4、第2讲 平抛运动
第二讲:平抛运动

第二讲:平抛运动一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:自由落体运动. 4.基本规律如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.(1)位移关系(2)速度关系(3)轨迹方程:h =g2v 02x 25.基本应用例题、如图所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为(1)飞行时间由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.(2)水平射程x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. (3)落地速度v =v x 2+v y 2=v 02+2gh ,以θ表示落地速度与水平正方向的夹角,有tan θ=v y v x=2ghv 0,落地速度与初速度v 0和下落高度h 有关. (4)速度改变量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图所示.(5)两个重要推论①做平抛运动的物体在任意时刻的瞬时速度的反向延长线一例题、如图甲所示是网球发球机,某次室内训练时将发球机放在距地面一定的高度,然后向竖直墙面发射网球.假定网球均水平射出,某两次射出的网球碰到墙面时速度与水平方向夹角分别为30°和60°,若不考虑空气阻力,则( )A.两次发射的初速度大小之比为3∶1定通过此时水平位移的中点,如图所示,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v yv 0=2y Ax A→x B=x A2①做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt 2v 0→tan θ=2tan α二、与斜面结合的平抛运动1.顺着斜面平抛(如图)方法:分解位移.x =v 0t ,y =12gt 2,tan θ=y x,可求得t =2v 0tan θg.2.对着斜面平抛(垂直打到斜面,如图) 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt,可求得t =v 0g tan θ.三、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动.例题、某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0;做匀速直线运动,v 0x =v 0cos θ,x =v 0tcos θ. (2)竖直方向:v 0y =v 0sin θ,F 合y =mg .做竖直上抛运动,v 0y =v 0sin θ,y =v 0tsin θ-12gt2四、类平抛运动1.类平抛运动物体受到与初速度垂直的恒定的合外力作用时,其轨迹与平抛运动相似,称为类平抛运动.类平抛运动的受力特点是物体所受合力为恒力,且与初速度的方向垂直.2.类平抛运动问题的求解技巧(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向上列方程求解.针对训练题型1:平抛运动性质例题、如图所示的光滑斜面ABCD 是边长为l 的正方形,倾角为30°,一物块(视为质点)沿斜面左上方顶点A 以平行于AB 边的初速度v 0水平射入,到达底边CD 中点E ,则( )A .初速度2glB .初速度4glC .物块由A 点运动到E 点所用的时间2lt g= D .物块由A 点运动到E 点所用的时间lt g=1.关于平抛运动的性质,以下说法中正确的是()A.变加速运动B.匀变速运动C.匀速率曲线运动D.不可能是两个直线运动的合运动2.人站在平台上平抛一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,下列图中能表示出速度矢量的演变过程的是()A.B.C.D.题型2:平抛运动规律3.如图所示,从A、B、C三个不同的位置向右分别以v A、v B、v C的水平初速度抛出三个小球A、B、C,其中A、B在同一竖直线上,B、C在同一水平线上,三个小球均同时落在地面上的D点,不计空气阻力。
2020届高三物理一轮复习:第四章 第2讲 平 抛 运 动(含解析)

配餐作业平抛运动►►见学生用书P329A组·基础巩固题1.从高度为h处以水平速度v0抛出一个物体(不计空气阻力),要使该物体的落地速度与水平地面的夹角较大,则h与v0的取值应为下列四组中的哪一组()A.h=30 m,v0=10 m/sB.h=30 m,v0=30 m/sC.h=50 m,v0=30 m/sD.h=50 m,v0=10 m/s解析根据平抛运动竖直方向v2y=2gh,tanθ=v yv0=2ghv0,由此可知当h最大,v0最小时的夹角最大,D项正确。
答案D2.(2017·江苏)如图所示,A、B两小球从相同高度同时水平抛出,经过时间t在空中相遇,若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为()A.t B.2 2tC.t2 D.t4解析两球同时抛出,竖直方向上做自由落体运动,相等时间内下降的高度相同,始终在同一水平面上,根据x=v A t+v B t知,当两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为t2,所以C项正确,A、B、D项错误。
答案C3.“套圈圈”是老少皆宜的游戏,如图,大人和小孩在同一竖直线上的不同高度处分别以水平速度v1、v2抛出铁圈,都能套中地面上同一目标。
设铁圈在空中运动时间分别为t1、t2,则()A.v1=v2B.v1>v2C.t1=t2D.t1>t2解析根据平抛运动的规律h=12gt2知,运动的时间由下落的高度决定,故t1>t2,所以C项错误,D项正确;由题图知,两圈水平位移相同,再根据x=v t,可得v1<v2,故A、B项错误。
答案D4.(多选)如图所示,三个小球从同一高度处的O处分别以水平初速度v1、v2、v3抛出,落在水平面上的位置分别是A、B、C,O′是O 在水平面上的射影点,且O′A∶O′B∶O′C=1∶3∶5。
若不计空气阻力,则下列说法正确的是()A.v1∶v2∶v3=1∶3∶5B.三个小球下落的时间相同C.三个小球落地的速度相同D.三个小球落地的位移相同解析三个小球的高度相等,则根据h=12gt2知,平抛运动的时间相等,水平位移之比为1∶3∶5,则根据x=v0t得,初速度之比为1∶3∶5,故A 、B 项正确;小球落地时的竖直方向上的分速度相等,落地时的速度v =v 20+2gh ,初速度不等,则落地的速度不等,故C 项错误;小球落地时的位移s =x 2+h 2,水平位移不等,竖直位移相等,则小球通过的位移不等,故D 项错误。
高中物理第四章 第2讲 平抛运动的规律及应用

【变式训练】在同一平台上的O点抛出的3个物体,做平抛运动 的轨迹如图所示,则3个物体做平抛运动的初速度vA、vB、vC的 关系及落地时间tA、tB、tC的关系分别是( )
A.vA>vB>vC,tA>tB>tC C.vA<vB<vC,tA>tB>tC
Байду номын сангаас
B.vA=vB=vC,tA=tB=tC D.vA<vB<vC,tA<tB<tC
考点 3 平抛运动的综合问题(三年6考)
解题技巧 【考点解读】 涉及平抛运动的综合问题主要是以下几种类型: (1)平抛运动与其他运动形式(如匀速直线运动、竖直上抛运动、 自由落体运动、圆周运动等)的综合题目,在这类问题的分析中 要注意平抛运动与其他运动过程在时间上、位移上、速度上的
方 分 解 速 度
法
内
容
斜
面
总
结
水平:vx=v0 竖直:vy=gt 合速度: v= v x 2 v y 2 水平:x=v0t 合位移: x 合= x 2 y 2
1 竖直:y= gt2 2
分解速 度,构建 速度三 角形
分 解 位 移
分解位 移,构建 位移三 角形
【典例透析 2】滑雪比赛惊险刺激,如图所示,一名跳台滑雪运 动员经过一段加速滑行后从O点水平飞出,经过3.0s落到斜坡上
g 2h 知,时间取决于下落高度h,与初速度v0 g
(3)落地速度:v= v x 2 v y 2 v0 2 2gh ,以θ 表示落地速度与 x轴正方向间的夹角,有tanθ = 初速度v0和下落高度h有关。
vy vx 2gh ,所以落地速度只与 v0
(4)速度改变量:因为平抛运动的加速度为恒 定的重力加速度g,所以做平抛运动的物体在 任意相等时间间隔Δ t内的速度改变量
高中物理【抛体运动】知识点规律总结

19
(2)如图乙所示,小球恰好沿 B 点的切线方向进入圆轨道,此时半径 OB 垂直于速度 方向,圆心角 α 与速度的偏向角相等.
