : OC =SBED : SBCD= 1: 2 ,故EO =1EC .3F 为CE 中点,所以EF =1 EC ,2故EO: EF = 2: 3,FO : EO =1: 2 .由蝴蝶定理SBFD : SBED=FO : EO = 1: 2 ,所以SBFD =1S2BED=1S8ABCD,SBGD =1S2BFD=1S16ABCD=1⨯10⨯10 = 6.2516AOB BOC AOB DOC 梯形蝴蝶定理B① S 1 : S 3 C= a 2 : b 2② S : S : S : S = a 2 : b 2 : ab : ab ; 1 3 2 4 ③ S 的对应份数为(a + b )2【例 5】由梯形蝴蝶定理, S : S = a 2 : ab = 25 : 35 , 可得 a : b = 5: 7 ,再根据梯形蝴蝶定理, S : S = a 2 :b 2 = 52 : 72 = 25 : 49 , 所以S DOC = 49梯形 ABCD 的面积为25 + 35 + 35 + 49 =144【例 6】由蝴蝶定理, S AOB : S BOC = ab : b 2 = 2 : 3得a : b = 2: 3,S AOD : S BOC = a 2 : b 2 = 22 : 32 = 4 : 9O∆OCD ∆OCD【例 7】AF BDE C如图,连结 EF ,显然 ADEF 和 BCEF 都是梯形, 于是 EFG 的面积等于三角形 ADG 的面积三角形 BCH 的面积等于三角形 EFH 的面积所以四边形 EGFH 的面积是11+ 23 = 34.【例 8】A DB C连接 AE .由于 AD 与 BC 平行,所以 AECD 也是梯形,那么S ∆OCD = S ∆OAE .据蝴蝶定理, S ∆OCD ⨯ S ∆OAE = S ∆OCE ⨯ S ∆OAD = 2 ⨯ 8 = 16 故 S 2 = 16 ,所以S = 4另解:在平行四边形 ABED 中, S ∆ADE =1 S2 ABED = 1 ⨯(16 + 8) = 12 2 所以S ∆AOE = S ∆ADE - S ∆AOD = 12 - 8 = 4根据蝴蝶定理,阴影部分的面积为8⨯ 2 ÷ 4 = 4【例 9】A EBD连接 DE 、CF . EDCF 为梯形,所以S ∆EOD = S FOC , 又根据蝴蝶定理, S ∆EOD ⋅ S ∆FOC = S ∆EOF ⋅ S ∆COD 所以S ∆EOD = 4 , S ∆ECD = 4 + 8 = 12ABCD 面积为12⨯2 = 24S ∆EOD ⋅ S ∆FOC = S ∆EOF ⋅ S ∆COD = 2 ⨯ 8 = 16 ,四边形OFBC 的面积为24 - 5 - 2 -8 = 9 (平方厘米).【例 10】连接阴影图形的长对角线,此时六边形被平分为两半根据六边形的特殊性质,和梯形蝴蝶定理把六边形分为 18 份 阴影部分占了其中 8 份,所以阴影部分的面积 8 ⨯ 6 = 8 .183∆ AOD ∆ AOD ∆BOC123作业题答案1.AD FBEC连接 AE , FE .因为 BE : EC = 2: 3 , DF : FC =1: 2 ,所以S = (3 ⨯ 1 ⨯ 1)S = 1S. DEF 5 3 2长方形ABCD10 长方形ABCD 因为S= 1 S , A G : GF = 1 : 1= 5 :1,所以S = 5S = 10 平方厘米,所AED2 长方形ABCD 2 10AGD GDF 以 S = 12 平方厘米.因为S = 1S ,所以长方形 ABCD 的面积是72 平方 AFD厘米.2.AFDA D6 长方形ABCDBC根据梯形蝴蝶定理, a : b =1:1.5 = 2: 3 , S : S = a 2:b 2 = 22 : 32 = 4 : 9 , 所以S = 4(cm 2 ) .3.O 做辅助线如下:利用梯形模型,这样发现四边形 2 分成左右两边,其面积正好等于三角形 1 和三角形 3,所以 1 的面积就是36 ⨯44 + 5= 16 ,3 的面积就是 36 ⨯54 + 5= 20 .4.ADBEC因为连接 ED 知道⑴ABO 和⑴EDO 的面积相等即为54 ,又因为OD ⑴OB =16⑴9 ,所以 ⑴AOD 的面积为54 ÷ 9⨯16 = 96 ,根据四边形的对角线性质知道:⑴BEO 的面积为:54⨯54 ÷ 96 = 30.375 ,所以四边形OECD 的面积为: 54 + 96 - 30.375 =119.625 (平方厘米).5.BM C由于 DEFG 是正方形,所以 DA 与 BC 平行,那么四边形 ADBC 是梯形.在梯形ADBC 中,∆BDK 和∆ACK 的面积是相等的.而 AK : KB =1: 3 ,所以∆ACK 的面积是∆ABC 面积的 1 = 1 ,那么∆BDK 的面积也是∆ABC 面积的 1.1+ 3 4 4由于∆ABC 是等腰直角三角形,如果过 A 作 BC 的垂线,M 为垂足,那么 M 是BC 的中点,而且 AM = DE ,可见∆ABM 和∆ACM 的面积都等于正方形 DEFG 面积的一半,所以∆ABC 的面积与正方形 DEFG 的面积相等,为 48. 那么∆BDK 的面积为48⨯ 1= 12 .4。

