过滤常数测定

合集下载

过滤常数的测定实验

过滤常数的测定实验

式③可改写为
d������
������
d������ = 2(������ + ������������)

2∆������ ������ = ������������������
○4a

2∆������ 1−S ������ = ������0 ������������
○4b
○4b 式④中的 K,qe 都称为过滤常数。
装配过滤器 实验用的过滤器依装配顺序由支撑底座、底板、滤布、板框、预分布板和盖板组成。 (1)滤布在放至底板之前要先用水浸湿。 (2)将过滤器各部件按顺序装好后,用螺丝将上盖拧紧,应注意要按对角顺序紧固螺丝。 过滤实验操作 (1)记录滤液桶初始重量,若实验开始前滤液桶存液过多,应先排放掉一部分。 (2)开启供料阀向过滤器送料。与此同时,打开过滤器盖板上方的排气阀, 排除滤框 内空气后再将其关闭。 (3)利用供料阀调节过滤压力,对于本实验物系,过滤操作压力在 0.02〜0.08MPa 为宜。 (4)注意实验初始阶段并非恒压操作,而是接近恒速操作。因此,可采用 2 只秒表交 替记时,当确定并记录下恒压开始时间 τ1 和相应的滤液量 V1(q1)后, 随即记录恒压操作 下一系列的∆τ 和 V。建议当滤液桶中出现第一滴滤液时,即开始记时。 (5)当滤液量很少,确定滤饼已充满滤框后,可结束实验。
在低雷诺数下,过滤速率可用康采尼(Kozeny)公式表示
d������ 1
������2
������
������ = d������ = ������′ (1 − ε)2������2 = ������������

式②中 ������′ — 与滤饼孔隙率、颗粒形状、排列方式等有关的常数,当������������′ < 2 时,������′ = 5;

过滤常数测定实验报告

过滤常数测定实验报告

过滤常数测定实验报告过滤常数测定实验报告引言:过滤常数是指在一定条件下,单位时间内通过滤器的液体量与过滤时间的比值。

它是评估过滤器性能的重要指标之一。

本实验旨在通过测定不同过滤条件下的过滤时间和通过量,来确定过滤常数的大小。

实验步骤:1. 准备实验装置:将滤纸放置在漏斗内,并将漏斗连接到吸水瓶上。

确保漏斗与吸水瓶之间无气泡存在。

2. 测定过滤时间:将一定量的水倒入漏斗中,打开吸水瓶的活塞,记录水完全通过滤纸所需的时间。

3. 测定通过量:将一定量的水倒入漏斗中,打开吸水瓶的活塞,记录通过滤纸的水量。

4. 更改过滤条件:更换滤纸,调整吸水瓶的活塞位置,改变过滤条件,重复步骤2和步骤3。

实验结果:通过对不同过滤条件下的实验数据进行处理和分析,得到以下结果:1. 过滤时间与通过量的关系:通过绘制过滤时间与通过量的散点图,可以观察到它们之间存在一定的关系。

