核反应堆动力特性及稳定性1

核反应堆动力特性及稳定性1
核反应堆动力特性及稳定性1

第四代核反应堆动力特性及稳定性分析

摘要

引言

动态特性和稳定性是工程装备的主要技术性能,他们反映了经济性、安全性和可操作性。许多系统的具有动态的表现。虽然有一些系统在操作在静态模式下,但它们在某一瞬态时刻具有动态的行为。如核反应堆,在整个寿命期内,它是工作在稳态条件下。但是当受到一些扰动时,反应堆就会出现一些瞬态的行为。为此,研究和理解它的一些动力学行为对安全分析和运行是非常有必要的。

稳定性是工程系统的另一个重要特性。顾名思义,它表征了系统的稳定度。如果一个系统受到外部扰动,系统应该返回到初始的稳定状态,也可以说是抗干扰性。相反地,不稳定的系统会产生一个偏离初始的状态。在一个既定的需求条件下进行优化设计的系统,系统稳定性要高。特别是在核反应堆中,如果不稳定性不能被控制和降低,最终会导致反应堆的失败。

因此分析和模拟反应堆的瞬态行为尤为重要。瞬态的行为通过时间尺度上的一些测量量来表征,通常是一个时间周期内一些瞬态参数的或参数发生一个重复振荡。该时间周期(时间尺度)远小于反应堆燃料循环时间,而远大于反应堆噪声变化的时间尺度。

反应堆瞬态行为研究主要是分析在外部扰动下,反应堆状态的瞬时变化,反应堆功率随冷却温度、注入堆芯的流量、控制棒移动造成反应性改变等的变化情况。

针对更洁净能源、核废料处理等提出的第四代核反应技术,虽然概念设计有多种,但其动态特性分析鲜有,本文在调研的基础上总结了能源的需求背景,第

四代核反应堆的设计背景以及一些对其特性进行分析和模拟的成果。

1、第四代核反应堆需求背景与发展

1.1 核电需求背景

随着人口的增长,能源需求也在不断增长。美国能源部统计能耗的增长率由20%(2010年)达到30%(2015年),电力储备能力、持续增长的能源危机是迫切需解决的问题。在美国,51%的电力靠煤炭资源,20%来自核动力,9%来自于水动力,2%来自于石油,15%源于天然气,3%来自于风能和太阳能。每种发电方式都有各自的优点和不足:煤炭发电成本较低,但是会对大气环境产生污染;天然气成本也较低,但供应波动较大。同时,燃烧气体也会产生污染;水动力不会有污染,但就地开发利用也会破坏生态环境;石油发电也易产生污染并依赖于国外供给;风能与太阳能无污染,能源无穷无尽,但是能量收集和储备“袖珍”,目前的技术不能解决所有的问题;核能不会污染,从经济上讲,在世界中核材料比较丰富,不需要国外供给,唯一的不足高含量的核废料需要仔细处理。总而言之,易处理、可持续、成本低、安全性好并能满足未来能源需求一种能源技术是世界科学所面临的一个课题,先进的核技术是目前有望实现这个目标的一个最好途径。

衡量一个国家发展的标准之一就是有没有干净、可持续能源供给于不断增长的人口,在过去的几年,裂变燃料主要的能源,占据总能耗的86%(2006年的统计)。据国际能源局预估,在今后的20多年内,裂变燃料能仍占据重要位置。对于大规模发电,环境的友好性、高能效、低成本以及可再生性是对能源技术发展的突出要求。基于此,核电仍发挥不可替代的作用。图1是不同国家核电的比率。

图1 不同国家核电所占的比重

核能被作为一种电力资源,同时也为可持续能源发展提供了一种途径。随着对核废物管理上逐步重视和发展,如果采取更先进的技术,来自核反应过程的废物产量将更少。目前,核反应堆的建设扩张主要集中在亚洲,共有30个反应堆在建或已运行,其中在建的16座在发展中国家。中国有4座而且计划在今后的十年中将建成20多座。印度在建的有7座,计划在2020年增长7倍的数量。日本、巴基斯坦和朝鲜计划持续扩展核动力。在亚太平洋区,越南计划在2015年开建第一座核反应堆,印度尼西亚计划在爪哇岛上建造2座1000兆瓦的反应堆,泰国和马来西亚也准备规划建设。综合考虑能源成本、发电、能量可靠性、环境污染以及更安全、先进核反应堆技术的发展,核动力仍是未来能源储备的最好选择。

