2017考研数学 题型训练三原则

合集下载

2017考研数学复习研究真题五步策略

2017考研数学复习研究真题五步策略

2017考研数学复习研究真题五步策略来源:智阅网每年的考研真题对于考研复习来说都能发挥很重要的作用,数学也一样,因为在研究真题的时候可以把握好命题人的出题方向,充分挖掘它的价值,下面小编教你怎么使用好数学真题,请参考:2017考研数学复习:研究真题五步策略。

第一模拟真实考试场景,规定时间内闭卷做题作用:1、体验真实考试状态,提前熟悉真实考试场景,寻找参加正式考试的感觉;2、根据之后自己给分,发现知识水平差距,时间安排的合理性,明白学习重点和方向,有目的制定学习计划,将有限地时间用在提高自己的短板和弱势上。

第二模拟之后独立思考答案原因模拟之后,只看答案,不看解析,独自思考错误的原因和正确答案的理由。

这样做的目的是为锻炼自己发现错误的能力。

第三研究习题解析纠正思考方向实在想不明白错误与正确原因的,就看解析说明,看明白则好,如果还是看不明白,一定记住正确答案,并努力学会从正确答案的方向去思考。

王老师说,可能你不明白的原因很多,而很多人都容易出错的一大原因是自己的固执心态,没有任务原因的坚持自己的答案,所以顺着正确答案的方向去思考,能够很大程度地减少这种固执心态。

第四详细分析考点并做有效总结看完解析之后,总结每道试题的考点。

在考点综述后面,列举了本节知识考点在历年统考中出现过的试题,并有详细的考点提示、试题分析和方法详解。

在做完一套真题之后再做这部分练习,对掌握重点考点和巩固知识很有效。

第五发现出题规律举一反三请考生们注意,每道试题都有它的出题规律,数学真题也不例外,它一定是有几个知识点,相互关联,互相推导,或互相替换,最后得到另一个知识点的,只要你认真研究,就不难能发现这些真题的了出题规律,所谓世上无难事,只怕有心人。

同学们看了这篇文章是不是觉得自己以前对真题的使用还不够全面呢?没关系,现在行动起来还不晚,只要利用好手中的历年真题,相信你能在2017年考试中一鸣惊人。

汤家凤编写的2017《考研数学15年真题解析与方法指导》这本书收录了近15年的真题,并且对各个题型进行了归纳总结,讲述了解题技巧和方法,帮助同学们找到解题的规律,这是一本不可多得的书,要好好利用哦,加油。

