最新-中考数学代数的初步知识基础测试 精品
初中数学基础代数测试卷

1. 下列各数中,是整数的是()A. -2.5B. 3/4C. √2D. -√32. 已知a=2,b=-3,则a+b的值为()A. -1B. 1C. 5D. -53. 下列代数式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 - b^2 = (a + b)(a - b)C. a^2 - b^2 = (a - b)(a + b)D. a^2 + b^2 = (a - b)^24. 若x^2 - 5x + 6 = 0,则x的值为()A. 2,3B. 1,4C. 2,-3D. -1,-45. 下列各式中,能因式分解的是()A. x^2 + 2x + 1B. x^2 - 2x + 1C. x^2 + 2x - 1D. x^2 - 2x - 16. 若x + 2 = 0,则x的值为()A. 2B. -2C. 0D. 无法确定7. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3x^2C. y = 3xD. y = 3/x8. 若m + n = 5,mn = 6,则m^2 + n^2的值为()A. 17B. 21C. 29D. 379. 若a^2 + b^2 = 1,则a + b的取值范围是()A. -1 ≤ a + b ≤ 1B. 0 ≤ a + b ≤ 2C. 1 ≤ a + b ≤ 3D. -2 ≤ a + b ≤ 210. 下列各式中,与x^2 + 4x + 4 = 0等价的是()A. x^2 + 4x - 4 = 0B. x^2 + 4x + 8 = 0C. x^2 - 4x - 4 = 0D. x^2 - 4x + 8 = 011. 若a = 3,b = -2,则a^2 - b^2的值为______。
12. 若x^2 - 5x + 6 = 0,则x的值为______和______。
13. 下列代数式中,a^2 - b^2的因式分解结果为______。
人教版初中数学代数式基础测试题含答案解析

人教版初中数学代数式基础测试题含答案解析一、选择题1.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是()A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.2.下列各运算中,计算正确的是( )A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【答案】B【解析】试题解析:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选B.【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x4+ 4x2+1=(2x+1)2,∴A=1,不符合题意,∵4x4+ 4x2+ 4不是完全平方式,∴A=4,符合题意,∵4x4+ 4x2+x6=(2x+x3)2,∴A= x6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.4.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.5.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.6.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.7.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.8.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.9.若2m =5,4n =3,则43n ﹣m 的值是( )A .910B .2725C .2D .4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m =5,4n =3,∴43n ﹣m =344n m =32(4)(2)n m =3235=2725 故选B.【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.下列运算正确的是( )A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A ,2m 2+m 2=3m 2,故此选项错误;选项B ,(mn 2)2=m 2n 4,故此选项错误;选项C ,2m •4m 2=8m 3,故此选项错误;选项D ,m 5÷m 3=m 2,正确.故选D .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.13.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .14.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B .【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.15.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.16.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.17.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.18.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6 B.4 C.6 或4 D.-6【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】 根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.20.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 【答案】D【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.。
中考数学第01章代数基础知识复习试题(共18页)

第01章代数根底知识(zhī shi)复习第一节用字母表示数1、什么是代数式?用运算符号将数或者者表示数的字母连接起来的式子,叫代数式。
单独一个数或者字母也叫代数式。
代数式总能表达一个意思。