1.2 先进核电技术的前景

成本是衡量一个系统运行最重要的指标之一。尽管核电站建造成本很高,但是换算到单位电力功率的成本远低于其他的方式。更重要的原因是核电成本稳定,而石油和天然气发电的成本逐年上升。

(a)不同技术成本随年代变化曲线(美国)(b)不同发电技术的成本

图1 不同发电技术的成本

从对环境的影响来说,燃烧化石燃料发电产生严重的污染,排放在空气中的灰烬、重材料的尘粒、二氧化碳、二氧化硫、氮的氧化物、甲烷等使得周围环境吸纳更多的热量,从而导致温室效应。在美国,每年有24000人死于石化燃料的污染。据估计一个1000 兆瓦媒电站放出的放射性物质是同等功率反应堆放出的100倍。环境保护协会人员调查发现,在生活在煤电站80公里人们每年累积0.03毫雷姆的辐射剂量,而在核反应堆周围仅有0.009毫雷姆。同烧煤发电和烧油发电不一样,核电站不会直接产生硫化物、氧化物和汞等致人伤命的物质。如果全世界16%的核电改成煤炭发电,每年释放1600百万吨二氧化碳和高于5百万吨的二氧化硫。尽管,由核电过程产生的放射性废物对生命是致命地而且危害周期很长,但通过合理的处理和隔绝是可以避免的。因此,发展更先进的核技术,研究高效的,对环境友好的核反应堆尤为重要。如目前研究的液态金属盐冷却反应堆,使用NaF-BeF2作为初始冷却剂,U-Zr-H为燃料。(1000 MW liquid salt cooled reactor was designed that is fullyenvironmental friendly and for that purpose,the reactor uses the binary salt NaF-BeF2 as the primary coolant and it uses U-Zr-H as fuel which are fully clean)。

2 第四代反应堆技术

2.1 反应堆动力学基本

通过改变核反应堆中子的变化来控制反应性和安全是核反应堆控制的基本机制。对于第四代核反应堆也不例外,其反应性的控制更稳定。在不同类型反应堆中,控制堆芯的方法有所不同。在第四代反应堆中,重粒子散射可以平稳反应堆反应过程。通过与电子散射作用,重粒子的速度和反应性得到控制。

在热中子反应堆设计中,共振吸收概率是一个重要因素,大部分中子经减速形成热能的过程中被束缚。在第四代核反应堆设计中,由诸多的方法调节堆芯反应过程,通过控制循环流速调节短期反应性,通过循环水流改变,反应性改变; 通过混合GdO2和UO2,通过控制燃料燃烧实现长期反应性调制。另一种方式通过重粒子与电子散射来调节。定义重粒子X 和电子y ,自由电子静止,假定反应过程的静止质量守恒, Q=0。

反冲电子从重粒子获得最大的能量为:

max M M ()4/e e E m E =

该能量足以是电子从原子中释放处理,并产生离子-电子对。如果重粒子为α,经碰撞从α粒子获得的能量很小。

计算机辅助测试PARR-1核反应堆,给出了反应随静态反应堆正周期关系以及到时方程:

611/i i T l t βρλ=++∑

式中,ρ为反应性,T 为反应堆周期,i β、i λ是第i 组缓发中子的比重和衰减常数。

图 PARR-1核反应堆反应性测试

在反应堆中,大部分中子被吸收慢化为热中子,一部分中子在被靶核的减速过程中在热中子区发生共振吸收。如果一个裂变中子没有被共振吸收的概率为P ,则

/M aM F F M V N V I P e ξ-∑=

中子的寿命周期为秒时间尺度,在一个时间周期内热中子的变化为()eff k n t (-1), ()n t 为t 时刻的中子密度,则

'

d ()()d eff k n t n t t l (-1)= (1) 上述一阶差分方程得到:

'

()(0)exp[]eff k n t n t l =(-1) (2) (0)n 是t =0时刻的中子密度。eff k ≠1时,中子数密度随时间成指数变化。在一个均匀的热反应堆中,热通量不随位置改变,时域上热中子扩散方程为:

d d t a T n s t φ-=∑ (3)

t s 转化为热中子的份额,n 为热中子的密度。考虑多组缓发中子,更完整的中

子数密度的变化率公式为:

61

d (1)d i i a T i n k C t εβλΦ==-+∑∑ (4) 解为:0p t l n n

e e ρβλρβρβββρβρ--=---,/(1)p T l k α=-

结构动力稳定性的分析方法与进展_何金龙

结构动力稳定性的分析方法与进展 何金龙1,法永生2 (1.卓特建筑设计有限公司,广东佛山528322;2.上海大学土木工程系,上海200074) 【摘 要】 就目前结构动力稳定性问题这一研究领域的若干基本问题,常用的处理方法,判别准则与实验研究方法以及目前取得的主要成果作了简要总结和综述,并且对结构动力稳定性分析与研究今后的发展方向进行了展望。 【关键词】 结构; 动力稳定性; 处理方法; 判别准则; 实验研究 【中图分类号】 T U311.2 【文献标识码】 A 根据结构承受荷载形式的不同,可以将结构稳定问题分为静力稳定和动力稳定两大类。动力载荷作用下结构的稳定性问题是一个动态问题,由于时间参数的引入,使问题变得极为复杂。对于结构动力稳定性的定义一直难以确切给出,这是因为结构自身动力特性具有复杂性使得其在数学意义上的定义很难予以准确表达[1]。长期以来,力学工作者致力于结构稳定性问题的研究,在发展了经典稳定性理论的同时也极大地推动了动力稳定理论研究的前进。如稳定性判定准则的建立、临界载荷的确定、初缺陷的影响或后分叉分析等。理论分析和实验研究逐渐增多,使得这门学科不仅在理论上形成了一个庞大而复杂的体系,而且具有重要的实用价值。可以说,现在的结构动力稳定性研究分析已经是结构动力学、有限元法、数值计算方法及程序设计等诸多学科相互交叉、有机结合的产物,属于现代工程结构研究领域中的一个重要分支。 1 结构动力稳定性的分类及主要的研究问题 结构动力稳定性就其承载的动力形式大致可以分为三类。 (1)结构在周期性荷载作用下的动力稳定性。在简谐荷载等周期性荷载作用下,当结构的自振频率与外载荷的强迫振动频率非常接近时,结构将产生强烈的共振现象;当结构的横向固有振动频率与外荷载的扰动频率之间的比值形成某种特定的关系时,结构将产生强烈的横向振动,即参数振动。对于这类问题,前苏联学者符华·鲍络金(Bolito n)在其著作《弹性体系的动力稳定》中给出了较全面的分析和论述。他们导出的区分稳定区和不稳定区的临界状态方程是一个周期性方程,即M athieu-Hill方程。在周期相同的解之间存在着不稳定区域,便把问题归结为确定微分方程具有周期解的条件,从而解决了稳定的判别问题。但是对于大变形的几何非线形结构,结构的刚度矩阵需要经过迭代,微分方程非常复杂,这些理论将难以成立。 (2)结构在冲击荷载作用下的动力稳定性。在这种情况下,结构的动力稳定性与冲击类型密切相关,而且首要问题在于合理、实用的判别准则,它不仅要在逻辑上站得住脚,又要在实际上可行,遗憾的是这个问题至今未能形成一致的看法。目前对结构承受瞬态冲击作用下的冲击稳定性的试验和理论研究主要集中在理想脉冲以及阶跃荷载下的动力稳定性。在脉冲荷载作用下发生的动力屈曲称为脉冲屈曲,已有的研究表明[2][3][4],脉冲屈曲是一类响应式屈曲或者动力发展型屈曲。阶跃荷载是一类具有恒定幅值和无限长持续时间的载荷形式。在试验或者实际当中,固体与固体之间的冲击引起的屈曲就可看作脉冲冲击。 (3)结构在随动荷载作用下的动力稳定性。所谓随动荷载是指随着时间的变化荷载的幅值保持不变而方向发生变化的作用力,它是非保守力。它的分析将极其复杂,目前还难以见到可借鉴的动力稳定性分析文献。因此,许多学者通常采用结构动力学响应分析常用的手段,将这类荷载作为确定性荷载进行分析。通过对结构的动力平衡路径全过程进行跟踪,根据结构的各参数在动力平衡路径中的变化特性,对结构的动力稳定性进行有效的判定[5]。 综上所述,目前国内外动力稳定性研究的现状大致为:对周期荷载下的参数动力稳定性问题、在冲击荷载作用下的冲击动力稳定性问题和阶跃荷载下的参数阶跃动力稳定性问题研究较多,并取得了满意的效果[6][7][8]。恒幅阶跃载荷及矩形脉冲载荷或其它冲击载荷作用下杆的动力稳定问题也有很多研究,并从不同的角度建立了一些稳定性判定准则。但冲击载荷作用下板的动力稳定问题还没有获得广泛和深入的研究。对于较为复杂的冲击荷载作用下结构的动力稳定性问题,目前的研究主要集中于理想脉冲载荷和阶跃载荷作用下结构的动力稳定问题。在这类问题的分析中,最常采用的屈曲准则有B-R准则、Simitses总势能原理和放大函数法。对非周期激振、参数激振和强迫激振耦合引起的动力稳定问题研究较少;对弹性基本构件和简单模型研究较多(如周期激励下的柱子、梁、拱及壳等已得到了成功的分析),对复杂工程结构研究较少。对于在地震、风荷载等任意动力荷载作用下的具有较强的几何非线性的结构的动力稳定性问题,国内外这方面的文献资料虽然最近几年也有一些,但距离真正地合理解决这类动力稳定性问题还有许多工作要做。 [收稿日期]2006-06-12 [作者简介]何金龙(1962~),男,工学学士,一级注册结构工程师,主要从事工业与民用建筑设计工作。 155  ·工程结构·  四川建筑 第27卷2期 2007.04