小学奥数-几何五大模型(蝴蝶模型)..

小学奥数-几何五大模型(蝴蝶模型)..

模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。

如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。

AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。

小学奥数几何模型 之 蝴蝶模型+沙漏模型 非常完整版讲义 例题+作业 带答案

小学奥数几何模型 之 蝴蝶模型+沙漏模型  非常完整版讲义  例题+作业 带答案

小学几何模型之蝴蝶模型准备练习梯形中的蝴蝶模型梯形的两个翅膀相等。

左=右例题1如图:在梯形ABCD中,AD平行于BC,对角线AC和BD相交于点O。

已知三角形AOD 与三角形DOC的面积分别是16平方厘米与24平方厘米,求梯形ABCD的面积。

△AOB的面积为24cm2△BOC的面积:24×24÷16=36(cm2)梯形ABCD的面积:16+24+24+36=100(cm2)练习1如图:在梯形ABCD中,AD平行于BC,对角线AC和BD相交于点O。

已知三角形DOC 与三角形BOC的面积分别是35平方厘米与49平方厘米,求三角形AOD的面积。

△AOB的面积为35平方厘米△AOD的面积:35×35÷49=25(cm2)例题2如图:长方形ABCD被一些直线分成了若干部分。

已知三角形ADG的面积是7平方厘米,三角形BCH的面积是9平方厘米,求四边形EGFH的面积。

连接EF四边形EGFH的面积:7+9=16(cm2)练习2如图:长方形ABCD被一些直线分成了若干部分。

已知三角形ADG的面积是24平方厘米,三角形BHC的面积是17平方厘米,求四边形GEHF的面积。

连接EF四边形EGFH的面积:24+17=41(cm2)风筝模型例题3如图:一个不规则四边形被两条对角线分成四个小三角形。

已知其中三个小三角形的面积,求三角形CDG的面积。

△CDG的面积:3×8÷4=6(cm2)练习3如图:一个不规则四边形被两条对角线分成四个小三角形。

已知其中三个小三角形的面积,求三角形ABG的面积。

△ABG的面积:8×6÷12=4(cm2)例题4如图:四边形ABCD的对角线AC和BD相交于点O。

已知三角形ABD的面积是30平方厘米,三角形ABC的面积是48平方厘米,三角形BCD的面积是50平方厘米,求三角形BOC的面积。

OC:OA=50:30=5:3△BOC和△AOB是等高模型面积比为5:3△BOC的面积为:48÷(5+3)×5=30(cm2)练习4如图:一个园林形状如四边形ABCD,现测得三角形BCD的面积是25公顷,三角形ABC 的面积是24公顷,三角形ABD的面积是15公顷。

