有机波谱解析

合集下载

(波普解析)有机化合物波谱解析

(波普解析)有机化合物波谱解析
红外光区则多用μm为单位。 波数, 单位为cm-1
根据量子理论,光的能量E与频率 成正比,和波长 成反比。
E =h=hC/=hc
20
第一节 吸收光谱的基础知识
紫外-可见光谱
因真空紫外区(100~200nm)的辐射易为空气中的氧 气和氮气所吸收,对化合物的结构测定并无多大帮助, 所以在有机结构分析上应用不大。普通紫外光区及可见 光区空气无吸收,所以在有机结构分析中最为有用。
• 吸收光谱特征: 吸收峰→λmax 吸收谷→λmin 肩峰→λsh 末端吸收
43
(2)数据表示法
例如λ 溶m剂a2x 37nm(ε104) 或λ 2溶m3剂a7xnm(lgε4.0)
常用术语
生色团(发色团):分子结构中含有π电子的基团 产生π→ π* 跃迁和(或)n→ π*跃迁 跃迁,E较低
例: C=C;C=O;C=N;—N=N— ; —NO2
13
总论
3、核磁共振谱(NMR spectroscopy,NMR)
O
B
AC
O
OO
14
总论
4、质谱(mass spectra:MS) 质谱中不伴随电磁辐射的吸收或发射,因此不属于光谱。 根据分子离子或碎片离子进行结构推导,属于能量谱 给出分子量(M+),计算分子式(HR-MS); MS图一致(同一型号仪器,同一条件)一般为同一化合物; 碎片峰: 给出基团或片段信息; EI-MS: 糖苷不能给出分子离子峰; FD-MS,FAB-MS,ESI-MS 用于糖苷、肽、 核酸类,可 定分子量。
36
(4) 原子上未成键电子对形成的分子轨道
在分子轨道中,未与另一原子轨道相互起作用的原子轨道(即 未成键电子对所占有的轨道),在分子轨道能级图上的能量大 小等同于其在原子轨道中的能量,这种类型的分子轨道称为 非成键(non-bonding)分子轨道,亦称n轨道。n轨道是非成 键的分子轨道,所以没有反键轨道。

有机化合物波谱解析

有机化合物波谱解析

仪器分析:测定复杂结构的化合物 样品用量少
• 四谱同时用或联用技术 • 四谱比较: • 灵敏度:MS>UV>IR>1HNMR>13CNMR
MS: 微克级
UV: ppb级
IR:毫克级(可微克级,FTIR)
1HNMR:0.5mg }可回收
13CNMR: 0.5mg
四谱的信息量比较:
1HNMR及13CNMR
loge2
max1
max2
/nm
不论纵坐标选用什么单位,同一化合物的最大吸收对应 的波长(λmax)不变。
四、朗伯-比耳定律(Lambert—Beer定律)
样品的吸光度A与浓度之间的关系为:
A= lc=lgI0/I=lgT-1 式中T—透射率(或透射比);
I0——入射光强度, I——透过光强度; c——被测液浓度, l——被测液厚度,亦称样品槽厚度。 ——吸光系数 ε——摩尔吸光系数(L/mol·cm) E1%1cm ——百分吸光系数,亦称比吸光系数
液浓度为1g/100ml(1%),液层厚度为1cm时,溶液的吸光 度。
3.两种表示方法的换算关系
设吸光物质的摩尔质量为M g/mol ,则
1mol/L=M g/1000ml=M/10·1g/100ml
∴ ε=M/10·E1%1cm
通过紫外光谱测定获得吸收度或透光率,使用 Beer-Lambert定律便可计算ε值。
有机化合物波谱解析
• 概论
色谱分析:GC,HPLC,TLC 与裂解---色谱成分分析
波谱分析:UV,IR,NMR,MS(有机)----结构分析
• 色谱分析:具有高效分离能力可以把复杂有机混合物分离 成单一的纯组分
• 波谱分析:纯样品进行结构分析,特点是:微量化、测 量快、结果准确、重复性好。除MS之外,可回收样品