2、什么是单项式?任意个字母和数字的积的形式的代数式。
一个单独的数或者字母也叫单项式。
单项式中的数字因数叫做这个单项式的系数。
所有字母的指数和叫做这个单项式的次数。
任何一个非零数的零次方等于“1〞。
单项式分母中不含字母(单项式是整式,而不是分式〕。
3、什么是多项式?假设干个单项式的和组成的式子叫做多项式。
多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
不含字母的项叫做常数项。
4、循环小数(xún huán xiǎo shù)化为分数纯循环小数:小数中除了循环节外没有其它小数。
如、、等。
混循环小数:小数中除了循环节外还有其它小数。
如、等。
例、纯循环小数化为分数。
〔1〕3.0 〔2〕82.0〔3〕283.0解:〔1〕〔2〕〔1〕-〔2〕得:〔1〕-〔2〕得: 〔1〕-〔2〕得:例、混循环小数(x ún hu án xi ǎo sh ù)化为分数。
将〔1〕1032.0 、〔2〕1032.5 化为分数。
解:〔1〕设, 那么:;; 。
∴解:〔2〕设x =1032.0 ,那么1032.5 =5+ 那么:103.210 =x ;103.230110000 =x ; 2230199901010000-==-x x x 99902299=x ∴。
总结: 〔1〕纯循环小数化为分数:分数的分子是循环小数的循环节,分母是都是9,9的个数与循环节的位数一样;〔2〕混循环小数化为分数:分数的分子是小数点后面第一个数字到第一个循环节的末位数字所组成的数,减去不循环数字所组成的数所得的差;分母的头几位数字是9,末几位数字都是0,其中9的个数与循环节的位数一样,0的个数与不循环局部的位数一样。
最新中考数学知识点专题练习卷:代数式

最新中考数学知识点专题练习卷代数式一、单选题1.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市中考数学试卷【答案】C2.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市中考数学试题【答案】A3.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市中考数学试题【答案】C4.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.5.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.6.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市中考数学试题【答案】B7.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.8.下列计算正确的是()A. B.C. D.【来源】四川省成都市中考数学试题【答案】D9.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.10.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a )3÷a=-a 3÷a=-a 3-1=-a 2, 故选B .点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.11.下列运算:①a 2•a 3=a 6,②(a 3)2=a 6,③a 5÷a 5=a ,④(ab )3=a 3b 3,其中结果正确的个数为( )A. 1B. 2C. 3D. 4 【来源】山东省滨州市中考数学试题 【答案】B 12.计算的结果是( )A.B.C.D.【来源】江苏省南京市中考数学试卷 【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可. 详解:== 故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 13.下列计算结果等于的是( )A.B.C.D.【来源】甘肃省武威市(凉州区)中考数学试题 【答案】D14.下列运算正确的是( )A. B.C.D.【来源】湖南省娄底市中考数学试题 【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.15.下列运算正确的是()A. B. C. D.【来源】山东省德州市中考数学试题【答案】C16.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市中考数学试题【答案】B17.下列运算正确的是()A. B. C. D.【来源】安徽省中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.18.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定的平均增长率保持不变,2016年和我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 19.下列运算正确的是()A. B. C. D.【来源】山东省泰安市中考数学试题【答案】D20.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】重庆市中考数学试卷(A卷)【答案】C21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018, 故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题. 24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市中考数学试题 【答案】11 25.若a-=,则a 2+值为_______________________.【来源】湖北省黄冈市中考数学试题 【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案. 详解:∵a-=,∴(a-)2=6,∴a 2-2+=6,∴a 2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市中考数学试题【答案】27.计算的结果等于__________.【来源】天津市中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市中考数学试卷【答案】略。
2023年初中数学代数基础试题

2023年初中数学代数基础试题题目1:解方程:5x + 2 = 17 - 3x解答:我们要解方程5x + 2 = 17 - 3x。