复习2017考研数学的三大原则

复习2017考研数学的三大原则

复习2017考研数学的三大原则来源:文都图书考研这条路,任重而道远。

既然选择了这条道路,就要踏实的走下去,要拥有坚定的决心和信念,不然是没有办法克服日后复习的困难的。

尤其是对于备考考研数学这一科目来说,就更要提前做准备了。

那么在准备的过程中,需要大家注意,把握好以下三个原则。

1. 把握基本概念,透析基本理论数学有庞大的知识体系,从知识论的角度来讲,它的内在结构很严正,很富有层次感。

从概念、定义到公理,从公理到定理、推论,层层演进,步步深入。

很多人知其然、不知其所以然,就是因为忽视了数学最基础的知识。

有时候你绞尽脑汁不得其解,很可能只是因为你对某个概念的理解不够透彻。

因此,要把握、领悟那些最基础的数学概念。

弄懂概念,是学懂数学的至关重要的一步。

理论性的内容,比如说定理、性质、推论,首先要清楚它的条件是什么,结论是什么,这是最起码的要求。

数学考试事实上就是考察这些定理、推论的运用,只要理解透了,不管出题方式怎么刁钻,你都可以以静制动,以不变应万变。

2. 仔细阅读教材,重视做题训练挑选一本实用教材,扎扎实实地多啃几遍,肯定每次都会有新的发现。

所谓”读书百遍,其义自现“,还是有其道理的。

看教材要细致,要对基本概念、基本定理有充分地理解,最好还要弄懂每个定理的证明过程,证明过程对培养缜密的思维逻辑和良好的思维习惯非常有帮助。

此外,课后的练习十分重要,课后练习题是对基本概念、基本定理最基础的拓展和应用。

在这方面,大家可以选用毛纲源的2017《考研数学客观题简化求解》的这本书来进行学习。

3. 保质保量做题,巩固既有知识熟悉了教材之后,需要做题来巩固知识,以加深对概念和定理的理解,使数学解题能力更上一层楼。

这个时候,我们选择的练习题不能难度过大,否则会极大地打击前一个阶段建立起来的信心,但如果题型过于简单又让我们无法领悟数学的难度。

2017考研数学三备考要点

2017考研数学三备考要点

2017考研数学三备考要点来源:文都图书考研数学三将会考察高等数学、线性代数、概率与数理统计等方面的知识,对于这几个方面,建议严格按照考研大纲来学习,认真备考。

一、考研数学三中的高等数学同济六版高等数学中所有带*号的都不考;所有“近似”的问题都不考;第三章微分中值定理与导数的应用不考曲率;第四章不定积分不考积分表的使用;不考第六章定积分在物理学上的应用以及曲线的弧长。

第七章微分方程不考可降阶的高阶微分方程,另外补充差分方程。

不考第八章空间解析几何与向量代数。

第九章第五节不考方程组的情形,第十章二重积分为止,第十二章的级数中不考傅里叶级数;二、关于线性代数数学一用的参考教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。

数三不考向量组的线性相关性中的向量空间,线性方程组跟空间解析几何结合的问题;三、概率与数理统计的内容1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计,其中数三的同学不考参数估计中的区间估计刚开始复习基础的同学,春季,也就是现在就可以投入复习了。

考研老师建议大家报数学春季基础班,可以初步树立自己的复习思路,为自己的复习起一个好头。

一般来说复习分为四个阶段:第一个是基础复习阶段,这一阶段的任务是主攻教材和课本,达到基础知识的了解和掌握;第二个阶段是强化训练阶段,顾名思义这一阶段的主要任务是全书阶段,全面地掌握各类知识点,并且详细地做笔记,对常考的题型做大量的练习;第三个阶段是巩固提高阶段,这一阶段是通过真题和模拟题的训练和分析来完成将数学的整体框架结构搭建起来;最后一个阶段是冲刺阶段,这一阶段的时间一般较短,主要是做一些题目来达到稳定能力和水平的目的,并且再次地强化之前所记忆的知识点。

考虑到数学三的特点,要求考生自己将所有的解题思路都琢磨出来是十分困难的,推荐大家看汤家凤的《考研数学复习大全·数学三》另外在刚开始做题时,不必每道题都要写出完整的解题步骤,类似的题一般只要看出思路,熟悉其运算过程就可以,这样可以节省时间,提高做题的效率。

2017考研数学:这么答题得分最高

2017考研数学:这么答题得分最高

2017考研数学:这么答题得分最高考研数学中三部分:高等数学、线性代数、概率与数理统计,各自有比较独立完整的知识逻辑系统,历年来考试重点章节几乎没有变化。

比如概率与数理统计,主要多维随机变量、数字特征、点估计(数一还有区间估计),几乎每年都考,而且题型变化不大。

考研数学的复习,不能单刀直入去复习主要考试章节,而是系统全面把握,用心感悟重点章节,其实在自己深入学习过程中,自然能感悟到考试的重点章节,与出题大师们产生共鸣的。

考研数学重头戏解答题的答题技巧:技巧一:立足基础,融会贯通解答题作答的基本功还是在于对基本概念、基本定理和性质以及基本解题方法的深入理解和熟练掌握。

因此首先做好的有两个层面的复习:第一,把基本概念、定理、性质彻底吃透,将重要常用的公式、结论转变为自己的东西,做到不靠死记硬背也可得心应手灵活运用,这是微观方面;第二,从宏观上讲,理清知识脉络,深入把握知识点之间的内在关联,在脑海中形成条理清晰的知识结构,明确纵、横双方向上的联系,方可做到融会贯通,对综合性考查的题目尤为受用。