有机化合物波谱分析

有机化合物波谱分析

有机化合物波谱分析有机化合物波谱分析是一种重要的手段,可用于确定有机物的分子结构和功能基团。

其中,核磁共振波谱(NMR)和红外光谱(IR)是两种常用的波谱技术。

本文将重点介绍这两种波谱分析技术的基本原理、应用和解读方法。

核磁共振波谱(NMR)是一种基于核自旋的波谱分析方法。

它通过测量核自旋与外加磁场相互作用导致的能量变化来获得信息。

核磁共振波谱图通常由若干个特征峰组成,每个峰对应于一种不同类型的核。

峰的位置称为化学位移,可以通过参考物质(如四氯化硅)来标定。

峰的形状和强度可以提供有关分子结构和相互作用的信息。

核磁共振波谱提供了关于有机分子的碳氢骨架以及官能团、取代基等信息,因此在有机化学和药物化学领域有广泛应用。

红外光谱(IR)是一种基于分子振动的波谱分析方法。

它通过测量物质吸收红外辐射的能量来获得信息。

由于不同分子具有不同的振动模式和结构,它们吸收红外辐射的方式也不同。

红外光谱图通常由一系列特征峰组成,峰的位置称为波数,可以用来标识不同的官能团和化学键。

峰的强度和形状可以提供关于分子的结构和取向的信息。

红外光谱在有机化学、聚合物化学和无机化学等领域都有广泛的应用。

在进行有机化合物波谱分析时,需要先对样品进行样品制备。

核磁共振波谱通常需要溶解样品,然后将溶液转移到核磁共振管中进行测量。

红外光谱则可以对固体、液体和气体样品进行测量,通常需要将样品制备成固体片或涂在透明载体上。

波谱仪器通常会提供相应的样品制备方法和参数设置。

在分析核磁共振波谱和红外光谱时,需要注意以下几个方面。

首先,对于核磁共振波谱,要正确解读峰的化学位移。

化学位移受到许多因素的影响,如官能团、电子效应、取代基等。

因此,需要结合文献和经验来确定不同类型核的化学位移范围。

其次,对于红外光谱,要正确解读峰的波数。

不同的官能团和化学键都有特定的波数范围,可以用来确定它们的存在。

最后,对于波谱图的解读,需要综合考虑各种信息,如位置、形状、强度和相对强度等。

有机波谱解析-第一章 绪论

有机波谱解析-第一章 绪论

Ω =4r-s
式中:r为稠环芳烃的环数;s为共用边数目。
有机波谱分析
第五节 波谱实验样品的准备
1.样品量 紫外:Mr×10-6—Mr×10-5;红外:1-5mg;核磁 共振:2-5mg;质谱:10-2。 2.样品纯度 色谱-质谱、X-射线粉末可以是混合物;其 它大多数要求是纯净物。 准备足够的量;足够的纯度;制样处理。
有机波谱分析
教材:
《波谱分析教程》,邓芹英、刘岚等,科学出版社
参考书目:
《有机仪器分析》,陈贻文、李庆宏等,湖南大学出版社 《有机化合物的光谱鉴定》,唐恢同,北京大学出版社 《有机波谱分析》,孟令芝,何永炳,武汉大学出版社 《有机波谱分析》,陈洁,宋启泽,北京理工大学出版社 等等
有机波谱分析
与化学分析方法相比,现代仪器分析法具有较 多优点:省时、省力、省钱、快速、准确,试剂耗 量是微克级的,甚至更少。它不仅可以研究分子的 结构,而且还能探索到分子间各种集聚态的结构构 型和构象的状况,对人类所面临的生命科学、材料 科学的发展,是极其重要的。
紫 外 光 谱 UV 吸收光谱 红 外 光 谱 IR 核磁共振谱 常用的波谱法 NMR
有机波谱析
(2)20世纪中期以后,以仪器(光谱)为主,化学分析为 辅分析阶段 首先,紫外可见光谱仪和红外光谱仪进入实验室
N H3CO H O C O
N H H H H H H3COOC H H3CO
OCH3 OCH3
H3CO
利血平 Reserpine
1952年,离析提纯 Nears通过紫外光谱解析, 确定主要结构; 1956年,Woodward等全合成;
有机波谱分析
有机波谱解析
雷 萌
有机波谱分析
主要内容 第一章 绪论 第二章 紫外光谱 第三章 红外光谱 第四章 核磁共振谱 第五章 质谱 第六章 综合图谱解析