首先,我们可以将方程简化为8x + 2 = 17,通过将-3x移动到等式的右边。
接着,我们可以继续简化方程,使得只剩下x的项。
通过将2移动到等式的右边,我们可以得到8x = 15。
最后,我们将方程化简为x = 15 ÷ 8,即x = 1.875。
所以,方程的解为x = 1.875。
题目2:求表达式的值:3a² - 5a + 2,当a = 4时。
解答:我们要求表达式3a² - 5a + 2在a = 4时的值。
首先,将a替换为4,我们可以得到3(4)² - 5(4) + 2。
接着,我们可以计算乘方和乘法,得到3(16) - 20 + 2。
然后,我们继续计算乘法和减法,得到48 - 20 + 2。
最后,我们进行减法运算,得到30。
所以,在a = 4时,表达式3a² - 5a + 2的值为30。
题目3:解方程组:2x + y = 73x - 4y = 10解答:我们要解方程组:2x + y = 7 (1)3x - 4y = 10 (2)首先,我们可以通过乘法消元法来求解。
将方程(1)乘以4,得到:8x + 4y = 28 (3)然后,我们将方程(2)与方程(3)相加,可以消去y的项,得到:(8x + 4y) + (3x - 4y) = 28 + 10简化方程后,我们得到11x = 38。
接下来,我们将x的系数化简为1,得到x = 38 ÷ 11。
所以,方程组的解为x = 3.454545...。
最后,我们将x的值代入方程(1)中,得到2(3.454545...) + y = 7。
计算后,我们得到6.909090... + y = 7,化简为y = 7 -6.909090...。
最终,我们得到y = 0.090909...。
新初中数学代数式基础测试题含答案

新初中数学代数式基础测试题含答案一、选择题1.下列运算正确的是( ) A .2235a a a += B .22224a b a b +=+() C .236a a a ⋅=D .2336()ab a b -=-【答案】D 【解析】 【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得. 【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确, 故选D. 【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.2.下列各式中,运算正确的是( ) A .632a a a ÷= B .325()a a =C .=D =【答案】D 【解析】 【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算. 【详解】解:A 、a 6÷a 3=a 3,故不对; B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确. 故选D .3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D 【解析】 【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式. 【详解】 解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==. 故选D 【点睛】 本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( ) A .7500 B .10000 C .12500 D .2500【答案】A 【解析】 【分析】用1至199的奇数的和减去1至99的奇数和即可. 【详解】解:101+103+10 5+107+…+195+197+199=22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭ =1002﹣502, =10000﹣2500, =7500, 故选A . 【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+ D .()()22339a b a b a b +-=-【答案】D 【解析】 【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可. 【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意; D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意.故选D . 【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.6.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B 【解析】试题解析:第(1)个图形中面积为1的正方形有2个, 第(2)个图形中面积为1的图象有2+3=5个, 第(3)个图形中面积为1的正方形有2+3+4=9个, …, 按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个. 故选B .考点:规律型:图形变化类.7.下列各式中,计算正确的是( ) A .835a b ab -= B .352()a a =C .842a a a ÷=D .23a a a ⋅=【答案】D 【解析】 【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可. 【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意; B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意. 故选:D . 【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.8.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个( )A .400B .401C .402D .403【答案】D 【解析】 【分析】由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n 个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可. 