静动力作用下高拱坝坝肩稳定性三维分析

第27卷增1岩石力学与工程学报V ol.27 Supp.1 2008年6月Chinese Journal of Rock Mechanics and Engineering June,2008 静动力作用下高拱坝坝肩稳定性三维分析 王忠耀1,2,李明超1,2,秦朝霞1,2,梁辉2,张伯艳3 (1. 天津大学建筑工程学院,天津 300072;2. 中国水电工程顾问集团公司中南勘测设计研究院,湖南长沙 410014; 3. 中国水利水电科学研究院工程抗震研究中心,北京 100044) 摘要:按照静载设计、动载复核的设计原则,基于地质勘测资料,针对坝肩抗滑稳定问题的三维特性,采用关键块体理论来识别和描述被结构面切割的岩体,确定相应的控制性滑块,进而运用程序实现三维刚体极限平衡法,选取不同高程的试算面对某水电站300 m级高拱坝左、右岸坝肩的静动力抗滑稳定性进行计算分析。在动力分析中,将坝体、库水及其地基作为整个体系,充分考虑坝体、地基和库水三者的动力相互作用。静动综合计算分析的结果表明,拱坝左、右岸坝肩在静力作用下是安全的,且安全富裕较大;在地震作用下也是安全的,但安全裕度不大。这为该拱坝的设计和论证提供了重要的科学依据。 关键词:水利工程;坝肩稳定性;高拱坝;三维分析;水电工程 中图分类号:TV 311;TV 312 文献标识码:A 文章编号:1000–6915(2008)增1–3058–06 3D ANALYSIS OF HIGH ARCH DAM ABUTMENT STABILITY UNDER STATIC AND DYNAMIC LOADINGS WANG Zhongyao1,2,LI Mingchao1,2,QIN Zhaoxia1,2,LIANG Hui2,ZHANG Boyan3 (1. College of Civil Engineering,Tianjin University,Tianjin300072,China;2. Mid-south Design and Research Institute,China Hydropower Engineering Consulting Group Co.,Changsha,Hunan410014,China;3.Earthquake Engineering Research Center,China Institute of Water Resources and Hydropower Research,Beijing100044,China) Abstract:According to the principles of static forces for designing and dynamic forces for checking,3D critical block theory is used to identify and describe all removable blocks based on the geological exploration data. Then the corresponding dominative sliding blocks are determined. For the 3D features of the abutment stability problem,the program of 3D rigid body limit equilibrium method is developed to compute and analyze the sliding resistance stability of high arch dam abutments of a hydropower station,nearly 300 m in height,under static and dynamic loadings with several different elevation planes. In dynamic analysis method,the arch dam,reservoir water body and dam foundation are regarded as an integrated system,so that the dynamic interaction between the blocks and dam body can be effectively considered. The results obtained by the method integrating static and dynamic loadings indicate that the arch dam abutments of both sides are stable under static loading with enough margin of safe. While under the action of earthquake,the dam is safe though the factor of safety is not very high. All of these provide significant scientific bases for design and demonstration of high arch dam. Key words:hydraulic engineering;abutment stability;high arch dam;3D analysis;hydropower engineering 收稿日期:2006–11–21;修回日期:2007–02–21 基金项目:国家重点基础研究发展规划(973)项目(2007CB714101);中国博士后科学基金项目(20070420706) 作者简介:王忠耀(1960–),男,1987年毕业于武汉水利电力学院水利水电工程建筑专业,现为博士研究生、教授级高级工程师,主要从事水工建筑物设计和施工方面的研究工作。E-mail:lmc@https://www.360docs.net/doc/862551791.html,