有机波谱知识点总结

有机波谱知识点总结

有机波谱知识点总结波谱是化学分析中常用的一种手段,通过测定分子在电磁波中的吸收、散射或发射,可以了解分子的结构和性质。

有机波谱是指在有机化合物中应用的波谱分析方法,主要包括红外光谱、紫外-可见光谱、质谱和核磁共振谱等。

本文将针对有机波谱的各种知识点进行总结,包括波谱的基本原理、各种波谱的特点和应用、波谱分析中需要注意的问题等内容。

一、红外光谱1.基本原理红外光谱是利用物质对红外辐射的吸收和散射的规律来研究物质结构和性质的一种分析方法。

红外光谱的基本原理是在物质中分子或原子的振动和转动会产生特定的频率的红外光吸收,这样可以用红外光谱来检验物质的结构和成分。

2.特点和应用红外光谱对于分析有机化合物的结构和功能团具有非常重要的作用。

红外光谱具有分辨率高、灵敏度强、操作简便等特点,广泛应用于聚合物材料、药物分析、食品检测等领域。

3.需要注意的问题在进行红外光谱分析时,需要注意样品的处理、仪器的校准和数据的解释等问题。

此外,还需要对不同功能团的吸收峰进行了解,进行光谱图谱的解读。

二、紫外-可见光谱1.基本原理紫外-可见光谱是利用物质对紫外光和可见光的吸收的规律来研究物质结构和特性的一种分析方法。

紫外-可见光谱的基本原理是分子在吸收紫外-可见光时,电子跃迁至较高的能级,产生吸收峰,可以由此推测分子的结构和键合的性质。

2.特点和应用紫外-可见光谱对于分析有机化合物的共轭结构和电子转移能力有很大的作用。

紫外-可见光谱具有快速、敏感、定量等特点,广泛应用于有机合成、药物分析、环境监测等领域。

3.需要注意的问题在进行紫外-可见光谱分析时,需要注意样品的准备、仪器的校准和光谱图谱的解释。

此外,还需要了解分子在吸收紫外-可见光时的机理和特性,进行光谱图谱的解读。

三、质谱1.基本原理质谱是利用物质在电子轰击下的离子化和质子转移等规律来研究物质结构和成分的一种分析方法。

质谱的基本原理是将物质离子化后,通过质子转移和碎裂等反应产生一系列离子,再根据其质荷比来推测物质的结构和成分。

有机波谱解析红外光谱课件

有机波谱解析红外光谱课件
有机波谱解析红外光谱课件
(3) 一些基团的特征频率(cm-1)
基团
A.烷基 C-H (伸缩)
(变形) B.烯烃
C=C-H (伸缩) C=C (伸缩) C.炔烃 ≡C-H (伸缩) C≡C (伸缩) D.芳烃 Ar-H (伸缩) C=C (骨架伸缩) E.醇、酚、羧酸 OH (醇、酚) (伸缩) OH (羧酸) (伸缩) F.醛、酮、酯、羧 C=O (伸缩) G.胺 N-H (伸缩) H.腈 C≡N (伸缩)
[(2 8 + 2) - 8 ] 2 = 5
可能的结构:
O CHO
有机波谱解析红外光谱课件
谱图解析的一般步骤
• 谱图解析一般先从官能团区的最强谱带开始,推 测未知物可能含有的基团,判断不可能含有的基 团.再从指纹区的谱带进一步验证,找出可能含 有基团的相关峰,用一组相关峰确认一个基团的 存在.对于简单化合物,确认几个基团之后,便 可初步确定分子结构,然后查对标准谱图核实。
(iv) 试样的浓度和测试厚度应选择适当,以使光谱图中 的大多数吸收峰的透射比处于10%~80%范围内.
有机波谱解析红外光谱课件
液体和溶液试样
(1) 液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中, 液层厚度一般为0.01~1 mm.
(2) 液膜法 沸点较高的试样,直接直接滴在两片盐片之间,形成 液膜。
[(2 14 + 2) - 14 ] 2 = 8
有机波谱解析红外光谱课件