当通过量较小时,过滤时间较短,随着通过量的增加,过滤时间逐渐增加。

这是因为随着通过量的增加,滤纸上的颗粒物逐渐增多,导致过滤速度变慢。

2. 过滤常数的测定:根据实验数据,可以计算出不同过滤条件下的过滤常数。

通过对多组数据的比较,可以发现过滤常数与过滤条件有关。

当滤纸孔径较大、压力差较小时,过滤常数较大,说明过滤器的过滤性能较好。

3. 滤纸的选择:通过对不同滤纸的实验数据进行对比,可以评估滤纸的过滤性能。

选择合适的滤纸可以提高过滤效率和速度。

讨论:1. 实验误差:在实验过程中,可能存在一些误差,如读数误差、仪器误差等。

为了减小误差,可以多次重复实验,取平均值。

2. 实际应用:过滤常数的测定对于工业生产中的过滤过程具有重要意义。

通过确定过滤常数,可以选择合适的过滤条件,提高过滤效率,降低生产成本。

结论:通过本实验的测定和分析,我们成功确定了不同过滤条件下的过滤常数。

实验结果表明,过滤常数与过滤条件和滤纸的选择有关。

合理选择过滤条件和滤纸可以提高过滤效率和速度。

恒压过滤常数的测定实验报告

恒压过滤常数的测定实验报告

恒压过滤常数的测定实验报告实验报告:恒压过滤常数的测定一、实验目的本实验旨在通过恒压过滤法测定溶液的过滤常数,并掌握恒压过滤法的实验操作方法。

二、实验原理恒压过滤法是测定溶液过滤常数的一种方法,其原理为:在一个设有恒压的实验容器中,通过滤纸将溶液过滤出来,用取下来的滤纸质量除以过滤时间即可得到溶液的过滤常数(K 值)。

K值越小,表示越难过滤。

三、实验仪器和试剂1. 恒压过滤仪2. 每个组的试验器具有升高的嵌有塑料圈的塞子和三片无灰滤纸;3. 大理石;4. 高纯水;5. 苯酚溶液(浓度为0.05g/L)。

四、实验步骤1. 预处理滤纸。

选取直径与滤器架透气口相匹配的滤纸若干,用干净的滤纸裁成大约3 cm×3cm的小方形,记住减去硬币滤paper晾干。

2. 预处理塞子。

将架好的塞子清洗干净后,放到干净的纸巾上,将多余的水分吸干,然后置于固定的嵌在大理石上的升高的架(必须注意塞子的高度应在刻度线范围内)。

3. 取药样。

将准确称重的苯酚溶液(重量为3.5g)分别加到多个塞子中,然后立即将塞子放到恒压过滤器中并用扣子固定好。

4. 进行过滤。

调节安装在仪器上的压力表数字为0.07Mpa。

落实滤器与盖子之间的拧紧,逐渐加压。

切记不能用过大的力量,以避免卡在胀口。

当压强稳定大约2min后,启动计时器。

过滤时间应掌握在30秒以内,当滴出的流体停下时,自动停止计时。

取下滤纸并将其置于温和的干燥处,稍等一段时间后将其称重,记录重量并计算过滤常数。

5. 完成一轮实验后,对其他药样重复以上步骤,以便统计平均数和标准偏差。

五、实验结果分析通过以上实验步骤,进行如下的计算:药样滤纸重量m1=5.68g滤纸原始重量m2=1.93g记录过滤时间t=29.6s可得到该药样的过滤常数为:K=(m1 - m2) / t = (5.68-1.93)g / 29.6s = 0.113g/s通过对多个药样进行测试,可得到平均数和标准偏差:Ⅰ 0.120 0.007Ⅱ 0.123 0.005Ⅲ 0.128 0.009Ⅳ 0.115 0.002Ⅴ 0.130 0.012Ⅵ 0.113 0.002六、实验结论通过本次实验,我们成功地通过恒压过滤法测定了苯酚溶液的过滤常数,并得到了该药样的数值结果为0.113g/s。

化工原理恒压过滤常数测定实验报告

化工原理恒压过滤常数测定实验报告

化工原理恒压过滤常数测定实验报告一、实验目的:1.了解恒压过滤的原理和应用;2.学习测定恒压过滤常数的实验方法;3.掌握计算恒压过滤常数的计算方法;4.分析实验结果,对实验现象进行解释。

二、实验原理:恒压过滤是一种常见的分离技术,在化工领域有着广泛的应用。

实验中使用的恒压过滤设备是一台恒压过滤漏斗,通过改变进料压力来实现恒压过滤的目的。

实验中使用的恒压过滤常数是指单位时间内通过滤饼与滤介质界面的面积的液体体积与压头差之比,用K表示。

恒压过滤常数的单位为cm/s。

恒压过滤常数是衡量过滤速度的重要参数,通过实验测定恒压过滤常数可以了解过滤物料的筛分特性和理论分析。

恒压过滤常数的计算公式为:K=Q/(A×ΔP)其中,K为恒压过滤常数,单位为cm/s;Q为单位时间内通过滤饼与滤介质界面的面积的液体体积,单位为cm³/s;A为滤饼与滤介质界面的面积,单位为cm²;ΔP为压头差,单位为Pa。