(3)如图丙所示,小球恰好从圆柱体 Q 点沿切线飞过,此时半径 OQ 垂直于速度方向, 圆心角 θ 与速度的偏向角相等.
20
考点三 平抛运动中的临界问题
师生互动
1.临界点的确定
(2)做平抛(或类平抛)运动的物体在任意时刻任意位置处,设其末速度方向与水平方 向的夹角为 α,位移与水平方向的夹角为 θ,则 tan α=2tan θ.
12
第 2 维度:多个物体的平抛运动 对多体平抛问题的四点提醒 (1)两条平抛运动轨迹的交点是两物体的必经之处,两物体要在此处相遇,必须同时 到达此处.即轨迹相交是物体相遇的必要条件. (2)若两物体同时从同一高度抛出,则两物体始终处在同一高度. (3)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同. (4)若两物体从同一高度先后抛出,则两物体高度差随时间均匀增大.
vt= vx2+v2y= v20+2gh
与初速度 v0、下落高度 h 和重力加速度 g 有关
Δv=gΔt,方向恒为竖直向下
速度改变量
由重力加速度 g 和时间间隔 Δt 共同决 定
11
2.关于平抛(类平抛)运动的两个重要推论 (1)做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水 平位移的中点,如图中 A 点和 B 点所示,即 xB=x2A.
1
第 2 讲 抛体运动
一、平抛运动 1.定义:将物体以一定的初速度沿水平方向抛出,物体只在_重__力___作用下的运动. 2.性质:平抛运动是加速度为 g 的__匀__变__速__曲线运动,运动轨迹是抛物线. 3.研究方法:运动的合成与分解 (1)水平方向:_匀__速___直线运动. (2)竖直方向:_自__由__落__体___运动.
第五章 第4节 第2课时 平抛运动的规律及推论的应用

第2课时平抛运动的规律及推论的应用必备知识基础练进阶训练第一层知识点一平抛运动的相遇问题1.分别在同一水平直线上的两位置沿同一方向水平抛出两个小球A和B,其运动轨迹如图所示,不计空气阻力,要使两球在空中相遇,则必须()A.同时抛出两球B.先抛出A球C.先抛出B球D.使两球质量相等2.如图所示,倾角θ=30°的斜面AB,在斜面顶端B向左水平抛出小球1,同时在底端A正上方与B等高处水平向右抛出小球2,小球1、2同时落在P点,P点为斜面AB的中点,则()A.小球2一定垂直撞在斜面上B.小球1、2的初速度可以不相等C.小球1落在P点时速度与斜面的夹角为30°D.改变小球1的初速度,小球1落在斜面上的速度方向都平行知识点二平抛运动推论的应用3.如图所示,从倾角为θ的足够长的斜面顶端P以速度v0抛出一个小球,落在斜面上的Q点,小球落在斜面上的速度与斜面的夹角为α.若把初速度变为k v0,小球仍落在斜面上,则()A.小球的水平位移和竖直位移之比变为原来的k倍B.空中的运动时间变为原来的k倍C.PQ间距一定变为原来间距的k倍D知识点三平抛运动的临界问题4.如图所示,小球以v0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t 为(重力加速度为g )( )A .v 0tan θ B.2v 0tan θgC. v 0g tan θD.2v 0g tan θ5.如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m .围墙到房子的水平距离L =3 m ,围墙外马路宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的马路上,小球离开屋顶时的速度v 0的大小不可能为(g 取10 m/s 2)( )A .8 m/sB .12 m/sC .6 m/sD .2 m/s关键能力综合练 进阶训练第二层一、单选题1.如图所示,A 、B 两小球从相同高度同时水平抛出,经过时间t 在空中相遇.若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为( )A .t B.22tC.t 2D.t 42.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同3.根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置.但实际上,赤道上方200 m 处无初速下落的小球将落在正下方位置偏东约6 cm 处.这一现象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力”与竖直方向的速度大小成正比.现将小球从赤道地面竖直上抛,考虑对称性,上升过程该“力”水平向西,则小球( )A .到最高点时,水平方向的加速度和速度均为零B .到最高点时,水平方向的加速度和速度均不为零C .落地点在抛出点东侧D .落地点在抛出点西侧4.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的球越过球网,速度较小的球没有越过球网;其原因是( )A .速度较小的球下降相同距离所用的时间较多B .速度较小的球在下降相同距离时在竖直方向上的速度较大C.速度较大的球通过同一水平距离所用的时间较少D.速度较大的球在相同时间间隔内下降的距离较大二、多选题5.一质点做匀速直线运动.现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变6.如图所示,斜面与水平面间的夹角为θ,从斜面上方A点水平抛出a、b两个小球,初速度分别为v a、v b,a球恰好垂直打到斜面上M点,而b球落在斜面上的N点,而AN恰好垂直于斜面.已知重力加速度为g.则()A.a球在空中运动时间为v ag tan θB.b球在空中运动时间为v bg tan θC.a、b两球下落距离之比为v a2v bD.a、b两球下落距离之比为v2a4v2b三、计算题7.如图所示,将质量为m的小球从倾角为θ的光滑斜面上A点以速度v0水平抛出(v0平行于CD),小球运动到B点,已知A点的高度为h.求小球到达B点时的速度大小及所用时间.(重力加速度为g)学科素养升级练进阶训练第三层1.如图所示为足球球门,球门宽为L.一个球员在球门中心正前方距离球门s处高高跃起,将足球顶入球门的左下方死角(图中P点).