• 可能的结构: 一个苯环的不饱和度为4 (1个环,3个双键) .化合物的 不饱和度大于4,一般就要考虑它的分子中是否有苯环 存在. 推测化合物A的结构为:
有机波谱解析红外光谱课件
例1. 计算化合物A (C8H8O)的不饱和度

有机化学波谱分析

有机化学波谱分析
,形成质谱图。
质谱的解析方法
谱图解析
01
根据质谱峰的位置和强度,确定有机分子的分子量和结构信息。
同位素峰分析
02
利用同位素峰的强度比推断有机分子的元素组成。
裂解模式分析
03
研究有机分子在质谱仪中的裂解行为,推断有机分子的结构特
征。
质谱在有机化学中的应用
有机分子鉴定
通过比较标准谱图和实验谱图,确定有机分子的 化学结构。
通过自动化和智能化的技术手段,实 现波谱分析与其他分析方法的快速、 高效联用,提高分析效率,减少人为 误差。
波谱分析在有机化学中的新应用
新材料表征
随着新材料研究的不断深入,波谱分析在新型有机材料如高 分子聚合物、纳米材料等的表征中发挥越来越重要的作用。
生物大分子研究
利用波谱分析技术,研究生物大分子如蛋白质、核酸等的结 构和功能,有助于深入了解生物体系的复杂性和相互作用的 机制。
通过有机化学波谱分析,可以确定有机化合物的分子量、官能团、化学键等结构信息,有助于深入了解 有机化合物的性质和反应机理。
有机化学波谱分析还可以用于有机化合物的定性和定量分析,为有机化合物的合成、分离、纯化等提供 有力支持。
有机化学波谱分析的发展趋势
随着科技的不断进步,有机化学波谱分析技术也在不 断发展,新的技术和方法不断涌现。
THANKS
感谢观看
高灵敏度检测
利用新型的信号处理技术和高精度的 检测设备,提高波谱分析的灵敏度和 分辨率,有助于更准确地鉴定有机化 合物的结构和性质。
波谱分析与其他分析方法的联用
联用技术
将波谱分析与其他分析方法如色谱、 质谱、核磁共振等联用,可以实现更 全面、准确的分析,提高复杂有机混 合物的分离和鉴定能力。

有机波谱解析课件核磁共振碳谱

有机波谱解析课件核磁共振碳谱
13C NMR of off-resonance decoupling for compound A
首先通过1H NMR确定H3和H4(易识别),然后分别选择照射H3和H4, 13C NMR中相应的C3和C4变为单峰.
C3
H3 照射 43
5
2
O CHO
-CHO
180 160 140 120 100
80
60
40
20
(b)
180 160 140
120 100
80
60
40
20
例2:某化合物分子组成为C8H5NO2,其宽带去偶13C NMR如下所 示.另外,信号1,2,5,6的偏共振去偶为单峰, 3,4为双峰.
试推测该化合物的结构.
34
1
2
56
O HO C
CN
DMSO-d6
180
160
140
120
诱导效应对化学位移的影响
OC CC
O
150 140 130 120 110 100 90 80 70 60 50
d (ppm)
3. 重氢溶剂的化学位移和峰型
重氢的自旋量子数:I = 1 重氢偶合给出的分裂信号(13C):2In + 1 = 2n + 1 (n 重氢数)
Solvent
CDCl3 CD2Cl2 C6D6 CD3OD CD3CN Aceton-d6 DMSO-d6 DMF-d7 Pyridine-d5 CD3COOD
120
100
80
60
40
20
0
PPM
宽带去偶13C谱的优缺点
优点:减少谱线的重叠,谱图清晰、明了 缺点:失去许多分子结构信息
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机波谱解析
有机波谱解析是一门利用谱学技术来解析有机化合物结构的科学。