【详解】解:第1个图形边长为1的小正方形有9个, 第2个图形边长为1的小正方形有9+5=14个, 第3个图形边长为1的小正方形有9+5×2=19个,…第n个图形边长为1的小正方形有9+5×(n-1)=5n+4个,当5n+4=2019时,解得n=403所以第403个图形中边长为1的小正方形的个数为2019个.故选:D.【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.9.下列各运算中,计算正确的是( )A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【答案】B【解析】试题解析:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选B.【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A,2m2+m2=3m2,故此选项错误;选项B,(mn2)2=m2n4,故此选项错误;选项C,2m•4m2=8m3,故此选项错误;选项D,m5÷m3=m2,正确.故选D.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.11.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.12.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案. 【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积, ∴(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac , 故选C. 【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.13.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++ B .328421a a a +-- C .381a - D .381a +【答案】D 【解析】 【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可. 【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1, 故选:D . 【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.14.下列计算正确的是( ) A .a•a 2=a 2 B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B 【解析】本题考查幂的运算. 点拨:根据幂的运算法则. 解答:2123a a a a +⋅==()22224a a a ⨯==325a a a +=()3263a b a b =故选B .15.下列计算正确的是( )A .2571aa a -÷=B .()222a b a b +=+ C .2222+= D .()235a a =【答案】A 【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案. 详解:A 、2571aa a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误; C 、2+2,无法计算,故此选项错误; D 、(a 3)2=a 6,故此选项错误; 故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A 【解析】 【分析】设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解. 【详解】设大正方形的边长为x ,小正方形的边长为y , 则2260x y -=, ∵S 阴影=S △AEC +S △AED=11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y -=1602⨯ =30. 故选A. 【点睛】此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.17.若代数式()212323a a x y xy -+-是五次二项式,则a 的值为( )A .2B .2±C .3D .3±【答案】A 【解析】 【分析】根据多项式的次数与项数的定义解答. 【详解】 ∵()212323aa x y xy -+-是五次二项式,∴2125a -+=,且20a +≠, 解得a=2, 故选:A. 【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.18.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B 【解析】 【分析】根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数. 【详解】第①个图形中一共有3个菱形,3=12+2; 第②个图形中共有7个菱形,7=22+3; 第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1; 第⑥个图形中菱形的个数62+6+1=43. 故选B . 【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.19.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B 【解析】 【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B . 【点睛】考点:规律型:数字的变化类.20.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( ) A .222a a - B .2222a a --C .22a a -D .22a a +【答案】C 【解析】 【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案. 【详解】250+251+252+...+299+2100 =a +2a +22a + (250)=a+(2+22+…+250)a,∵23+=-,2222234++=-,222222345+++=-,222222…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a+(2+22+…+250)a=a+(251-2)a=a+(2 a-2)a=2a2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.。