球员顶球点的高度为h.足球做平抛运动(足球可看成质点,忽略空气阻力),则()A.足球位移的大小x=L24+s2B.足球初速度的大小v0=g2h⎝⎛⎭⎫L24+s2C.足球末速度的大小v=g2h⎝⎛⎭⎫L24+s2+4ghD.足球初速度的方向与球门线夹角的正切值tan θ=L 2s2.质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力),今测得当飞机在水平方向的位移为l时,它的上升高度为h,如图所示,重力加速度为g,求:(1)飞机受到的升力大小;(2)在高度h处飞机的速度大小.3.如图为一游戏中某个环节的示意图.参与游戏的选手会遇到一个人造山谷AOB,AO 是高h=3 m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上水平跑道.选手可视为质点,忽略空气阻力,重力加速度g取10 m/s2.(1)若选手以速度v0水平跳出后,能落到水平跑道上,求v0的最小值;(2)若选手以速度v1=4 m/s水平跳出,求该选手在空中的运动时间.。
2024届高考物理复习讲义:抛体运动

第2讲抛体运动学习目标 1.理解平抛运动、斜抛运动的概念及运动性质。
2.掌握抛体运动的规律,会用运动的合成与分解的方法处理抛体运动。
3.会运用平抛运动的规律处理类平抛问题。
1.2.1.思考判断(1)以一定初速度水平抛出的物体所做的运动就是平抛运动。
(×)(2)做平抛运动的物体的速度方向时刻在变化,加速度方向也时刻在变化。
(×)(3)做平抛运动的物体的初速度越大,水平位移越大。
(×)(4)做平抛运动的物体的初速度越大,在空中飞行时间越长。
(×)(5)若不计空气阻力,从同一高度平抛的物体,在空中飞行时间相等。
(√)(6)做平抛运动的物体在任意相等的时间内速度的变化量是相同的。
(√)2.第24届冬奥会于2022年2月4日在北京隆重开幕。
若冬奥会跳台滑雪比赛运动员从平台飞出后可视为平抛运动,现运动员甲以一定的初速度从平台飞出,轨迹为图1中实线①所示,质量比甲小的运动员乙以相同的初速度从平台同一位置飞出,不计空气阻力,则运动员乙的运动轨迹应为图中的()图1A.①B.②C.③D.④答案A考点一平抛运动基本规律的应用1.飞行时间由t =2h g知,下落的时间取决于下落高度h ,与初速度v 0无关。
2.水平射程x =v 0t =v 02h g,即水平射程由初速度v 0和下落高度h 共同决定。
3.速度改变量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图所示。
4.两个重要推论(1)做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,即x B =x A 2,如图所示。
(2)做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α。
角度单物体的平抛运动例1(2022·广东卷,6)如图2所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P 点等高且相距为L 。
第02讲 平抛运动

第2讲平抛运动【教学目标】1.知道平抛运动的定义以及条件,知道其运动轨迹是抛物线;2.理解平抛运动是加速度为g的匀变速曲线运动;3.熟练掌握平抛运动的规律,学会用平抛运动的规律解决实际问题的方法;4.理解平抛运动可以看作水平方向的匀速直线运动与竖直方向的自由落体运动的合运动,并且这两个运动互不影响.【重、难点】1.平抛运动的特点和规律;2.对平抛运动的两个分运动的理解和运用.如图所示,沿水平方向扔出一块橡皮,或者将一个小球从水平桌面以一定的初速度推离边沿,可以看到它们做曲线运动的轨迹是相似的.本节课我们来学习这一类常见曲线运动的规律.知识点睛一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,仅在重力作用下物体所做的运动称为平抛运动.2.由于平抛运动只受重力作用,加速度为g,故平抛运动是匀变速曲线运动.二、平抛运动的研究方法由于平抛运动是匀变速曲线运动,速度、位移的方向时刻发生变化,无法直接应用运动学公式,因此研究平抛运动问题时采用运动分解的方法.那么平抛运动可以看成哪两个分运动的合成呢?做平抛运动的物体,在水平方向上由于不受力,将做匀速直线运动;在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动,加速度等于g.平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体运动.以上是从理论角度去分析得到的结论,我们能否通过实验来验证我们的结论呢?实验探究平抛运动的特点(1)研究平抛运动水平方向分运动的特点①使电磁铁C 和D 分别相对各自轨道出口水平线处于相同高度.把两个钢球分别吸在电磁铁C 、D 上.切断电源,使两个钢球以相同的初速度同时水平射出.②改变电磁铁C 、D 与各自轨道出口水平线的相对高度,并确保高度相等. ③多次重复以上步骤.观察实验现象,并分析平抛运动水平方向分运动的特点. (2)研究平抛运动竖直方向分运动的特点①把两个钢球分别吸在电磁铁C 、E 上,并确保电磁铁E 上的钢球与轨道A 出口处于同一高度,释放轨道A 的钢球.钢球在水平出口处碰撞开关S ,切断电磁铁E 的电源,使钢球从电磁铁E 处释放. ②改变电磁铁E 的位置,让其从N 向M 移动.③多次重复以上步骤.观察实验现象,并分析平抛运动竖直方向分运动的特点.(3)结论:平抛运动在水平方向的分运动是匀速直线运动,在竖直方向的分运动是自由落体运动. 三、平抛运动的规律如图所示,以抛出点O 为坐标原点,水平方向为x 轴(正方向与初速度v 0方向相同),以竖直方向为y 轴(正方向向下),经时间t 做平抛运动的质点到达P 位置,速度为v .1.平抛运动的位置坐标与位移(1)位置坐标⎩⎪⎨⎪⎧x =v 0t y =12gt 2 (2)位移大小s =x 2+y 2=v 20t 2+14g 2t 4(3)位移方向tan α=y x =gt2v 0,其中α为位移与x 轴的夹角2.平抛运动的速度(1)水平分速度v x =v 0 (2)竖直分速度v y =gt (3)合速度大小v =v 20+v 2y =v 20+g 2t 2(4)合速度方向tan θ=v y v x =gtv 0,其中θ为合速度与水平方向的夹角3.