三、实验步骤:1.将恒压过滤漏斗清洗干净,并用滤纸将过滤基座覆盖,调整好压头差;2.打开水龙头,使水通过恒压过滤漏斗,排除空气;3.关闭出口阀门,调整进料开关来控制进料速度;4.测量进料液体体积Q,记录下时间t;5.测量滤饼与滤介质界面的面积A;6.重复步骤4和步骤5多次,得到多组实验数据。

四、实验数据及结果:实验数据如下表所示:实验次数,进料液体体积Q/cm³ ,时间t/s ,滤饼与滤介质界面面积A/cm²---------,------------------,-------,----------------------1,20,10,502,25,12,603,18,8,454,21,9,525,22,9.5,55根据实验数据,可以计算恒压过滤常数K的平均值。

K=(Q₁/(A₁×ΔP)+Q₂/(A₂×ΔP)+Q₃/(A₃×ΔP)+Q₄/(A₄×ΔP)+Q₅/(A₅×ΔP))/5五、实验结果分析:根据实验数据计算得到的恒压过滤常数的平均值为X cm/s。

过滤常数的测定

过滤常数的测定

实验四 过滤常数的测定一、实验目的1、 熟悉板框压滤机的结构和操作方法;2、 测定在恒压操作时的过滤常数K ,q e ,τe ,测定物料压缩指数s ;3、 了解操作条件对过滤速度的影响。

二、实验原理1、过滤常数的测定过滤是借助于外界推动力的作用,使悬浮液通过某种多孔性介质,从而实现固液分离的操作。

单位时间通过单位过滤面积的滤液量称为过滤速度。

过滤速度的大小与压力差、滤饼厚度、悬浮液和滤饼的性质、悬浮液的温度等有关。

故过滤速度方程式可表示为:)(2)(e e q q K q q rv pd dq Ad dV u +=+∆===μττ(4-1)式中:V ——滤液量,m 3;A ——过滤面积,m 2;τ——得到滤液V 所需的过滤时间,s ; K ——过滤常数,rvpK μ∆=2,m 2/s ;q=V/A ,即单位过滤面积的滤液量,m ;q e =V e /A ,即单位过滤面积的虚拟滤液量,m ;V e ——虚拟滤液的体积,它是形成相当于过滤介质阻力的一层滤饼时,应得到的滤液量,m 3;r ——滤饼的比阻,m -2; μ——滤液的粘度,Pa.s ;v ——获得单位体积滤液所形成的滤饼,m 3/m 3。

在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示:τK qq q e =+22e eK q τ=2(4-2)将过滤方程式微分后得e q Kq K d dq 22+=τ实验过程中,可用增量比ττd dq q 代替∆∆,则有下式e q Kq Kq 22+=∆∆τ(4-3)标绘出Δτ/Δq 对q (q 取各时间间隔内的平均值)的直线,如上图所示,直线斜率为2/K,截距2q e /K ,由此可求出K 和q e 。

图4-1 Δτ/Δq 与q 的关系2、滤饼压缩性指数s 及比阻滤饼的比阻与压差的关系为,sp r r ∆=0,带入过滤常数的定义式可得sspk vr pK --∆=∆=10122μ两边取对数:)2lg()lg()1(lg k p s K +∆-=(4-4)因常数常数,===νμ01r k s ,故K 与Δp 的关系在双对数坐标上标绘是一条直线,斜率为(1-s ),由此可计算出压缩性指数s ,读取Δp ~K 直线上任一点处的K 值,将K 、Δp 数据一起代入过滤常数定义式计算物料特性常数k 及比阻。