其中,质谱、红外光谱、核磁共振氢谱和核磁共振碳谱是最常用的几种方法。

本文将分别介绍这几种方法的基本原理和解析方法。

1.质谱解析
质谱是一种通过离子化样品并测量其质量-电荷比来分析样品分子质量的谱学技术。

在质谱解析中,样品通常经过离子化(如电子轰击、化学电离等),生成不同质荷比的离子。

然后,这些离子根据其质量-电荷比被分离和检测。

通过测量不同质荷比的离子数量,可以得到样品的分子质量和分子结构信息。

质谱解析的关键步骤包括:
(1)选择合适的离子化方法,以产生具有代表性的离子;
(2)选择合适的分离和检测方法,以获得高质量的质谱数据;
(3)通过比对已知的分子质量标准,确定样品的分子质量;
(4)通过解析样品的质谱数据,推断样品的分子结构。

2.红外光谱解析
红外光谱是一种通过测量样品在红外光区的吸收或透射光强度来分析样品分子结构和化学键信息的谱学技术。

在红外光谱解析中,样品与一束红外光相互作用,不同的化学键和官能团会吸收不同波长的红外光。

通过测量样品在不同波长下的吸收或透射光强度,可以获得样品的红外光谱。

红外光谱解析的关键步骤包括:
(1)选择合适的样品制备方法,以获得均匀、透明的样品;
(2)选择合适的扫描范围和分辨率,以获得高质量的红外光谱数据;
(3)通过比对已知的红外光谱标准,确定样品的化学键和官能团;
(4)通过解析样品的红外光谱数据,推断样品的分子结构和化学键信息。

3.核磁共振氢谱解析
核磁共振氢谱是一种通过测量样品中氢原子核的自旋磁矩来分析样品分子结构的技术。

在核磁共振氢谱解析中,样品被置于强磁场中,氢原子核在磁场中发生自旋并产生磁矩。

通过施加射频脉冲,氢原子核发生共振并释放出射频信号。

通过测量这些信号的频率和强度,可以获得样品的核磁共振氢谱。

核磁共振氢谱解析的关键步骤包括:
(1)选择合适的溶剂和样品浓度,以获得高质量的核磁共振氢谱数据;
(2)选择合适的射频脉冲序列和扫描参数,以获得清晰的核磁共振信号;(3)通过比对已知的核磁共振氢谱标准,确定样品中氢原子的化学环境;
(4)通过解析样品的核磁共振氢谱数据,推断样品的分子结构和化学键信息。

4.核磁共振碳谱解析
核磁共振碳谱与核磁共振氢谱类似,但它是用来分析样品中碳原子核的自旋磁矩。

在核磁共振碳谱解析中,样品中的碳原子被置于强磁场中,碳原子核发生自旋并产生磁矩。

通过施加射频脉冲,碳原子核发生共振并释放出射频信号。

通过测量这些信号的频率和强度,可以获得样品的核磁共振碳谱。

核磁共振碳谱解析的关键步骤包括:
(1)选择合适的溶剂和样品浓度,以获得高质量的核磁共振碳谱数据;
(2)选择合适的射频脉冲序列和扫描参数,以获得清晰的核磁共振信号;
(3)通过比对已知的核磁共振碳谱标准,确定样品中碳原子的化学环境;。

相关文档
最新文档