平抛运动的轨迹由x =v 0t 与y =12gt 2可得y =g2v 20x 2.因此,平抛运动的轨迹是一条抛物线.考点一 对平抛运动的理解1.物体做平抛运动的条件物体的初速度v 0沿水平方向,只受重力作用,两个条件缺一不可. 2.平抛运动的性质:加速度为g 的匀变速曲线运动. 3.平抛运动的三个特点(1)理想化特点:平抛运动是一种理想化的模型,即把物体看成质点,抛出后只考虑重力作用,忽略空气阻力.(2)匀变速特点:平抛运动的加速度恒定,即始终等于重力加速度.(3)速度变化特点:任意两个相等的时间间隔内速度的变化相同,Δv =g Δt ,方向竖直向下,如图所示.例1.(多选)在空气阻力可忽略的情况下,下列物体的运动可视为平抛运动的是( ) A .沿水平方向扣出的排球 B .沿斜向上方投出的篮球 C .沿水平方向抛出的小石子 D .沿竖直方向向上抛出的橡皮 例2.(多选)关于平抛运动,下列说法中正确的是( ) A .平抛运动是一种非匀变速曲线运动 B .平抛运动是一种匀变速曲线运动 C .平抛运动的速度,加速度都在变化D .平抛运动中某时刻的速度方向为轨迹切线方向例3.从高空水平方向匀速飞行的飞机上,每隔1分钟投一包货物,空气阻力忽略不计,则空中下落的许多包货物和飞机的连线是( ) A .倾斜直线 B .竖直直线 C .平滑曲线 D .抛物线典例精析考点二 平抛运动中运动参量的决定因素 物体从离地高为h 处以初速度v 0水平抛出,则 1.由h =12gt 2,得落地时间t =2hg,故平抛运动的时间仅由下落高度h 决定,跟其他因素无关; 2.落地时的水平位移x= v 0t = v 02hg,故水平位移由初速度v 0和下落高度h 共同决定; 3.v y =gt =2gh ,落地时的速度v =v 20+v 2y =v 20+2gh ,故落地时的速度由初速度v 0和下落高度h共同决定.例4.(多选)如图所示,滑板运动员以速度v 0从离地高度为h 的平台末端水平飞出,落在水平地面上.忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是( )A .v 0越大,运动员在空中运动时间越长B .v 0越大,运动员落地瞬间速度越大C .运动员落地瞬间速度与高度h 有关D .运动员落地位置与v 0大小无关变式1、做平抛运动的物体,在水平方向通过的最大距离取决于( ) A .物体的高度和受到的重力 B .物体受到的重力和初速度 C .物体受到的重力、高度和初速度 D .物体的高度和初速度 考点三 平抛运动的规律应用例5.一架老式飞机在高出地面h =2km 的高度,以v 0=3.6×102km/h 的速度水平飞行,为了使飞机上投下的炸弹落在指定的目标上,应该在与轰炸目标的水平距离为多远的地方投弹?g 取10m/s 2,不计空气阻力.变式2、如图所示,飞机离地面高度为H=500m,水平匀速飞行,速度为v1=100m/s,追击一辆速度为v2=20m/s同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(飞机和汽车均视为质点,不计空气阻力,重力加速度g=10m/s2)变式3、如图所示,在距地面高为H=45 m处,有一小球A以初速度v0=10 m/s水平抛出.与此同时,在A的正下方有一物块B也以相同的初速度v0同方向滑出,B与地面间的动摩擦因数μ=0.5,A、B均可看成质点,空气阻力不计.求:(1)A球从抛出到落地的时间;(2)A球从抛出到落地这段时间内的水平位移;(3)A球落地时,A、B之间的距离.例6.一小球水平抛出时的速度大小为10m/s,落地时的速度大小为20m/s,g取10m/s2.求:(1)在空中的飞行时间t;(2)小球抛出时的高度h;(3)水平位移x.变式4、(多选)以v0的速度水平抛出一个物体,当其竖直分位移与水平分位移相等时,则()A.运动的时间为gv0B.竖直分速度等于水平分速度C.瞬时速度为5v0D.运动的位移是gv2222变式5、(多选)在距离水平地面高为h 处,将一物体以初速度v 0水平抛出(不计空气阻力),落地时速度为v 1,竖直分速度为v y ,落地点与抛出点的水平距离为s ,则能用来计算该物体在空中运动时间的式子有( )A .v 21-v 2gB .2h g C .2hv y D .sv 1例7.如图所示,斜面上a 、b 、c 三点等距,小球从a 点正上方O 点抛出,做初速度为v 0的平抛运动,恰好落在b 点.若小球初速度变为v ,其落点位于c ,则()A .v 0<v <2v 0B .v =2v 0C .2v 0<v <3v 0D .v >3v 0例8.在水平地面上方某一高度处沿水平方向抛出一个小物体,抛出t 1=1s 后物体的速度方向与水平方向的夹角为45°,落地时物体的速度方向与水平方向的夹角为60°,重力加速度g 取10 m/s 2.求: (1)物体平抛时的初速度v 0; (2)抛出点距离地面的竖直高度h ; (3)物体从抛出点到落地点的水平位移x .变式6、如图所示,由倾角为θ的斜面顶端A 处水平抛出一钢球,落到斜面底端B 处,斜面长为L ,重力加速度为g .求抛出时的初速度.研究平抛运动的一般思路1.把平抛运动分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动;2.分别运用两个分运动的运动规律去求分速度、分位移等,再合成得到平抛运动的速度、位移等.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,使问题的解决过程得到简化.考点四 两类与斜面结合的平抛运动 1.模型构建(1)物体从斜面上某一点水平抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角;(2)做平抛运动的物体垂直打在斜面上,此时物体的合速度与竖直方向的夹角等于斜面的倾角.2.求解思路例9.如图所示,斜面倾角为θ=30°,小球从斜面上的P 点以初速度v 0水平抛出,恰好落到斜面上的Q 点.重力加速度为g .求:(1)小球从P 到Q 运动的时间;(2)PQ 的长度.例10.