五年级蝴蝶模型例题

五年级蝴蝶模型例题

五年级蝴蝶模型例题
一、例题
在梯形ABCD中,AB平行于CD,对角线AC和BD相交于点O。

已知三角形AOB的面积为5平方厘米,三角形DOC的面积为20平方厘米,求梯形ABCD的面积。

二、题目解析
1. 蝴蝶模型原理
在梯形中,根据蝴蝶模型的性质,三角形AOB和三角形DOC相似(因为AB∥CD),并且三角形AOB与三角形DOC面积的比等于对应边的比的平方。

同时,三角形AOD和三角形BOC的面积相等(这是蝴蝶模型的重要结论之一)。

2. 求三角形AOD和BOC的面积
设三角形AOD的面积为S_AOD,三角形BOC的面积为S_BOC。

由于frac{S_△ AOB}{S_△ DOC}=(5)/(20)=(1)/(4),设AB = a,CD = b,根据相似三角形面积比等于相似比的平方,可得(a)/(b)=(1)/(2)。

根据蝴蝶模型中S_△ AOD× S_△ BOC=S_△ AOB× S_△ DOC,即S_△ AOD×S_△ BOC=5×20 = 100。

又因为S_△ AOD=S_△ BOC,所以S_△ AOD=S_△ BOC = 10平方厘米。

3. 求梯形面积
梯形ABCD的面积S = S_△ AOB+S_△ DOC+S_△ AOD+S_△ BOC
把S_△ AOB=5平方厘米,S_△ DOC=20平方厘米,S_△ AOD=S_△ BOC=10平方厘米代入可得:
S=5 + 20+10+10=45平方厘米。

小学奥数-几何五大模型蝴蝶模型

小学奥数-几何五大模型蝴蝶模型

任意四边形、梯形与相似模型模塑三期礫模型(任意模型)任sriasi形中的比例关系(“期燥定理”):(3)5, :52 =S4 :S3 (者Sj xS3 =S2 x S4②AO:OC=(S|+S2):(S J+SJ妁噪定理为我<]提供了解决不的面稅何题的一个^go通it构殖模型,一方面可以使不規覓四也形的面秋关系与0J1®的三角形相联系;另一方面.也可以得對与面釈对应的对角箜的比傍关系。

【例1】(小数报竞赛活动贰题)如图,某公园的外乾縻是四迪形ABCD.被对角»AC.加分成四个部分,△ 力防面稅为1平方千米,面稅为2平方千米,的面稅为3平方千米,公园由隋地面枳是6. 92平方干米和人工湖组成,求人工湖的面枳是多少平方干米?【分析】根据掛蝶定理求得S“o°=3xl*2 = l・5平方千米,公同呱边形ABCD的面枳是1 + 2 + 3 + 1.5 = 7.5平方千米,所以人工湖的面枳是7.5-6.92 = 0.58平方千米【贝固】如图,四边形被两条对角城分廉4个三角形.其中三个三角形的面稅巳知. 求:(1)三角形BGC的面枳;(2)AG:GC=?A D【解析】(1)根据州喋定理,S BCC xl = 2x3,那么5^c=6;(2)根据捌礫定理,AG:GC = (l + 2):(3 + 6) = l:3. (? ? ?)【例2】四边形A3CD的对角SAC与3Q交于点0(如图所示)。

如果三角HABD的面稅等于三角形3CD的面积的且AO = 29 DO = 3t那么CO的长度是DOff}长度的________________________ 倍。

【解析】在本题中,WH^ABCD为任恿呱边形,对干迪FT不良呱边形”,无外乎两种业理方法:(1)利用已知条件,向已有模型靠拢,)!而快速解决;(2)通过画来孜造不良四边形。

看到题目中给岀条件S“0B C D=\:3,逹可以向模里一脚蝶定理靠拢,干是得岀一种解法。

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理(附答案)在小学奥数的几何部分,蝴蝶定理是一个非常有用的工具,它可以帮助我们解决一些复杂的几何问题。