过滤常数测定实验

过滤常数测定实验
灌料:将配料罐内的料浆送入压力罐,整个过程放空阀略开,
使压力罐内料浆能保证连续鼓泡。
过滤,数据记录。 过滤结束:先打开放空阀泄压,再卸下滤框、滤板、滤布进行
清洗。
五、数据记录和处理
V/m3 θ/s △θ/s q θ/q
以q 为横坐标,θ/q为纵坐标,作图,得到拟合方程: 斜率=1/K 截距=2 qe/K θe=qe2/K
对于一定恒压下过滤的悬浮液,测出延续的时间τ 及滤 液的累计量 q (按单位面积计)的数据,然后在直角坐标纸 上从τ/q为纵坐标,以q为横坐标进行标绘,可得到一斜率为 1/K,截距为2qe/K的直线。
三、实验装置与流程
板框压滤机:框厚度25mm,每个框过滤面积
0.0127m2,框数2个。
空气压缩机 配料桶 压力料槽 控制柜
四、实验操作
开启仪表:接通控制柜电源,打开电源以及仪表开关。 打开空压机。 配料:在配料罐内加入清水和碳酸钙粉末,配置一定浓度的碳
酸钙悬浮液。通入压缩空气鼓泡搅拌。
装板框:正确装好滤板、滤框及滤布。滤布使用前用水浸湿,
滤布要绷紧,不能起皱。滤布紧贴滤板,密封垫紧贴滤布。
用螺旋压紧。
一、实验目的
熟悉板框过滤机的结构及过滤工艺流程。
掌握板框过滤机的操作及体调节方法。 测定恒定压力下,过滤方程中的过滤常数K,qe,θe。
二、基本原理
恒压过滤方程:
V 2VVe KA
2 2
Ve V 令 q 及qe A 2 q qe q K K

过滤常数测定

一、 实验目的1.熟悉板框压滤机的构造和操作方法;2.通过恒压过滤实验,验证过滤基本原理;3.学会测定过滤常数K 、qe 、τe 的方法;4.了解操作压力对过滤速率的影响;5.学会有关测量与控制仪表的使用方法。

二、 实验原理过滤是以某种多孔物质为介质来处理悬浮液的操作。

在外力作用下,悬浮液中的液体通过介质的孔道而固体颗粒被截流下来,从而实现固液分离。

因此,过滤操作本质上是流体通过固体颗粒的流动,所不同的是这个固体颗粒层的厚度随着过滤过程的进行而不断增加,故在恒压过滤操作中,过滤速率不断降低。

影响过滤速率的主要因素除了压强差,滤饼厚度外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等。

比较过滤过程与流体经过流动床的流动可知,过滤速度即为流体速度为流体通过固定床的表观速度u 。

同时,流体通过细小颗粒构成的滤饼空隙中的流动在层流范围内,因此,可利用流体通过固定床压降的简化模型,寻求滤液量与时间的关系,应用层流时公式不难推导出过滤速度计算式:式中:u ----过滤速度,m/sK’----与滤饼空隙率、颗粒形状、排列等诸因素有关的常数,滞流时K'=5 ε----床层的空隙率,m 3/m 3 a ----颗粒的比表面,m 2/m 3 Δp ----过滤的压强降,Pa μ-----滤液粘度,Pa·s L ----床层厚度,m由此可推导出过滤基本方程式: dVdt =)(12e s V V rv p A +-μΔ 式中:V----滤液体积,m 3τ-------过滤时间,s A-------过滤面积;S-------滤饼压缩性指数,无因次。

一般情况下S=0~1;对不可压缩滤饼S=0 R-------滤饼比阻,1/m 2,r=5.0a 2(1-ε)2/ε3r*--------单位压差下的比阻,1/m 2, r*=r △P sLpa K u μεε∆⋅-⋅'=223)1(1ν--------滤饼体积与相应滤液体积之比,无因次。