技巧二:分类总结解题方法与技巧主观题分为三大类:计算题、证明题、应用题。

三类题型分别有各自独特的命题特点以及相应的做题技巧。

例如计算题要求对各种计算(如未定式极限、重积分等)常用的定理、法则、变换等烂熟于心,同时注意各种计算方法的综合运用;而证明题(如中值定理、不等式证明等)则须对题目信息保持高度敏感,熟练建立题设条件、结论与所学定理、性质之间的链接,从条件和结论双向寻求证明思路;应用题着重考查利用所学知识分析、解决问题的能力,对考生运用知识的综合性、灵活性要求很高。

同学们在复习的过程中要注意针对三种不同的题型分别总结解题方法与技巧,及时归纳做题时发掘的小窍门、好方法,不断提高解题的熟练度、技巧性。

在做题的过程中,保持与考纲规定的范围、要求一直是首要原则,可以选一本根据最新考试大纲编写的主观题专项训练题集,对三大类解答题进行针对性的训练与深入剖析,在做题的过程中提炼解题要领、解决各类题型的关键环节与作答技巧,做到触类旁通,活学活用,获取知识掌握与解题能力的同步提高。

2017年考研数学各题型答题技巧

2017年考研数学各题型答题技巧

2017年考研数学各题型答题技巧针对考研数学的不同题型,该怎么答题呢。

下面YJBYS小编为大家精心搜集了关于2017年考研数学各题型的答题技巧,欢迎大家参考借鉴,希望可以帮助到大家!一、选择题对于选择题来说,只有一个正确选项,其余三个都是干扰项,做题的时候只需给出正确选项的字母即可,不用给出推导过程,选对得满分,选错或者不选均得0分,不倒扣分。

在做选择题的时候大家还是有很多方法可选的,常用的方法有:代入法、排除法、图示法、逆推法、反例法等。

如果考试的时候大家发现哪种方法都不奏效的话,大家还可以选择猜测法,至少有25%的正确性。

选择题属于客观题,答案是唯一的,并且考研数学考试中的多选题也是以单选的形式出现的,最终的答案只有一个,评分是不偏不倚的。

选择题的难度一般都是适中的,均为中等难度,没有特别难的,也没有一眼就能看出选项的题目。

选择题主要考查的是考生对基本的数学概念、性质的理解,要求考生能进行简单的推理、判断、计算和比较即可。

所以选择题对于考生来说,要么依靠扎实的知识得分,要么靠自身的运气得分,这32分要想稳拿需要考生在复习的时候深入思考,不能主观臆想,要思考与动手相结合才行。

二、填空题填空题的答案也是唯一的,做题的时候给出最后的结果就行,不需要推导过程,同样也是答对得满分,答错或者不答得0分,不倒扣分。

这一部分的题目一般是需要一定技巧的计算,但不会有太复杂的计算题。

题目的难度与选择题不相上下,也是适中。

填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三基本:基本概念、基本原理、基本方法以及一些基本的性质。

做这24分的题目时需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。

三、解答题解答题的分值较多,占总分的60%多,类型也较复杂,有计算题、证明题、实际应用题等,并且一般情况下每道大题都会有多种解题方法或者证明思路,有的甚至有初等解法,得分率不容易控制,所以考试在做解答题是尽量用与《考试大纲》中规定的考试内容和考试目标相一致的解题方法和证明方法,每一步的表述要清楚,每题的分值与完成该题所花费的时间以及考核目标是有关系的。