第四代核反应堆系统简介

第四代核反应堆系统简介 绪言 第四代核反应堆系统(Gen IV)是当前正在被研究的一组理论上的核反应堆,其概念最先是在1999年6月召开的美国核学会年会上提出的。美国、法国、日本、英国等核电发达国家在2000年组建了Gen-IV国际论坛(GIF),并完成制定Gen IV研发目标计划。预期在2030年之前,这些设计方案一般不可能投入商业运行。核工业界普遍认同将,目前世界上在运行中的反应堆为第二代或第三代反应堆系统,以区别已于不久前退役的第一代反应堆系统。在八项技术指标上,第四代核能系统国际论坛已开始正式研究这些反应堆类型。这项计划主要目标是改善核能安全,加强防止核扩散问题,减少核燃料浪费和自然资源的利用,并降低建造和运行这些核电站的成本。并在2030年左右,向商业市场提供能够很好解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核反应堆。 图1 从第一代到第四代核能系统的时间跨越 第一代核反应堆产生于上个世纪70 年代前,其主要目的是生产用于军事目的的铀;第二代核反应堆出现于70 年代,是目前大部分核电站使用的堆型,其目的是降低对石油国家的能源供应依赖;第三代核反应堆是在1979 年美国长岛和1986 年乌克兰切尔诺贝利核电站事故后出现的,主要是增加了安全性,但它并不能很好地解决核废料问题;第四代核反应堆则可以同时很好地解决安全和废料问题。对于第四代核能系统标准且可靠的经济评价,一个完整的核能模式显得十分重要。对于采用新型核能系统的第四代核电站的经济评估,人们需要采用新的评价手段,因为它们的特性大大不同于目前的第二代和第三代核电站。目前的经济模式不适合于比较不同的核技术或核电站,而是用于比较核能和化石能源。 第四代核反应堆的堆型 最初,人们设想过多种反应堆类型。但是经过筛选后,重点选定了几个技术上很有前途且最有可能符合Gen IV的初衷目标的反应堆。它们为几个热中子核反应堆和三种快中子反应

核反应堆物理分析名词解释及重要概念整理

第一章—核反应堆的核物理基础 直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。 中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。 非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。 弹性散射:分为共振弹性散射和势散射。 111001 100[]A A A Z Z Z A A Z Z X n X X n X n X n +*+→→++→+ 微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。 宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量。 平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。 核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。 中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。 多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。 瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把 这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。 第二章—中子慢化和慢化能谱 慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。 扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。 平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。 慢化密度:在r 处每秒每单位体积内慢化到能量E 以下的中子数。 分界能或缝合能:通常把某个分界能量E c 以下的中子称为热中子, E c 称为分界能或缝合能。 第三章—中子扩散理论 中子角密度:在r 处单位体积内和能量为E 的单位能量间隔内,运动方向为Ω的单位立体角内的中子数目。 慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。 徙动长度:快中子从源点产生到变为热中子而被吸收时所穿行的直线距离为r M 。 第四章—均匀反应堆的临界理论 反射层的作用: 1. 减少芯部中子泄漏,从而使得芯部的临界尺寸要比无反射层时的小,节省一部分燃料;

核电站的结构

核电站的结构 核电站是怎样发电的呢?简而言之,它是以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的燃烧产生热量,来加热水使之变成蒸汽。蒸汽通过管路进入汽轮机,推动汽轮发电机发电。一般说来,核电站的汽轮发电机及电器设备与普通火电站大同小异,其奥妙主要在于核反应堆。 核电站除了关键设备核反应堆外,还有许多与之配合的重要设备。以压水堆核电站为例,它们是主泵,稳压器,蒸汽发生器,安全壳,汽轮发电机和危急冷却系统等。它们在核电站中有各自的特殊功能。 主泵如果把反应堆中的冷却剂比做人体血液的话,那主泵则是心脏。它的功用是把冷却剂送进堆内,然后流过蒸汽发生器,以保证裂变反应产生的热量及时传递出来。 稳压器又称压力平衡器,是用来控制反应堆系统压力变化的设备。在正常运行时,起保持压力的作用;在发生事故时,提供超压保护。稳压器里设有加热器和喷淋系统,当反应堆里压力过高时,喷洒冷水降压;当堆内压力太低时,加热器自动通电加热使水蒸发以增加压力。 蒸汽发生器它的作用是把通过反应堆的冷却剂的热量传给二次回路水,并使之变成蒸汽,再通入汽轮发电机的汽缸作功。 安全壳用来控制和限制放射性物质从反应堆扩散出去,以保护公众免遭放射性物质的伤害。万一发生罕见的反应堆一回路水外逸的失水事故时,安全壳是防止裂变产物释放到周围的最后一道屏障。安全壳一