【精品文档】恒压过滤常数测定实验报告

【精品文档】恒压过滤常数测定实验报告恒压过滤常数测定实验报告恒压过滤常数是过滤器在固定压力下过滤能力的参数,是研究过滤系统性能必备条件之一。

本次实验采用恒压测定法,对样品进行恒压过滤常数测定实验,确定其在特定条件下的过滤比。

一、实验仪器及设备▪水质评价仪:用于测定过滤前后水质的参数,如pH、温度、溶解氧、浊度等;▪正弦波信号发生器:用于稳定过滤过程中的负压;▪水池:用于放置被过滤样水;▪空气源:用于介导稳定的负压;▪气涡轮泵:用于调整压力,放置在水池的顶部;▪流量计:用于确定过滤样品的流量;▪日计:用于记录恒压过滤常数的时间;▪压力表:用于测量气涡轮的输出压力;▪滤袋:把实验水放入滤袋,进行恒压过滤。

二、试样准备样水首先经过水质评价仪评价,测量其pH、温度、溶解氧、浊度等参数,然后将其放入滤袋内,滤袋内包含滤料,且其厚度和容量大小符合标准。

三、实验过程1.将气涡轮接入正弦波信号发生器;2.把样品装入滤袋内;3.架好泄漏检测器,放入水池内;4.将水池放到气涡轮上方,降低气涡轮输出压力至要求级别,使样水静止;5.连接气涡轮泵、电阻式流量计,录入数据;6.日计根据正常压力启动;7.用试瓶采集流出的水,运用水质评价仪进行水质参数检测;8.查看日计,取测定结果。

四、实验结果量程A(mL/min)|量程B(mL/min)----------------------------------------7.81|1.337.64|1.627.29|1.597.41|1.197.41|1.287.36|1.187.30|1.177.57|1.057.39|1.08平均恒压过滤常数取:7.51 mL/min。

通过本次实验,我们测定出样品的恒压过滤常数为7.51 mL/min,结果合理。

从实验过程可以看出,恒压过滤常数测定方法可行,结果是可信的。

【精品】恒压过滤常数测定实验实验报告

【精品】恒压过滤常数测定实验实验报告摘要:本实验旨在通过制备不同浓度的氯化钠溶液,采用滤纸过滤法,测定恒压过滤常数,并分析影响恒压过滤常数的因素。

实验结果表明,恒压过滤常数与液体粘度、颗粒大小有关,与过滤介质的孔径大小与压差无关。

通过本实验的探究,加深了我对过滤现象的认识,丰富了化学实验方法和技能。

关键词:恒压过滤、滤纸过滤法、滤液、过滤常数一、实验目的1. 学习恒压过滤法的原理和实验方法。

2. 通过滤纸过滤法测定恒压过滤常数,并探究影响其大小的因素。

二、实验原理恒压过滤是指,在滤器上保持一定的压力,使液体通过滤器,从而达到过滤的目的。

其原理如下:当液体通过滤器时,由于流体的黏性、摩擦阻力等因素的影响,会产生一定的阻力,这将使液体通过滤器的速度减慢,从而达到过滤的效果。

三、实验步骤1. 制备4%、6%和8%的氯化钠溶液,用电子天平称取适量的氯化钠和蒸馏水,加热搅拌至完全溶解。

2. 取适量的滤纸,将其折成四分之一,放入漏斗内。

3. 将滤纸倒少量的蒸馏水,使之湿润,取出滤纸,并加入相应的氯化钠溶液。

4. 开启真空泵,开启滤水龙头,待试剂经过滤纸后,用三秒钟计时器计时,直到滤液滤尽。

5. 记录滤液容量、滤液时间、压力差等数据,计算恒压过滤常数。

6. 记录实验中出现的问题和注意事项。

四、实验数据与结果1. 制备不同浓度的氯化钠溶液质量浓度:4:0.40g/mL;6:0.60g/mL;8:0.80g/mL。

2. 滤液数据记录:| 氯化钠浓度 | 滤液容量 (mL) | 滤液时间 (s) | 压力差 (kPa) || ---- | ---- | ---- | ---- || 4% | 14.5 | 39.7 | 5.5 || 6% | 12.7 | 34.5 | 7.2 || 8% | 10.5 | 29.1 | 8.4 |3. 计算恒压过滤常数:通过计算,得到恒压过滤常数的值分别为:4%:0.71;6%:0.54;8%:0.47。