2024年数学九年级下册代数基础练习题(含答案)
2024年数学九年级下册代数基础练习题(含答案)试题部分一、选择题:1. 若a+b=5,ab=3,则a²+b²的值为()A. 16B. 34C. 22D. 142. 已知x²3x+2=0,则x²3x的值为()A. 2B. 2C. 0D. 13. 若|a|=3,|b|=5,则|ab|的最大值为()A. 2B. 8C. 3D. 74. 下列函数中,哪一个是一次函数?()A. y=2x²B. y=3x+1C. y=x²D. y=x³5. 若一个等差数列的公差为2,首项为3,则第10项的值为()A. 21B. 19C. 17D. 236. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √17. 若a:b=3:4,则3a+4b的值为()A. 7aB. 7bC. 12D. 248. 已知一组数据的方差是9,那么这组数据的标准差是()A. 3B. √9C. 6D. 29. 下列哪个等式是分式方程?()A. 2x+3=5B. 1/x=2C. x²4=0D. 3x2=710. 若一元二次方程ax²+bx+c=0(a≠0)的两根分别是x₁和x₂,则x₁+x₂的值为()A. b/aB. b/aC. c/aD. c/a二、判断题:1. 任何两个实数的和都是一个实数。
()2. 一次函数的图像是一条直线。
()3. 两个负数相乘,结果一定是正数。
()4. 等差数列的公差可以是0。
()5. 一元二次方程的解一定是实数。
()6. 方差越小,说明数据的波动越小。
()7. 两个无理数的和一定是无理数。
()8. 若a:b=c:d,则ad=bc。
()9. 任何实数的平方都是正数。
()10. 两个正数相乘,结果一定是正数。
()三、计算题:1. 已知x+3=7,求x的值。
2. 计算:(3/4) ÷ (2/3)。
3. 若3x5=14,求x的值。
中考数学模拟试题代数基础
中考数学模拟试题代数基础代数是数学中重要的一部分,也是中考数学考试的重点内容之一。
在代数基础知识上的扎实掌握,能够帮助我们解决各种与变量及其运算有关的问题。
本文将通过模拟试题的形式,帮助大家巩固代数基础。
1. 解方程(1) 试求方程3x + 7 = 16的解。
解:首先,我们将方程转化为以x为未知数的等式形式:3x + 7 = 16然后,我们需要对方程进行变形,将未知数x的系数变为1,即:3x = 16 - 7接下来,我们进行计算,求得等式右侧的值:3x = 9最后,将方程进一步变形得到未知数x的解:x = 9 ÷ 3计算可得:x = 3因此,方程3x + 7 = 16的解为x = 3。
(2) 已知方程2(3x - 5) = 4x + 8,求解x。
解:首先,我们将方程进行运算:6x - 10 = 4x + 8接下来,我们将方程进行变形:6x - 4x = 8 + 10继续进行计算,求得等式右侧的值:2x = 18最后,将方程进一步变形得到未知数x的解:x = 18 ÷ 2计算可得:x = 9因此,方程2(3x - 5) = 4x + 8的解为x = 9。
2. 整式的运算(1) 计算(4x + 7) + (3x - 2)的值。
解:根据整式的运算规则,我们需要将同类项进行合并:(4x + 7) + (3x - 2) = 4x + 3x + 7 - 2接下来,我们进行合并同类项的计算:(4x + 7) + (3x - 2) = 7x + 5因此,(4x + 7) + (3x - 2)的值为7x + 5。
(2) 计算(2x - 3)(4x + 5)的值。
解:根据整式的运算规则,我们需要将两个括号中的每一项进行相乘,然后再将结果合并:(2x - 3)(4x + 5) = 2x × 4x + 2x × 5 - 3 × 4x - 3 × 5继续计算,求得各项的乘积:(2x - 3)(4x + 5) = 8x² + 10x - 12x - 15进一步合并同类项,我们得到:(2x - 3)(4x + 5) = 8x² - 2x - 15因此,(2x - 3)(4x + 5)的值为8x² - 2x - 15。
初三数学模拟测试:代数、几何、函数全方位掌握
初三数学模拟测试:代数、几何、函数全方位掌握最新的人教版初三上学期数学练习模拟测验一、代数基础1.数的认识与基本运算:●掌握有理数、无理数的概念和性质,会进行实数的四则运算。
●了解算术平方根、绝对值、平方根、立方根的概念及性质。
1.代数式、方程、不等式的基本概念及简单应用:●掌握代数式、方程、不等式的概念及基本性质。
●会解一元一次方程、不等式,并能用方程、不等式解决简单的实际问题。
二、几何初步1.空间中的点、线、面及它们之间的位置关系:●了解直线、线段、射线的概念及基本性质。
●掌握平面、空间的基本概念及位置关系。
1.角、多边形的基本概念及性质:●了解角的概念及度量单位,会画角的平分线。
●掌握多边形的概念及基本性质,会计算多边形的内角和。
三、三角形与四边形1.三角形的基本概念及性质:●了解三角形的分类及基本性质。
●掌握直角三角形、等腰三角形、等边三角形的概念及性质。
1.四边形、梯形的基本概念及性质:●了解四边形、梯形的概念及基本性质。
●会计算四边形的面积和梯形的面积。
四、轴对称与中心对称1.轴对称、中心对称的基本概念及性质:●了解轴对称、中心对称的概念及基本性质。
●会识别轴对称图形和中心对称图形。
1.简单的对称问题及应用:●会解决简单的对称问题,如设计图案等。
五、圆与扇形1.圆、扇形的基本概念及性质:●了解圆、扇形的概念及基本性质。
●掌握圆的周长、面积计算公式和扇形的面积计算公式。
1.简单的圆问题及应用:●会解决简单的圆问题,如求圆心角、弧长等。
●能用圆的知识解决实际问题,如设计圆形图案等。
六、统计与概率1.统计的基本概念及方法:●了解统计的基本概念及方法,如数据的收集、整理、描述和分析。
●会绘制简单的统计图表。
1.概率的基本概念及计算方法:●了解概率的基本概念及计算方法,如事件的概率和概率分布。
●会计算简单事件的概率,如掷骰子、抽签等游戏的概率。
七、函数与图像1.函数的基本概念及性质:●了解函数的概念及性质,如自变量、因变量、函数的增减性等。
基础测试-初中数学1-代数初步知识
基础测试-初中数学1-代数初步知识
(满分100分,时间45分)
一、填空(每小题5分,共20分)
⑴ 任何一个数乘以1,等于它本身.这个性质可以用字母表示成 .
⑵同分母分数相加,分母不变,分子相加. 这个运算法则可以用字母表示成 .
⑶ a 的倒数与b 的倒数的差,用代数式表示是 .
⑷ m ,n 的和除以m ,n 的差,用代数式表示是 .