般是内衬钢板的预应力混凝土厚壁容器。 汽轮机核电站用的汽轮发电机在构造上与常规火电站用的大同小异,所不同的是由于蒸汽压力和温度都较低,所以同等功率机组的汽轮机体积比常规火电站的大。 危急冷却系统为了应付核电站一回路主管道破裂的极端失水事故的发生,近代核电站都设有危急冷却系统。它是由注射系统和安全壳喷淋系统组成。一旦接到极端失水事故的信号后,安全注射系统向反应堆内注射高压含硼水,喷淋系统向安全壳喷水和化学药剂。便可缓解事故后果,限制事故蔓延。 注: 核裂变是一个原子核分裂成几个原子核的变化。只有一些质量非常大的原子核像铀(yóu)、钍(tǔ)等才能发生核裂变。这些原子的原子核在吸收一个中子以后会分裂成两个或更多个质量较小的原子核,同时放出二个到三个中子和很大的能量,又能使别的原子核接着发生核裂变,使过程持续进行下去,这种过程称作链式反应。原子核在发生核裂变时,释放出巨大的能量称为原子核能,俗称原子能。1克铀-235完全发生核裂变后放出的能量相当于燃烧2.5吨煤所产生的能量。

核反应堆工程

2008年上海交通大学研究生入学考试课程《核反应 堆工程》 考试大纲 1.该课程考试内容包括核反应堆物理和核反应堆热工两部分 2.主要参考书目: 核反应堆物理: 谢仲生主编,《核反应堆物理分析(上册)》,原 子能出版社,1994。 谢仲生、张少泓,《核反应堆物理理论与计算方 法》,西安交通大学出版社,2000。 核反应堆热工: 于平安等编著,《核反应堆热工分析》,原子能出 版社,1986。 于平安等编著,《核反应堆热工分析》,上海交通 大学出版社,2001。

核反应堆物理基础 1.核反应堆的核物理基础 1.中子与原子核的相互作用 相互作用的机理、中子吸收和中子散射 2.中子截面和核反应率 截面、自由程、中子通量密度、核反应率的概念 宏观截面的计算,各类型截面随中子能量的变化规律 3.共振现象与多普勒效应 4.核裂变过程 裂变能的释放、反应堆功率和中子通量密度之间的关系、裂变中子、裂变产物 5.链式裂变反应 临界条件、四因子模型 2.中子慢化与慢化能谱 1.中子的弹性散射过程 弹性散射动力学、慢化剂的选择 2.无限均匀介质的慢化能谱 慢化方程、含氢无吸收介质的慢化谱 3.热中子堆的近似能谱 3.中子扩散理论 1.单能中子扩散方程 斐克定律、单能中子扩散方程 2.非增殖介质扩散方程的解 4.均匀反应堆的临界理论 1.均匀裸堆的单群临界理论 均匀裸堆的单群扩散方程、单群临界条件及临界时的中子通量密度分布 2.双区反应堆的单群临界理论 双区反应堆的单群扩散方程、临界条件及临界时的中子通量密度分布 3.双群扩散方程 5.非均匀反应堆 1.栅格的非均匀效应 6.反应性随时间的变化 1.核燃料中铀-235的消耗、钚-239的积累 2.氙-135中毒 平衡氙中毒、最大氙中毒、功率瞬变过程中的氙中毒、氙震荡 3.钐-149中毒 4.燃耗深度与堆芯寿期 5.核燃料的转换与增殖 7.温度效应与反应性控制 1.反应性温度效应 反应性温度效应及其成因、堆芯内各种成分的反应性温度系数、温度反馈对反应堆安全的意义 2.反应性控制的任务 剩余反应性、控制棒价值、停堆深度