2017【考研数学三】真题及答案解析

2017【考研数学三】真题及答案解析

2017年考研数学三真题及解析一、选择题 1—8小题.每小题4分,共32分.1.若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab =【详解】0001112lim ()lim lim 2x x x xf x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A )2.二元函数(3)z xy x y =--的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,)【详解】2(3)32zy x y xy y xy y x∂=---=--∂,232z x x xy y ∂=--∂,2222222,2,32z z z zy x x x y x y y x∂∂∂∂=-=-==-∂∂∂∂∂∂ 解方程组22320320z y xy y x z x x xy y∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <- 【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )4. 若级数211sin ln(1)n k n n ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( ) (A )1 (B )2 (C )1- (D )2-【详解】iv n →∞时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫--=---+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )T E αα-不可逆 (B )TE αα+不可逆 (C )2T E αα+不可逆 (D )2TE αα-不可逆【详解】矩阵Tαα的特征值为1和1n -个0,从而,,2,2TTTTE E E E αααααααα-+-+的特征值分别为0,1,1,1L ;2,1,1,,1L ;1,1,1,,1-L ;3,1,1,,1L .显然只有TE αα-存在零特征值,所以不可逆,应该选(A ).6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B U 与C 相互独立的充分必要条件是( )(A ),A B 相互独立 (B ),A B 互不相容 (C ),AB C 相互独立 (D ),AB C 互不相容 【详解】()()(()()())()()()()()()()P A B P C P A P B P AB P C P A P C P B P C P AB P C =+-=+-U显然,A B U 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ).8.设12,,,(2)n X X X n ≥L 为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()ni i Xμ=-∑服从2χ分布 (B )()212n X X -服从2χ分布 (C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-=L 且相互独立,所以21()nii Xμ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)nii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,))~(0,1)()~(1)X N X N n X nμμμχ⇒-⇒-,所以(D )结论也是正确的;(4)对于选项(B ):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.3(sinx dx ππ-=⎰ .解:由对称性知33(sin22x dx ππππ-+==⎰⎰.10.差分方程122tt t y y +-=的通解为 .【详解】齐次差分方程120t t y y +-=的通解为2xy C =; 设122t t t y y +-=的特解为2tt y at =,代入方程,得12a =; 所以差分方程122t t t y y +-=的通解为12 2.2tt y C t =+11.设生产某产品的平均成本()1QC Q e -=+,其中产量为Q ,则边际成本为 .【详解】答案为1(1)QQ e-+-.平均成本()1QC Q e-=+,则总成本为()()QC Q QC Q Q Qe-==+,从而边际成本为()1(1).Q C Q Q e -'=+-12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)yydf x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()yyydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xye C =+,由(0,0)0f =,得0C =,所以(,)yf x y xye =.13.设矩阵101112011A ⎛⎫⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-⨯+⨯+⨯=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题15.(本题满分10分)求极限0limt x dt +→【详解】令x t u -=,则,t x u dt du =-=-,t x u dt du -=⎰⎰00002limlim limlim 33t x u u x x x x x dt e du du ++++---→→→→==== 16.(本题满分10分)计算积分3242(1)Dy dxdy x y ++⎰⎰,其中D是第一象限中以曲线y =x 轴为边界的无界区域. 