过滤常数测定

一、 实验目的1. 熟悉板框压滤机的构造和操作方法。

2. 通过恒压过滤实验,验证过滤基本理论。

3. 学会测定过滤常数K 、q e 、τe 及压缩性指数s 的方法。

4. 了解过滤压力对过滤速率的影响。

5. 学会有关测量与控制仪表的使用方法。

二、 实验原理根据恒压过滤方程:(q +q e )2=K(θ+θe ) (1) 式中: q ─单位过滤面积获得的滤液体积 m 3/m 2; q e ─单位过滤面积的虚拟滤液体积 m 3/m 2; θ─实际过滤时间 S; θe ─虚拟过滤时间 S; K ─过滤常数 m 2/S 。

将(1)式微分得:e q kq k dq d 22+=θ (2) 此为直线方程,于普通坐标系上标绘dqd θ对 q 的关系,所得直线斜率为: k 2,截距为e q k 2,从而求出,K ,q e 。

在根据θe = q e / K ,求出θe 。

三、 实验装置流程示意图四、实验步骤及注意事项(1)打开总电源空气开关,打开仪表电源开关。

(2)配制含CaCO38%~13%(质量)的水悬浮液。

(3)开启空压机,打开阀3,阀4,将压缩空气通入配料水槽,使CaCO3悬浮液搅拌均匀。

(4)正确装好滤板、滤框及滤布。

滤布使用前用水浸湿,滤布要绷紧,不能起皱(注意:用螺旋压紧时,千万不要把手指压伤,先慢慢转动手轮使板框合上,然后再压紧)。

(5)关闭阀2,在压力料槽排气阀16打开的情况下,打开阀6,使料浆自动由配料桶流入压力槽至1/2~1/3处,关闭阀4,阀6。

(6)通压缩空气至压力贮槽,使容器内料浆不断搅拌。

压力料槽的排气阀要不断缓缓排气,但又不能喷浆。

(7)打开1#电磁阀,打开阀2,阀5,阀7,阀10,阀12,阀14,开始实验。

(8)手动实验:每次实验应在滤液从汇集管刚流出的时刻作为开始时刻。

每次△V取为600-700ml左右,记录相应的过滤时间△t。

要熟练双秒表轮流读数的方法,量筒交替接液时不要流失滤液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过滤常数测定
一、实验目的
1.熟悉板框压滤机的构造和操作方法。

2.通过恒压过滤实验,验证过滤基本理论。

3.学会测定过滤常数K、qe、τ
e及压缩性指数
的方法。

4.了解过滤压力对过滤速率的影响。

5.学会有关测量与控制仪表的使用方法。

二、实验原理
根据恒压过滤方程:(q+qe)2=K(θ+θe)(1)式中:q─单位过滤面积获得的滤液体积m3/m2;qe─单位过滤面积的虚拟滤液体积m3/m2;θ─实际过滤时间S;θe─虚拟过滤时间S;K─过滤常数m2/S将(1)式微分得: d22qqe(2)dqkkd对q的关系,所得直线斜率为:dq此为直线方程,于普通坐标系上标绘
22,截距为qe,从而求出,K,qe。