二、求下列代数式的值(每小题10分,共20分)
⑴ 1
12-+n n ,其中n =4; ⑵ ()b c a 412+-,其中a =7,b =3,c =5.
三、列式并求值(20分)
邮购一种图书,每册定价a 元,另加书价15%的邮费.购书n 册,总计金额Y 元,Y 是多少?计算当a =0.2,n =36时Y 的值.
四、解下列方程(每小题10分,共20分)
⑴ 5.67.32.1=+x ; ⑵
3116595=-y .
五、列方程解应用题(20分)
两地相距360千米,甲、乙两辆汽车同时分别从两地开出,相向而行,2.4相遇,甲车的速度是70千米,乙车的速度是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《代数的初步知识》基础测试
一 填空题(本题20分,每题4分):
1.正方形的边长为a cm ,若把正方形的每边减少1cm ,则减少后正方形的面积为
cm 2
;
2.a ,b ,c 表示3个有理数,用 a ,b ,c 表示加法结合律是 ;
3.x 的4
1
与y 的7倍的差表示为 ;
4.当1=x 时,代数式2
31
-x 的值是 ;
5.方程x -3 =7的解是 .
答案:
1.(a -1)2
;
2.a +(b +c )=(a +b )+c ;
3.41
x -7y ; 4.1; 5.10.
二 选择题(本题30分,每小题6分):
1.下列各式是代数式的是…………………………………………………………( ) (A )S =πr (B )5>3 (C )3x -2 (D )a <b +c
2.甲数比乙数的71
大2,若乙数为y ,则甲数可以表示为………………………( )
(A )71y +2 (B )7
1
y -2 (C )7y +2 (D )7y -2
3.下列各式中,是方程的是………………………………………………………( ) (A )2+5=7 (B )x +8 (C )5x +y =7 (D )ax +b
4.一个三位数,个位数是a ,十位数是b ,百位数是c ,这个三位数可以表示为( ) (A )abc (B )100a +10b +c (C )100abc (D )100c +10b +a
5.某厂一月份产值为a 万元,二月份增产了15%,二月份的产值可以表示为( ) (A )(1+15%)× a 万元 (B )15%×a 万元
(C )(1+a )×15% 万元 (D )(1+15%)2
×a 万元
答案:
1.C;2.A;3.C;4.D;5.A.
三 求下列代数式的值(本题10分,每小题5分):
1.2×x 2+x -1 (其中x = 2
1);
解:2×x 2
+x -1
=12
1)21(22-+⨯
=2×
41+21-1=21+2
1
-1=0; 2.ab
b a 22
2- (其中 31,21==b a ).
解:ab b a 222-=3913
1365
931914131212)31()2
1(22⨯=-=-
=⨯⨯- = 31. 四 (本题10分)
如图,等腰梯形中有一个最大的圆,梯形的上底为5cm ,下底为7cm ,圆的半径为3cm ,
求图中阴影部分的面积.
解:由已知,梯形的高为6cm ,所以梯形的面积S 为
1S = 21
×( a +b )×h
= 2
1
×( 5+7)×6
= 36(cm 2
).
圆的面积为
26.28314.3πR 222=⨯==S (cm 2
).
所以阴影部分的面积为
74.726.283621=-=-=S S S (cm 2
). 五 解下列方程(本题10分,每小题5分): 1.5x -8 = 2 ; 2.5
3
x +6 = 21. 解:5x = 10, 解:
5
3
x = 15, x = 2 ; x =15÷53=15 ×3
5
=25.
六 列方程解应用问题(本题20分,每小题10分):
1.甲乙两人练习赛跑,如果甲让乙先跑10米,甲跑5秒就能追上乙;若甲每秒
跑9米,乙的速度应是多少?
解:设乙的速度是每秒x 米,可列方程 (9-x )×5 = 10, 解得 x = 7 (米/秒)
2.买三支铅笔和一支圆珠笔共用去2元零5分,若圆珠笔的售价为1元6角,那么铅
笔的售价是多少?
解:设铅笔的售价是x 元,可列方程 3x +1.6 = 2.18, 解得 x = 0.15(元)。