【详解】33242242002424200220(1)(1)1(1)4(1)111141128Dy y dxdy dx dy x y x y x y dx x y dx x x π+∞+∞+∞=++++++=++⎛⎛⎫=-= ⎪ ++⎝⎭⎝⎭⎰⎰⎰⎰⎰17.(本题满分10分) 求21limln 1nn k k k n n →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰18.(本题满分10分) 已知方程11ln(1)k x x-=+在区间(0,1)内有实根,确定常数k 的取值范围.【详解】设11(),(0,1)ln(1)f x x x x=-∈+,则22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x x f x x x x x x x ++-'=-+=++++ 令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2()ln (1)2ln(1)2,(0)0g x x x x g ''=+-+-=2(ln(1))()0,(0,1)1x x g x x x+-''=<∈+,所以()g x '在(0,1)上单调减少,由于(0)0g '=,所以当(0,1)x ∈时,()0)0g x g ''<=,也就是()g x ()g x '在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,进一步得到当(0,1)x ∈时,()0f x '<,也就是()f x 在(0,1)上单调减少.00011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++→→→⎛⎫-+=-== ⎪++⎝⎭,1(1)1ln 2f =-,也就是得到111ln 22k -<<.设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+L ,()S x 为幂级数0n n n a x ∞=∑的和函数(1)证明nn n a x∞=∑的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x '--=∈-,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+⇒+=++ 也就得到11(1)()()n n n n n a a a a +-+-=--,也就得到111,1,2,1n n n n a a n a a n +--=-=-+L1112110112101(1)(1)!n n n n n n n n n n n a a a a a a a a a a a a a a a a n ++--------=⨯⨯⨯=-----+L也就得到111(1),1,2,(1)!n n n a a n n ++-=-=+L111121121()()()(1)!nk n n n n n k a a a a a a a a k +++-==-+-++-+=-∑Llim1n n n ρ→∞=≤≤=,所以收敛半径1R ≥ (2)所以对于幂级数nn n a x∞=∑, 由和函数的性质,可得11()n nn S x na x∞-='=∑,所以11111101111111(1)()(1)(1)((1))()n n nn n n n n n nnn n n n nn n n nn n n n n n n n x S x x na xna xna x n a x na x a n a na x a x a xx a x xS x ∞∞∞--===∞∞+==∞+=∞∞∞+-==='-=-=-=+-=++-====∑∑∑∑∑∑∑∑∑也就是有(1)()()0((1,1))x S x xS x x '--=∈-.解微分方程(1)()()0x S x xS x '--=,得()1xCe S x x-=-,由于0(0)1S a ==,得1C =所以()1xe S x x-=-.设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭, 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他. (1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =≤=+≤=+≤=++≤===≤+=≤-=≤+≤-=+-故Z X Y =+的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z '==+-≤≤⎧⎪=-≤<⎨⎪⎩其他 23.(本题满分11分)n 次测量结果12,,,n X X X L 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-=L ,利用12,,,n Z Z Z L 估计参数σ. (1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求i Z 的分布函数为{}{}()i Z i i X z F z P Z z P X z P μμσσ⎧-⎫=≤=-≤=≤⎨⎬⎩⎭当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬ ⎪⎝⎭⎩⎭; 所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z i EZ z f z dz dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量1ni i Z σ===.(3)设12,,,n Z Z Z L 的观测值为12,,,n z z z L .当0,1,2,i z i n >=L 时似然函数为221121()(,)ni i n nz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=。