蝴蝶定理主要描述了在四边形中,当两条对角线互相垂直时,四边形被分成四个小三角形,而这四个小三角形的面积之间存在一定的关系。

蝴蝶定理的内容如下:设四边形ABCD中,AC和BD是互相垂直的对角线,交于点O。

设四个小三角形的面积分别为S1、S2、S3、S4。

那么,蝴蝶定理可以表述为:S1 + S2 = S3 + S4。

这个定理听起来可能有些抽象,但实际上它的应用非常广泛。

我们可以通过蝴蝶定理来解决一些看似复杂的问题。

下面,我将通过一些例子来展示蝴蝶定理的应用。

例1:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC =8cm,BD = 6cm。

如果三角形ABC的面积是24cm²,那么三角形ADC的面积是多少?解答:根据蝴蝶定理,我们有S1 + S2 = S3 + S4。

由于三角形ABC的面积是24cm²,所以S1 = 24cm²。

又因为AC = 8cm,BD = 6cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 8cm6cm = 24cm²。

因此,三角形ADC的面积也是24cm²。

例2:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC = 10cm,BD = 5cm。

如果三角形ABC的面积是20cm²,那么三角形ADC的面积是多少?解答:同样地,根据蝴蝶定理,我们有S1 + S2 = S3 + S4。

由于三角形ABC的面积是20cm²,所以S1 = 20cm²。

又因为AC = 10cm,BD = 5cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 10cm 5cm = 25cm²。

因此,三角形ADC的面积是25cm²。

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理一、蝴蝶定理的定义与公式蝴蝶定理是小学奥数几何篇中的一个重要模型,它描述了在等腰三角形中,一条平行于底边的线段将底边平分,并且这条线段与等腰三角形的两腰相交于同一点时,该线段的中点与等腰三角形的顶点、底边的中点以及两腰上的交点形成一个等腰三角形。

蝴蝶定理的公式如下:设等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,则AG=BG=CG。

二、蝴蝶定理的应用1. 在等腰三角形中求边长:通过蝴蝶定理,可以快速求出等腰三角形中未知边的长度。

例如,已知等腰三角形ABC中,AB=AC,底边BC 的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求AG的长度。

解答:根据蝴蝶定理,AG=BG=CG,又因为AB=AC,所以AG=AB/2=a。

2. 在等腰三角形中求角度:通过蝴蝶定理,可以求出等腰三角形中未知角的度数。

例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求∠AGB的度数。

解答:由于AG=BG=CG,所以△AGB是等边三角形,∠AGB=60°。

3. 在等腰三角形中求面积:通过蝴蝶定理,可以求出等腰三角形中未知部分的面积。

例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求△AGB的面积。

解答:由于△AGB是等边三角形,所以△AGB的面积=(a^2 √3)/ 4。

5年级奥数秋季同步课程-07 蝴蝶模型(课后习题)

5年级奥数秋季同步课程-07 蝴蝶模型(课后习题)