如图所示,以10m/s 的水平速度抛出的物体,飞行一段时间后垂直撞在倾角为θ=30°的斜面上,空气阻力不计,g 取10m/s 2,物体飞行的时间和物体撞在斜面上的速度的大小分别为( )A .3s ,20 m/sB .3s ,15 m/sC .3s ,15 m/sD .3s ,20 m/s变式7、一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为( )A .tan θB .2tan θC .1tan θD .12tan θ考点五 多个物体的平抛问题例11.如图所示,在同一竖直面内,小球a 、b 从高度不同的两点,分别以初速度v a 和v b 沿水平方向抛出,经过时间t a 和t b 后落到与两抛出点水平距离相等的P 点.若不计空气阻力,下列关系式正确的是( )A .t a >t b ,v a <v bB .t a >t b ,v a >v bC .t a <t b ,v a <v bD .t a <t b ,v a >v b 变式8、(多选)如图所示,在同一竖直平面内,距地面不同高度的地方,以不同的水平速度同时抛出两个小球.则两球( )A .一定不能在空中相遇B .抛出到落地的水平距离有可能相等C .落地时间可能相等D .抛出到落地的水平距离一定不相等考点六 平抛运动的两个推论a1.推论一:某时刻速度、位移与初速度方向的夹角α、θ的关系为tan α=2tan θ2.推论二:平抛运动的物体在任意时刻瞬时速度的反向延长线一定通过此时水平位移的中点 例12.如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上,物体与斜面接触时速度与水平方向的夹角φ满足( )A .tan φ=sin θB .tan φ=cos θC .tan φ=tan θD .tan φ=2tan θ变式9、如图所示,从倾角为θ的足够长的斜面上的A 点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v 1,球落到斜面上的瞬时速度方向与斜面夹角为α1,第二次初速度为v 2,球落到斜面上的瞬时速度方向与斜面夹角为α2,则( )A .当v 1>v 2时,α1>α2B .当v 1>v 2时,α1<α2C .α1、α2的关系与斜面倾角θ有关D .无论v 1、v 2关系如何,均有α1=α2变式10、在一斜面顶端,将甲、乙两个小球分别以v 和v2的速度沿同一方向水平抛出,两球都落在该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( ) A .2倍 B .4倍 C .6倍 D .8倍 考点七 平抛运动中的临界极值问题 1.特点(1)若题目中有“刚好”“恰好”“正好”等字眼,表明题述过程中存在临界点;(2)若题目中有“最大”“最小”“至多”“至少”“取值范围”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点. 2.求解思路(1)画出临界轨迹,找出临界状态对应的临界条件; (2)分解速度或位移; (3)列方程求解结果.例13.如图所示,水平屋顶高H=5m,围墙高h=3.2 m,围墙到房子的水平距离L=3m,围墙外马路宽x=10m,为使小球从屋顶水平飞出落在围墙外的马路上,求小球离开屋顶时的速度v的大小范围.(g取10 m/s2)变式11、一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m.一小球以水平速度v飞出,g取10 m/s2,欲打在第四级台阶上,则v的取值范围是()A. 6 m/s <v≤2 2 m/s B.2 2 m/s <v≤3.5 m/sC. 2 m/s<v< 6 m/s D.2 2 m/s<v< 6 m/s【能力展示】【小试牛刀】1.做平抛运动的物体,每秒的速度增量总是()A.大小相等,方向相同B.大小不等,方向不同C.大小相等,方向不同D.大小不等,方向相同2.在空中将一个小球水平抛出,不计空气阻力作用,则下列说法正确的是()A.不论抛出速度多大,抛出位置越高,飞得一定越远B.不论抛出速度多大,抛出位置越高,其飞行时间一定越长C.不论抛出位置多高,抛出速度越大的物体,其飞行时间一定越长D.不论抛出位置多高,抛出速度越大的物体,其水平位移一定越大3.从同一点O 抛出三个物体A 、B 、C ,做平抛运动的轨迹如图所示,则三个物体做平抛运动对应的初速度v A 、v B 、v C 的关系和三个物体做平抛运动对应的时间t A 、t B 、t C 的关系分别是( )A .v A >vB >vC t A >t B >t C B .v A =v B =v C t A =t B =t CC .v A <v B <v C t A >t B >t CD .v A >v B >v C t A <t B <t C4.(多选)在高度为h 的同一位置上向水平方向同时抛出两个小球甲和乙,若抛出时甲球的初速度大于乙球的初速度,则下列说法正确的是( )A .甲球落地时间小于乙球落地时间B .在空中飞行的任意时刻,甲球的速度总大于乙球的速度C .在飞行过程中的任一段时间内,甲球的水平位移总是大于乙球的水平位移D .若两球在飞行中遇到一堵竖直的墙,甲球击中墙的高度总是大于乙球击中墙的高度5.(多选)如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H 处,将球以初速度v 沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L ,重力加速度取g ,将球的运动视作平抛运动,下列表述正确的是( )A .球的初速度v 等于L g 2HB .球从击出至落地所用时间为2H g C .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关6.一个物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v ,那么它的运动时间是( )A .v -v 0gB .v +v 0gC .v 2-v 20gD .v 2+v 20gA OBC7.物体做平抛运动时,它的速度方向和水平方向间的夹角θ的正切tan θ随时间t 变化的图象是图中的( )8.如图所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd .从a 点正上方的O 点以速度v 水平抛出一个小球,它落在斜面上b 点.若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( )A .c 点B .b 与c 之间某一点C .d 点D .c 与d 之间某一点9.战斗机在某一高度匀速飞行,发现目标后在离目标水平距离为s 处投弹,可以准确命中目标,现战斗机飞行高度减半,速度大小减为原来的23,要仍能命中目标,则战斗机投弹时到目标的水平距离应为(不考虑空气阻力)( )A .13sB .23sC .23sD .223s 10.平抛物体的运动规律可以概括为两点:(1)水平方向做匀速运动;(2)竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验:如图所示,用小锤打击弹性金属片,A 球就水平飞出,同时B 球被松开,做自由落体运动,两球同时落到地面,这个实验 ( )A .只能说明上述规律中的第(1)条B .只能说明上述规律中的第(2)条C .不能说明上述规律中的任何一条D .能同时说明上述两条规律tA B tC tD t11.如图所示,以v0=10 m/s 的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角θ为45°的斜面上(g取10 m/s2),可知物体完成这段飞行的时间是()3s B. 3 s C.1 s D.2 s 12.(多选)刀削面是同学们喜欢的面食之一,因其风味独特,驰名中外.刀削面全凭刀削,因此得名.如图所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便飞向锅里,若面团到锅的上沿的竖直距离为0.8 m,最近的水平距离为0.5 m,锅的半径为0.5 m.要想使削出的面片落入锅中,则面片的水平速度可以是下列选项中的(g=10 m/s2)()A.1 m/s B.2 m/s C.3 m/s D.4 m/s 【大显身手】13.(多选)甲、乙、丙三个小球分别位于如图所示的竖直平面内,甲、乙在同一条竖直线上,甲、丙在同一条水平线上,水平面上的P点在丙的正下方,在同一时刻甲、乙、丙开始运动,甲以初速度v0做平抛运动,乙以水平速度v0沿光滑水平面向右做匀速直线运动,丙做自由落体运动,则()A.若甲、乙、丙三球同时相遇,则一定发生在P点B.若甲、丙两球在空中相遇,此时乙球一定在P点C.若只有甲、乙两球在水平面上相遇,此时丙球还未着地D.无论初速度v0大小如何,甲、乙、丙三球一定会同时在P点相遇14.(多选)枪管AB对准小球C,A、B、C在同一水平面上,如图所示,枪管和小球距地面的高度为45m.已知BC=100m,当子弹射出枪口时,C球开始自由下落,若子弹射出枪口时的速度v0=50 m/s,子弹恰好能在C下落20m时击中它.现其他条件不变,只改变子弹射出枪口时的速度v0,不计空气阻力,g取10 m/s2.则()A.v0=60 m/s时,子弹能击中小球B.v0=40 m/s时,子弹能击中小球C.v0=30 m/s时,子弹能击中小球D.以上的三个v0值,子弹可能都不能击中小球15.如图所示,一架在2 000 m高空以200 m/s的速度水平匀速飞行的轰炸机,要用两枚炸弹分别炸山脚和山顶的目标点A、B.已知山高720 m,山脚与山顶的水平距离为1 000 m,若不计空气阻力,g取10 m/s2,则投弹的时间间隔应为()A.4 s B.5 s C.9 s D.16 s 16.如图所示,相对的两个斜面,倾角分别为37°和53°,在顶点把两个小球A、B以同样大小的初速度分别向左、向右水平抛出,两个小球最终都落在斜面上.若不计空气阻力,sin 37°=0.6,cos 37°=0.8,sin 53°=0.8,cos 53°=0.6,则该过程中A、B两个小球运动时间之比为()A.1∶1 B.4∶3 C.16∶9 D.9∶16 17.如图所示,在距地面2l高空A处以水平初速度v0=gl投掷飞镖,在与A点水平距离为l的水平地面上的B点有一个气球,选择适当时机让气球以速度v0=gl匀速上升,在升空过程中被飞镖击中.飞镖在飞行过程中受到的空气阻力不计,在计算过程中可将飞镖和气球视为质点,已知重力加速度为g.试求:(1)飞镖是以多大的速度击中气球的?(2)掷飞镖和放气球两个动作之间的时间间隔Δt应为多少?18.如图所示,女排比赛时,排球场总长为18 m,设球网高为2 m,运动员站在网前3 m处正对球网跳起将球水平击出.若击球的高度为2.5 m,为使球既不触网又不越界,求球的速度范围.(不计空气阻力,g取10 m/s2)第2讲 平抛运动答案例1.AC 例2.BD 例3.B 例4.BC 变式1、D例5.2000m 变式2、800m 变式3、(1)3 s (2)30 m (3)20 m 例6.(1) 3 s (2)15m (3)10 3 m 变式4、CD 变式5、ABC例7.A 例8.(1)10 m/s 2)15 m 3)10 3 m 变式6、cos θgL 2sin θ例9.(1)gv 3320(2)g v 3420 例10.A 变式7、D 例11.A 变式8、AB 例12.D 变式9、D 变式10、A 例13.5 m/s≤v ≤13 m/s 变式11、A【能力展示】1.A 2.B 3.C 4.BCD 5.AB 6.C 7.C 8.B 9.C 10.B11.C 12.BC 13.AB 14.AB 15.C 16.D17.答案:(1)2gl (2)12l g解析:(1)飞镖A 被投掷后做平抛运动.从掷出飞镖到击中气球,经过时间t 1=l v 0=l g 此时飞镖在竖直方向上的分速度v y =gt 1=gl故此时飞镖的速度大小v =v 20+v 2y =2gl (2)飞镖从掷出到击中气球过程中下降的高度h 1=12gt 21=l 2气球从被释放到被击中过程中上升的高度h 2=2l -h 1=3l 2气球的上升时间t 2=h 2v 0=3l 2v 0=32l g可见,t 2>t 1,所以应先释放气球.释放气球与掷飞镖之间的时间间隔Δt =t 2-t 1=12l g18.310 m/s<v 0≤122m/s。
【物理一轮】2021高中物理一轮复习学案--第四章 第2讲 平抛运动