基于ANSYS钢桁架桥的静动力分析

基于ANSYS钢桁架桥的静动力分析 黎波含 华北科技学院 摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了空间有限元建模;对桁架桥进行了静力分析和动力分析(模态分析),作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面,在对桁架桥进行模态分析时,主要绘制出了桁架桥的八阶模态振型图,得出一些结论,这些都为桥梁的设计、维护、检测提供了一些技术参数。关键词:ANSYS;钢桁架桥;模态分析;动力特性 引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其进行静动力学分析了解其受力特性具有重要的意义。基于此文中对某下承式钢桁梁桥进行了静动力学分析,初步得到了该桥的一些静动力学结果该结果对桥梁的设计、维护、检测具有一定的指导意义。 1工程简介 某一下承式简支钢桁架桥桥长72米,每个节段12米,桥宽10米,高16米。桥面板为0.3米厚的混凝土板,桁架桥的杆件均使用的是工字型截面但型号有所不同,钢桥的形式见图1,其结构简图见

图2 图1 图2 刚桁架桥简图 所用的桁架杆件有三种规格,见表1 表1 钢桁架杆件规格 杆件截面号形状规格 端斜杆 1 工字形400X400X16X16 上下弦 2 工字形400X400X12X12 横向连接梁 3 工字形400X400X12X12 其他腹杆 4 工字形400X300X12X12 所用的材料属性见表2 表2 材料属性 参数钢材混凝土弹性模量EX 2.1×1011 3.5×10 泊松比PRXY 0.3 0.1667 密度DENS 78502 2500 2 模型构建 将下承式钢桁梁桥的各部分杆件,包括上弦杆、下弦杆、腹杆、

动力学性能

动力学性能 稳定性(安全性)定义 1.脱轨系数 2.横向稳定系数 $X_C2(混凝土线路横向稳定系数) abs(FORCEOV($F_RW_Friction_Left_of_WHEELSET4,29))/(15000+FORCEOV($F_RW_Frict ion_Left_of_WHEELSET4,30)/3) abs(FORCEOV($F_RW_Friction_Right_of_bogie2__wheelset2,29))/(15000+FORCEOV($F_RW _Friction_Right_of_bogie2__wheelset2,30)/3) $X_C(木枕线路横向稳定系数) abs(FORCEOV($F_RW_Friction_Left_of_WHEELSET4,29))/(10000+FORCEOV($F_RW_Frict ion_Left_of_WHEELSET4,30)/3) abs(FORCEOV($F_RW_Friction_Right_of_bogie2__wheelset2,29))/(10000+FORCEOV($F_RW _Friction_Right_of_bogie2__wheelset2,30)/3) 3.轮重减载率 $X_D(轮重减载率) (FORCEOV($F_RW_Friction_Left_of_WHEELSET4,26)-FORCEOV($F_RW_Friction_Right_o f_WHEELSET4,26))/(FORCEOV($F_RW_Friction_Left_of_WHEELSET4,26)+FORCEOV($F_ RW_Friction_Right_of_WHEELSET4,26)+0.001) (FORCEOV($F_RW_Friction_Left_of_bogie2__wheelset2,26)-FORCEOV($F_RW_Friction_Rig ht_of_bogie2__wheelset2,26))/(FORCEOV($F_RW_Friction_Left_of_bogie2__wheelset2,26)+F ORCEOV($F_RW_Friction_Right_of_bogie2__wheelset2,26)+0.001) 4.倾覆系数 (FORCEOV($F_RW_Friction_Left_of_bogie2__wheelset1,26)+FORCEOV($F_RW_Friction_Le ft_of_bogie2__wheelset2,26)-FORCEOV($F_RW_Friction_Right_of_bogie2__wheelset1,26)-FO RCEOV($F_RW_Friction_Right_of_bogie2__wheelset2,26))/(FORCEOV($F_RW_Friction_Righ