2017考研数学三真题及答案解析

2017年考研数学三真题及解析一、选择题 1—8小题.每小题4分,共32分.1.若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab =【详解】0001112lim ()lim lim 2x x x xf x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A )2.二元函数(3)z xy x y =--的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,)【详解】2(3)32zy x y xy y xy y x∂=---=--∂,232z x x xy y ∂=--∂,解方程组22320320z y xy y x z x x xy y∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <- 【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )4. 若级数211sin ln(1)n k n n ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( ) (A )1 (B )2 (C )1- (D )2-【详解】iv n →∞时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫--=---+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )T E αα-不可逆 (B )TE αα+不可逆 (C )2T E αα+不可逆 (D )2TE αα-不可逆【详解】矩阵T αα的特征值为1和1n -个0,从而,,2,2TTTTE E E E αααααααα-+-+的特征值分别为0,1,1,1;2,1,1,,1;1,1,1,,1-;3,1,1,,1.显然只有T E αα-存在零特征值,所以不可逆,应该选(A ).6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B 与C 相互独立的充分必要条件是( )(A ),A B 相互独立 (B ),A B 互不相容 (C ),AB C 相互独立 (D ),AB C 互不相容 【详解】 显然,AB 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ).8.设12,,,(2)n X X X n ≥为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()ni i X μ=-∑服从2χ分布 (B )()212n X X -服从2χ分布(C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-=且相互独立,所以21()ni i X μ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)nii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N X N n X nμμμχ⇒-⇒-,所以(D )结论也是正确的;(4)对于选项(B ):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.3(sin x dx ππ-=⎰ .解:由对称性知33(sin22x dx ππππ-+==⎰⎰.10.差分方程122tt t y y +-=的通解为 .【详解】齐次差分方程120t t y y +-=的通解为2xy C =; 设122t t t y y +-=的特解为2tt y at =,代入方程,得12a =; 所以差分方程122t t t y y +-=的通解为12 2.2tt y C t =+11.设生产某产品的平均成本()1QC Q e -=+,其中产量为Q ,则边际成本为 .【详解】答案为1(1)QQ e -+-.平均成本()1QC Q e-=+,则总成本为()()QC Q QC Q Q Qe-==+,从而边际成本为12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)yydf x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()yyydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xye C =+,由(0,0)0f =,得0C =,所以(,)yf x y xye =.13.设矩阵101112011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-⨯+⨯+⨯=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题15.(本题满分10分)求极限0lim t x dt +→【详解】令x t u -=,则,t x u dt du =-=-,0t x u dt du -=⎰⎰16.(本题满分10分)计算积分3242(1)Dy dxdy x y ++⎰⎰,其中D是第一象限中以曲线y =x 轴为边界的无界区域. 【详解】17.(本题满分10分) 求21limln 1nn k kk nn →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义 18.(本题满分10分) 已知方程11ln(1)k x x-=+在区间(0,1)内有实根,确定常数k 的取值范围.【详解】设11(),(0,1)ln(1)f x x x x=-∈+,则令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2(ln(1))()0,(0,1)1x x g x x x+-''=<∈+,所以()g x '在(0,1)上单调减少,由于(0)0g '=,所以当(0,1)x ∈时,()0)0g x g ''<=,也就是()g x ()g x '在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,进一步得到当(0,1)x ∈时,()0f x '<,也就是()f x 在(0,1)上单调减少.00011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++→→→⎛⎫-+=-== ⎪++⎝⎭,1(1)1ln 2f =-,也就是得到111ln 22k -<<. 19.(本题满分10分)设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+,()S x 为幂级数0n n n a x ∞=∑的和函数(1)证明nn n a x∞=∑的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x '--=∈-,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+⇒+=++ 也就得到11(1)()()n n n n n a a a a +-+-=--,也就得到111,1,2,1n n n n a a n a a n +--=-=-+也就得到111(1),1,2,(1)!n n n a a n n ++-=-=+1lim1!n n n n ρ→∞=≤++≤=,所以收敛半径1R ≥ (2)所以对于幂级数nn n a x∞=∑, 由和函数的性质,可得11()n nn S x na x∞-='=∑,所以也就是有(1)()()0((1,1))x S x xS x x '--=∈-.解微分方程(1)()()0x S x xS x '--=,得()1xCe S x x -=-,由于0(0)1S a ==,得1C =所以()1xe S x x-=-.20.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭,所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他. (1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为故Z X Y =+的概率密度为 23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-=,利用12,,,n Z Z Z 估计参数σ.(1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求i Z 的分布函数为 当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬ ⎪⎝⎭⎩⎭; 所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z i EZ z f z dz dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量122ni i Z nσ===∑.(3)设12,,,n Z Z Z 的观测值为12,,,n z z z .当0,1,2,i z i n >=时似然函数为221121()(,)ni i nnz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=。

[实用参考]2017考研数学高分秘诀:勤练习,多做题

2017考研数学高分秘诀:勤练习,多做题参加2017考研的同学如果从现在开始进入备考状态,那么这段时间就应以前一年的考研大纲为中心复习教材上的基础内容。

对教材上的每一个大纲规定的考试知识点均需深入理解,融会贯通,此时在看或学这些知识点的时候可以做一做书后相应的练习题以加深理解。

这一步是为以后进一步复习打基础的阶段,务必要认真进行。

很多同学问:考研数学复习的秘诀是什么?就是靠练习!那么,数学做题应该遵循怎样的规律才能达到良好的复习效果呢?考研数学做题的具体要求是:求稳而不求多、不求快,力争做到做完此阶段应该做完的题,对每个题的知识点和相应的题型都有一定掌握,要多思考,做到举一反三。