第2讲平抛运动ZHI SHI SHU LI ZI CE GONG GU知识梳理·自测巩固知识点1 平抛运动1.定义:以一定的初速度沿水平方向抛出的物体只在__重力__作用下的运动。
2.性质:平抛运动是加速度为g的__匀变速__曲线运动,其运动轨迹是__抛物线__。
3.平抛运动的条件:(1)v≠0,沿__水平方向__;(2)只受__重力__作用。
4.研究方法:平抛运动通常可以分解为水平方向的__匀速直线__运动和竖直方向的__自由落体__运动。
5.基本规律:以抛出点为坐标原点,水平初速度v方向为x轴正方向,竖直向下的方向为y轴正方向,建立如图所示的坐标系,在该坐标系下,对任一时刻t,有:(1)位移:分位移x=__v0t__;y=__12gt2__合位移x合=x2+y2=__(v0t)2+(12gt2)2__,tan φ=__gt2v__φ为合位移与x轴的夹角。
(2)速度:分速度vx =__v__;vy=__gt__合速度v=v2x +v2y=v2+(gt)2,tan θ=__gtv__θ为合速度v与x轴的夹角。
思考:上图中位移与水平方向夹角φ与速度与水平方向夹角θ相等吗?请推导出它们之间关系式。
[答案]不相等。
θ>φ。
tan θ=2tan φ。
知识点2 斜抛运动1.定义:将物体以初速度v沿__斜向上方__或__斜向下方__抛出,物体只在__重力__作用下的运动。
2.性质:加速度为__g__的匀变速曲线运动,轨迹是__抛物线__。
3.研究方法:斜抛运动可以看作水平方向的__匀速直线__运动和竖直方向的__匀变速直线__运动的合运动。
思维诊断:(1)以一定的初速度水平抛出的物体的运动是平抛运动。
( ×)(2)平抛运动的轨迹是抛物线,速度方向时刻变化,加速度方向也可能时刻变化。
( ×)(3)无论初速度是斜向上方还是斜向下方的斜抛运动都是匀变速曲线运动。
( √)(4)做平抛运动的物体质量越大,水平位移越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平 抛 运 动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下所做的运动。
2.性质:加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线。
3.基本规律:以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t 。
(2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2。
(3)合速度:v =v 2x +v 2y =v 20+g 2t 2,方向与水平方向夹角为θ,则tan θ=v y v x =gt v 0。
(4)合位移:s =x 2+y 2=v 20t 2+14g 2t 4,方向与水平方向夹角为α,tan α=y x =gt 2v 0。
(5)轨迹方程:y =g2v 20x 2。
1.平抛运动中的四个具体问题 (1)飞行时间:由t =2hg知,时间取决于下落高度h ,与初速度v 0无关。
(2)水平射程:x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关。
(3)落地速度:v =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向间的夹角,有tan θ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关。
(4)速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g ·Δt 相同,方向恒为竖直向下,如图4-2-1所示。
图4-2-12.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图4-2-2中A 点和B 点所示。
图4-2-2(2)做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其速度方向与水平方向的夹角为θ,位移与水平方向的夹角为α,则tan θ=2tan α。
图4-2-31.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地。
若不计空气阻力,则( )A .垒球落地时瞬时速度的大小仅由初速度决定B .垒球落地时瞬时速度的方向仅由击球点离地面的高度决定C .垒球在空中运动的水平位移仅由初速度决定D .垒球在空中运动的时间仅由击球点离地面的高度决定解析:选D 垒球做平抛运动,水平方向做匀速直线运动,由位移x =v 0t 知垒球在空中运动的水平位移由初速度和运动的时间决定,C 错;竖直方向做自由落体运动,由h =12gt 2,得在空中运动的时间t =2hg,故D 对;由平行四边形定则得落地时的瞬时速度的大小为v =v 20+(gt )2,tan θ=gtv 0,其大小和方向由初速度和运动时间t 共同决定,A 、B 错。
斜抛运动1.定义:将物体以速度v斜向上或斜向下抛出,物体只在重力作用下的运动。
2.性质:加速度为重力加速度g的匀变速曲线运动,运动轨迹是抛物线。
1.斜抛运动的研究方法以斜上抛为例,如图4-2-4所示:图4-2-4(1)水平方向:v0x=v0cos θ,F合x=0(2)竖直方向:v0y=v0sin θ,F合y=mg2.特点斜抛运动是水平方向的匀速直线运动和竖直方向的竖直抛体运动的合运动。
2.如图4-2-5所示,将一篮球从地面上方B点斜向上抛出,刚好垂直击中篮板上A 点,不计空气阻力。
若抛射点B向篮板方向移动一小段距离,仍使抛出的篮球垂直击中A 点,则可行的是()图4-2-5A.增大抛出速度v0,同时减小抛射角θB.减小抛出速度v0,同时减小抛射角θC.增大抛射角θ,同时减小抛出速度v0D.增大抛射角θ,同时增大抛出速度v0解析:选C把斜抛运动分解成水平方向的匀速直线运动和竖直方向的竖直上抛运动。
若抛射点B向篮板方向移动一小段距离,将一篮球从地面上方B点斜向上抛出,选项可行的是增大抛射角,同时减小抛出速度,才能击中A点。
平抛运动的基本规律[命题分析] 本考点属于高考中的重要考点,几乎在每年的高考中都被考查到,考查的题型有选择、计算等。