蝴蝶模型主讲:五豆
蝴蝶模型答案:26
如图所示,四边形的总面积为72,已知两个小三角形的面积是11和13,那么图中四个小三角形中面积最大的一个面积是多少?
13
11
蝴蝶模型答案:20
如图所示,三角形ABC的面积是12,三角形BCD的面积是30,三角形ACD的面积是24,那么四个小三角形中最大的一个面积是多少?
A
D
B
C
蝴蝶模型答案:4223
如图所示,在梯形ABCD 中,AC 是AE 的4倍,三角形DEC 的面积是24,那么梯形的面积是多少?
A
B
C
D E
蝴蝶模型答案:319
如图所示,在长方形ABCD 中,△AOB 是直角三角形且面积为144,OD 的长是16,OB 的长是9.那么四边形OECD 的面积是多少?A
B C D E O
蝴蝶模型答案:9
如图所示,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积是多少平方厘米?
A B
C D E
O
F 2
58。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连接CE,得到梯形BCDE
根据蝴蝶模型: S2 = S4
A
则: S∆BEF = S∆CDF =6(平方厘米)
根据蝴蝶模型: S1×S3=S2×S4
得: S∆BCF= S∆BEF× S∆CDF ÷S∆DEF
所以: S∆BCF=6×6÷4=9(平方厘米)
B
所以: SABEF = S∆ABD - S∆DEF
根据蝴蝶模型: S2 = S4
则: S∆BOC = S∆EOG
得: S∆BEG = S∆BCG
所以:S∆BEG = 10×10÷2=50
B
答:阴影的面积是50。
F
E
O
C
D
logo
欢迎来到领军教育
小升初考什么?
思想 策略
代数
统计
数论
与方 程
空间
概率
图形 思维进阶
行程 问题
数字 基础技能技
与运 算
典型问题
工程 问题
经济 问题
小 升 初
小升初常考点之 图形模块一(蝴蝶定理)
蝴蝶模型:
如果四边形ABCD是梯形,如下图,可以得出结论:
A
D
S1
S2 O S4
S2=S4
S3
S1×S3=S2×S4
B
C
典题解析
例1.梯形ABCD中,三角形AOB的面积是8,三角形AOD的面积是4,三角 形DOC的面积是8,求三角形BOC的面积。
根据蝴蝶模型:S1×S3=S2×S4 则:S∆AOD× S∆BOC= S∆AOB× S∆COD 得: S∆BOC= S∆AOB× S∆COD ÷S∆AOD 所以: S∆BOC=8×8÷4=16
得: S∆BCF= S∆BEF× S∆CDF ÷S∆DEF
所以: S∆BCF=6×6÷4=9(平方厘米)
B
E
D
4
6F 6
9
C
典题解析
例3.如图所示,BD、CE将长方形ABCD分成4块,三角形DEF的 面积是4平方厘米,三角形CDF的面积是6平方厘米,四边形 ABEF的面积是多少平方厘米?
连接CE,得到梯形BCDE
答:三角形BOC的面积是16。
典题解析
例2.如图,在平行四边形中,△ABN的面积是36平方厘米,四边形EMFN的 面积是64平方厘米,则丙的面积是多少平方厘米?
连接EF,得到梯形ABFE和梯形CDEF 根据蝴蝶模型: S2 = S4 则: S∆ABN = S∆EFN 和 S∆EFM = S∆CDM 得: S∆CDM = S∆EFN + S∆EFM - S∆ABN 所以:S∆CDM = 64-36 = 28(平方厘米) 答:丙的面积是28平方厘米。
根据蝴蝶模型: S2 = S4
A
则: S∆BEF = S∆CDF =6(平方厘米)
根据蝴蝶模型: S1×S3=S2×S4
得: S∆BCF= S∆BEF× S∆CDF ÷S∆DEF
所以: S∆BCF=6×6÷4=9(平方厘米)
B
E
D
4
6F 6
9

C
典题解析
例3.如图所示,BD、CE将长方形ABCD分成4块,三角形DEF的 面积是4平方厘米,三角形CDF的面积是6平方厘米,四边形 ABEF的面积是多少平方厘米?
典题解析
例3.如图所示,BD、CE将长方形ABCD分成4块,三角形DEF的 面积是4平方厘米,三角形CDF的面积是6平方厘米,四边形 ABEF的面积是多少平方厘米?
连接CE,得到梯形BCDE
根据蝴蝶模型: S2 = S4
A
则: S∆BEF = S∆CDF =6(平方厘米)
根据蝴蝶模型: S1×S3=S2×S4
= S∆BCD - S∆DEF
= 6+9-4
= 11(平方厘米)
E
D
4
6F 6
9
C
答:四边形ABEF的面积是11平方厘米。
典题解析
例4.如图,正方形ABCG与正方形CDEF并排放置,B、C、D在同一条
直线上,且正方形ABCG边长为10,则图中阴影部分的面积是
多少平方厘米?
A
G
连接CE,得到梯形BCEG
相关文档
最新文档