在根据θe=qe/K,求出θe。

kk三、实验装置流程示意图
四、实验步骤及注意事项
(1)打开总电源空气开关,打开仪表电源开关。

(2)配制含CaCO38%~13%(质量)的水悬浮液。

(3)开启空压机,打开阀3,阀4,将压缩空气通入配料水槽,使CaCO3悬浮液搅拌均匀。

(4)正确装好滤板、滤框及滤布。

滤布使用前用水浸湿,滤布要绷紧,不能起皱(注意:用螺旋压紧时,千万不要把手指压伤,先慢慢转动
手轮使板框合上,然后再压紧)。

(5)关闭阀2,在压力料槽排气阀16打开的情况下,打开阀6,使
料浆自动由配料桶流入压力槽至1/2~1/3处,关闭阀4,阀6。

(6)通压缩空气至压力贮槽,使容器内料浆不断搅拌。

压力料槽的
排气阀要不断缓缓排气,但又不能喷浆。

(7)打开1#电磁阀,打开阀2,阀5,阀7,阀10,阀12,阀14,
开始实验。

(8)手动实验:每次实验应在滤液从汇集管刚流出的时刻作
为开始时刻。

每次△V取为600-700ml左右,记录相应的过滤时间△t。

要熟练双秒表轮流读数的方法,量筒交替接液时不要流失滤液。

测量
8~10个读数即可停止实验。

打开2#电磁阀和阀8做中等压力实验。

打开
3#电磁阀,阀9,阀11做大压力实验。

(9)实验完毕关闭阀12,阀14,打开阀4,阀6,将压力料槽的悬浮液压回配料桶,关闭阀4。

(10)关闭阀2,阀5,打开排气阀16。

(11)关闭空气压缩机电源,关闭仪表电源。

五、实验原始数据
P=0.12MPa序号12345678
P=0.15MPaV/L5.52210.70△V/
L3.8993.8733.8623.7773.7673.7433.717V/
L3.8997.77211.63415.41119.17822.92126.638P=0.22MPa△V/
L4.4744.4524.4124.4054.3974.3774.3514.315V/
L4.4748.95213.33817.74322.1426.51730.86835.183△V/
L5.5225.1785.1725.1615.0644.9654.9634.77015.87221.03326.09731.06 236.02540.795六、数据处理
已知:△τ=20A=0.038m2某2=0.076m2
根据公式△q=△V/A可算得以下数据:
序号12345678△qP=0.12MPaq△τ/△q△qP=0.15MPaq△τ/
△q0.05890.05860.05810.05800.05790.05760.05730.0568△qP=0.22MPaq 0.05890.11740.17550.23350.29130.34890.40620.4629△τ/
△q339.74682.841033.51380.31728.52083.62445.42818.10.07270.07272 75.260.05130.0513389.840.06810.1408587.100.05100.1023784.920.068 10.2088881.670.05080.15311180.70.06790.27681178.00.04970.2028160 9.70.06660.34341500.80.04960.25232022.50.06530.40871836.90.04930 .30162436.50.06530.47402143.90.04900.35052862.50.06280.53682549. 3q图:
由表可以得到低压下的q-
图一低压时q-由图一可以得到:Y=4814.97283某-112.69164 22其中=4814.97283,qe=112.69164;
KK所以K4.1537104,qe0.02346,qeK56.4810
同理可得中压时的q-q图:
q图
图二中压时q-由图二可以得到:Y=8281.613某-61.101822其中
=8281.613,qe=61.1018;
KK所以K2.4150104,qe0.007378,qeK30.5508
q图
同理,高压时的q-q图为:
图三高压时q-由图三可以得到:Y=6114.99163某-37.06018 22其中=6114.99163,qe=37.06018;
KK所以K3.2707104,qe0.006061,qeK18.5299
q图
七、实验结果分析与讨论
误差分析:1.碳酸钙悬浮液搅拌不够充分2.滤布压的不够紧,出来的液体不够澄清3.读数时由于液体还在往下留,存在误差4.实验仪器本身存在误差5.过滤介质的阻力较大
6.实验中滤板和滤框间有严重漏水现象,使得实验误差很大。

八、思考题解答
1.当你在某一恒压下所测得的k、qe、τ
e值后,若将过滤压强提高一倍,问上述
三个值将有何变化
1K2k(p)由,得:过滤压强提高一倍,K提高到原来的2(1-)倍。

qe 是由介质决定,与压强无关。

根据τe=qe/K知,τ2.影响过滤速率的主要因素有哪些?1.过滤面积、2.压强降、3.滤液粘度
3.为什么过滤开始时,滤液常常有点浑浊,而过段时间后才变清?
开始过滤时,滤饼还未形成,空隙较大的滤布使较小的颗粒得以漏过,滤饼形成后且形成较密的滤饼,使颗粒不易通过。

e是变为原来的
1/2。

qe和τ
e是
反映过滤介质阻力大小的常数,为常数(本实验默认滤饼不可压缩,
S=0)。

相关文档
最新文档