[例1] 如图4-2-6所示,一小球自平台上水平抛出,恰好落在临近平台的一倾角为α=53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h =0.8 m ,重力加速度g =10 m/s 2,sin 53°=0.8,cos 53°=0.6,求:图4-2-6(1)小球水平抛出的初速度v 0是多少? (2)斜面顶端与平台边缘的水平距离x 是多少?(3)若斜面顶端高H =20.8 m ,则小球离开平台后经多长时间t 到达斜面底端? [思维流程]第一步:抓信息关键点关键点信息获取(1)恰好落在斜面顶端 平抛运动过程中的竖直高度和水平位移(2)并刚好沿光滑斜面下滑小球刚到达斜面顶端时速度方向沿斜面方向;小球在斜面上运动时不受摩擦力第二步:找解题突破口(1)已知平抛运动的竖直位移h ,利用公式v 2=2gh 可求出竖直速度。
由于合速度沿斜面方向,利用几何关系,可求出水平速度。
(2)利用公式h =12gt 2可求出t ,再利用x =v 0t 可求出水平位移。
(3)小球在斜面上做匀变速直线运动,利用匀变速直线运动规律可求出到达斜面底端的时间。
第三步:条理作答[解析] (1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以,v y =v 0tan 53°,v 2y =2gh代入数据,得v y =4 m/s ,v 0=3 m/s 。
(2)由v y =gt 1得:t 1=0.4 s x =v 0t 1=3×0.4 m =1.2 m 。
(3)小球沿斜面做匀加速直线运动的加速度 a =mg sin 53°m=8 m/s 2在斜面上的初速度v =v 20+v 2y =5 m/sH sin 53°=v t 2+12at 22代入数据,整理得:4t 22+5t 2-26=0解得t 2=2 s 或t 2=-134 s(不合题意舍去)。
所以t =t 1+t 2=2.4 s 。
[答案] (1)3 m/s (2)1.2 m (3)2.4 s ———————————————————(1)解答平抛运动的基本方法是运动的合成与分解,即沿水平和竖直两个方向将运动正交分解。
(2)对于临界问题,解答的关键是找出临界点,如在本题中,临界点是小球恰好到达斜面顶端的速度。
——————————————————————————————————————[变式训练]1.(2011·海南高考)如图4-2-7,水平地面上有一个坑,其竖直截面为半圆,ab 为沿水平方向的直径。
若在a 点以初速度v 0沿ab 方向抛出一小球,小球会击中坑壁上的c 点。
已知c 点与水平地面的距离为圆半径的一半,求圆的半径。
图4-2-7解析: 小球做平抛运动,设圆的半径为R ,由题意得θ=30°,水平方向有:R +R cos 30°=v 0t① 竖直方向有:R sin 30°=12gt 2②由①和②两式解得:R =4(2-3)2v 20g 。
答案:4(2-3)2v 20g类平抛运动问题[命题分析] 类平抛运动在高考中常被考查到,特别是带电粒子在电场中偏转时的类平抛运动考查到的概率很大,难度一般为中等。
[例2] 质量为m 的飞机以水平初速度v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力)。
今测得当飞机在水平方向的位移为l 时,它的上升高度为h ,如图4-2-8所示,求:图4-2-8(1)飞机受到的升力大小; (2)上升至h 高度时飞机的速度。
[解析](1)飞机水平方向速度不变,则有l =v 0t 竖直方向上飞机加速度恒定,则有h =12at 2联立得a =2h l 2v 2,根据牛顿第二定律F -mg =ma ,得飞机受到的升力F =mg +ma =mg (1+2h gl 2v 2) (2)由题意将此运动分解为水平方向速度为v 0的匀速直线运动,l =v 0t ;竖直方向为初速度为0,加速度a =2hl 2v 20的匀加速直线运动。
上升到h 高度其竖直速度 v y =2ah =2·2h v 20l 2·h =2h v 0l所以上升至h 高度时其速度 v =v 20+v 2y=v 0ll 2+4h 2如图所示,tan θ=v y v 0=2hl ,方向与v 0成θ角,θ=arctan 2hl。
[答案] (1)mg (1+2h gl 2v 20) (2)v 0l l 2+4h 2,方向与v 0成θ角,θ=arctan 2hl ———————————————————类平抛运动的求解方法(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性。
(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向列方程求解。
——————————————————————————————————————[变式训练]2.如图4-2-9所示的光滑斜面长为l ,宽为b ,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P 水平射入,恰好从底端Q 点离开斜面,试求:图4-2-9(1)物块由P 运动到Q 所用的时间t ; (2)物块由P 点水平入射时的初速度v 0; (3)物块离开Q 点时速度的大小v 。
解析: (1)物块沿水平方向匀速运动,b =v 0t ;沿斜面向下的方向为初速度为零的匀加速运动,设加速度为a ,则有mg sin θ=ma ,l =12at 2联立解得t =2lg sin θ。
(2)由(1)可得v 0=bt=bg sin θ2l。
(3)物块到达Q 点的速度大小v =v 20+(at )2结合(1)(2)解得v=(b2+4l2)g sin θ2l。
答案:(1)2lg sin θ(2)bg sin θ2l(3) (b2+4l2)g sin θ2l万能模型——平抛与斜面模型1.模型特点平抛运动与斜面结合的问题,一般是研究物体从斜面顶端平抛到落回斜面的运动过程,解决这类问题一般仍是在水平和竖直方向上分解。
求解的关键在于深刻理解通过与斜面的关联而给出的隐含条件。
2.特殊状态该模型最重要的状态是物体落回斜面和速度与斜面平行两个时刻的状态,这两个状态典型的运动特征如下:(1)从斜面开始平抛并落回斜面的时刻:①全过程位移的方向沿斜面方向,即竖直位移与水平位移之比等于斜面倾角的正切。