至于怎么做题、做什么样的题,我们建议考生要对所复习用的一本资料上的例题和每个章节后的习题认真练习,做到做一道题保证会一道题。

近几年考研数学的一个命题趋势是:难题偏题怪题没有了,取而代之的是基础题型,至少占有60%。

中档题占30%,难题大约占有10%,而对于中档题或者较难题,如果对知识点掌握扎实熟练的话,那么难题在此也不是很难了。

所以关键是要抓基础,打牢基础,才能在考试中取得高分。

同学们所选的资料上的例题和习题一定都是经过精挑细选的,是对每个知识点最基础的体现,掌握基础知识掌握这些题型,能够扎实地把知识点运用于解题的过程中,就能很好地掌握和运用知识点了。

在此基础上,再联系相关的考研真题,大致了解具体的出题思路和出题方向,对做题技巧也会有一些心得。

另外,建议准备一个“错题集”,将自己在复习过程中发现的错题或不会做的题收集起来,分析一下做错或者不会做的原因在哪个方面,是对题型不熟悉,还是对知识点不清楚,还是因为没有记清楚公式等等。

隔一段时间回顾一下“错题集”中的内容,对知识的巩固和提高都是很有帮助的。

数学复习应采取矩阵式的学习方法,每天的复习时间应保证在3个小时左右。

即使是考前阶段数学复习仍然不能松懈,仍然需要大家坚持不懈,持之以恒,这样到积累到最后,一定会使你受益非浅,你的努力加上正确的学习方法,相信大家在数学考试中一定会取得很好的成绩。

2017考研数学三的复习重点介绍

2017考研数学三的复习重点介绍
来源:智阅网
考研数学三复习时,要讲求方法策略,拿捏住复习的关键内容和重点,所以我通过总结历年的命题特点和考察要点,总结出了数学复习的几个简单策略,具体如下文,大家仔细看看。

第一,深刻理解基本概念和基本理论。

概念是事物的本质特征,有些概念的考查几乎是每年必考的,有些基本理论,也几乎是每年必考的,所以,对于概念和理论一定要理解到位,这些是我们做题时的灵魂,缺少了它们,做题时你就会觉得毫无头绪。

第二,掌握基本方法,灵活应用基本方法解题。

方法是解题过程中的框架,只有熟悉基本方法,做题时才能以不变应万变。

一类题目以解答题和选择题的形式在历年真题中都考过。

此外还有,部分题目甚至都不需要计算就可以找出答案。

对于基本方法要求灵活应用,不能死记硬背。

了解了复习重点之后,我们再做做汤家凤老师的2017《考研数学15年真题解析与方法指导》(数学三),通过试题,加深我们对相关知识点的掌握。

想买这本书的同学,可以去智阅网上看看,最近智阅网上,有很多购书优惠,买得越多,折扣越多。

2017年考研数学复习指南

2017年考研数学复习指南距离2017考研不到百天了,考研的小伙伴要加把劲了,为了帮助考生们减轻考研压力,中公考研特将2017考研数学复习指导建议意整理出来,分享给各位考生。

一要把握复习进度,树立抢时间、抓效率的概念,踏踏实实进行每一阶段每一天的学习。

二要归纳总结题型及其解题技巧和方法,同时配以一定量的习题,强化练习,提高解题熟练度和准确度。

在做题的同时,将重点题型作上标记,以供下一阶段参考。

三要全面的研究真题,领会命题规律,真题要多做几遍,第一遍要一套一套的做,在做的同时把出现频率较多的题型归纳总结出来,以后做的时候就按照自己总结的题型去做,重点做自己易错的和不会做的。

通过做真题可以发现自己的不足,进而不断改进,在考试之前消除所有短板。

四要心态平和,减少焦虑情绪,树立必胜的信心。

随着天气渐渐转凉,秋季的脚步临近,考研人告别酷热的8月,在不知不觉中进入到秋季强化阶段。

在这一关键时期,不论从身心上还是复习备考,考生都进入了疲惫时期,因此一定要学会适当调节自己的情绪,考研人从不言放弃。

中公考研特为广大学子推出2017考研秋季集训、专业课一对一、精品网课、vip1对1、系列备考专题,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。

同时,中公考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!进入九月中后旬,许多考生已经开始考研数学真题复习。

真题是宝贵的复习资源,但是如何有效利用考研数学真题,这应该是每个考研人最关心的话题。

真刀实枪,模拟考试数学考试时间是3个小时,在考场上大脑高强度地运转,思考、做题,是非常消耗体力的。

考生们在复习备考阶段应该有意识地训练自己的抗压能力,锻炼地多了,连坐3个小时也能成为一种习惯。

整套做题,切忌分科考研数学包括三个部分,高等数学、线性代数和概率论。

很多考生在复习的时候都是分开训练的,做题的时候也是复习一科就做一科的题目,这样分开来做会导致头脑里面的知识断裂开,没有很好地结合起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凯程考研集训营,为学生引路,为学员服务!
第 1 页 共 1 页 2017考研数学 题型训练三原则
考研数学历来以考试内容多、知识面广、综合性强等特点而让考生望而生畏。

很多学生在学习中想通过一些“解题技巧”成功,但是任何知识的积累都是长期努力的结果,都是需要我们踏踏实实来努力的,切勿投机。

这里,专家们有几点建议供2017年的考生们参考。

一、 重视基础。

只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。

近几年数学答卷的分析来看,考生失分的重要原因不是说考题有多么难,更多的是对基本概念、定理记不全、记不牢、理解不准确,基本解题方法掌握不好而造成的失分。

因此,提醒2017年的考生们数学复习必须打好第一步的基础,每年考研数学试题中都有60%以上的题目都在考查基础知识的理解与掌握,所以一定要重视基础。

但是很多同学不能够重视这一点,总是好高骛远,一味寻求技巧或者是抠难题,以为这样才是提高数学成绩的途径。

其实,考研数学中大部分是中挡题和容易题,所谓的20%的比较有难度的题目,其难度不过是简单题目上的进一步综合,并不是说有那么难。

所以,同学们最重要的还是打好基础!
二、 亲自动手做题。

只看不做,一做就错,这是很多考生存在的问题,总以为看会了,知道了方法,自己就会做了,可是真正做起来的时候才发现不是那么回事。

数学是一门严谨的学科,容不得半点纰漏,在我们还没有建立起来完备的知识结构之前,只看解题不亲自动手做的复习必然难以把握题目中的重点。

况且,通过动手练习,我们还能规范答题模式,提高解题和运算的熟练程度。

正式考试时三个小时那么大的题量,本身就是对计算能力和熟练程度的考察,而且现在的阅卷都是分步给分的,怎么作答有效果,这些都要通过自己不断的摸索去体会。

因此,为了取得好的数学成绩,建议同学们必须大量练习,充分利用历年试题,重视总结归纳解题思路、套路和经验。

三、 做题中要思考,做题后更要思考。

多做题就能提高成绩,很多同学这样认为,其实不然,做题的同时更要思考,举一反三。

做题,是要把整个知识通过题目加深理解并有机的串联起来。

数学的学习离不开做题,但从来不等于做题,抽象是数学的重要特征之一,在复习过程中,我们通过作题,发散开来对抽象知识点的内涵和外延进行深入理解,这是非常必要的。

做题的思路,必然应该是从理解到作题归纳再回到理解。

因此, 2017年的考生们要时刻目标明确、深入思考才识提高数学思维和数学能力的关键。

最后,祝各位考生能取得自己满意的成绩!。

相关文档
最新文档