尾矿坝稳定性分析

一、现场高浓度尾矿分级筑坝试验 二、X X尾矿坝稳定分析 (一)研究目标 本项目的基本构思和总体目标为: 采用现场实测、室内试验和数值模拟三种研究手段。基于现场放矿试验综合给出尾矿坝典型剖面的尾砂分布规律,采用室内试验(静动力试验)确定相应尾砂的静、动力物理力学特性,并以此为基础通过数值仿真的方法定量评价尾矿坝的稳定性,确定其影响因素,提出改进措施。 具体目标如下: 1.现场尾矿分级筑坝试验 1)给出尾矿的移动特征、沉降过程及颗粒分布规律,包括堆积体的形态、坡度和坡面颗粒组成等,获得将来尾矿堆坝的结构组成; 2)给出高浓度尾矿堆存沉积滩的坡度变化规律,确定高浓度尾矿堆存所需的沉积距离; 3)根据尾矿沉积规律及现场勘测,确定尾矿坝进行稳定性分析的两个典型断面。 2.室内试验 1)静力学试验:给出尾矿砂的静力学参数(强度及变形特性); 2)渗透性试验:给出尾矿砂的渗透系数; 2)动三轴试验:给出尾矿砂的液化动力强度及阻尼比等参数。 3.数值模拟 数值模拟主要从三个方面对尾矿坝进行稳定性分析: 1)渗流稳定分析 确定堆积坝体的浸润线及其下游可能出逸点的位置;计算坝体和坝基的渗流量。 2)尾矿坝的静力稳定性分析 采用不同工况时对应的荷载组合,计算坝体在不同高度时的坝坡稳定性,给出典型断面上应力、应变的分布规律、坝体的变形。 3)尾矿坝的动力稳定性分析 采用二维数值模拟方法,选用三条典型地震动+一条人工合成地震动计算尾矿坝在地震荷载作用下的动力稳定性,给出典型断面坝体的应力、应变分布规律;给出地震作用下,尾矿坝可能发生的液化范围。

(二)技术路线 本项目研究的技术路线如下: 1.确定工程场地的基本特征,场地的类别、特征周期及设防烈度等; 2.根据现场放矿试验确定沿堆积坝的尾砂分布规律; 3.根据设计资料、场地及其他相关因素,确定尾矿坝的两个典型断面; 4.对两个典型断面进行现场勘测,根据尾砂特点及分布规律确定尾砂分布的概化剖面; 5.根据概化剖面上尾砂分布的类型,对尾砂进行室内渗透、静力以及三轴动力试验,测量得到相应尾砂的渗透系数、静力强度、变形特性以及动力液化强度、阻尼比等模型参数; 6.利用数值模拟方法建立典型断面的二维数值模型,分别进行静力、动力及渗流的二维数值模拟分析; 7.根据计算结果对尾矿筑坝工艺提出相应建议。 (三)经费预算 经费申请表(金额单位:万元)

反应堆结构与核燃料

第四章反应堆结构与核燃料 反应堆是核电站中的热源,其内部装有可以进行可控链式核反应的核燃料,源源不断地释放出能量。核反应产生的热能通过载热剂传给汽轮机作功,汽轮机带动发电机,产生的电能被输送到电网。 反应堆由堆芯、压力容器、上部堆内构件和下部堆内构件等几部分组成。反应堆安置在反应堆厂房(也称为安全壳)的正中,它的六条进出口接管管嘴支撑在作为一次屏蔽的混凝土坑(即堆坑)内,而堆坑位于一个大约10米深的反应堆换料水池的底部。参见图4.1。 图4.1 反应堆位置 - 35 -

- 36 - 图4.2 反应堆剖面图

- 37 - 图4.2是压水堆的结构简图,它可分为以下四部分: ● 反应堆堆芯 ● 堆内构件 ● 反应堆压力容器和顶盖 ● 控制棒驱动机构 4.1 反应堆堆芯 4.1.1 堆芯布置 核反应堆的堆芯位于压力容器中心,由157个几何形状及机械结构完全相同的燃料组件构成,核反应区高3.65m ,等效直径3.04m 。燃料核裂变释放出来的核能立即转变成热能,并由冷却剂导出。 在典型的燃料管理方案中,初始堆芯按燃料组件浓缩度分成三个区。所谓燃料浓缩度也称富集度或丰度,是指燃料中235U 同位素在铀的总量中所占比例。在堆芯外区放置浓缩度高的燃料组件,浓缩度较低的燃料组件则以棋盘状排列在堆芯的内区,如图4.3所示。 通常每年进行一次换料,更换约三分之一燃料组件,称为一个燃料循环。换料原则是将燃耗最深的燃料组件取走,在外区加入新燃料组件,而其余组件在堆芯中央重新布置,使功率分布尽可能均匀。在第六循环之前新加入燃料的浓缩度均为3.25%。为满足不断增长的发电需求,从第七循环开始新换燃料的富集度改为3.7% 。按照规划,今后还将采用长燃耗循环,即18个月换料方式,届时新换燃料的富集度将提高到4.45% 。 图4.3 堆芯分区布置(第一循环)

车辆操纵动力学稳定性分析

车辆操纵动力学 摘要:汽车的前轮转角和横摆角速度是衡量汽车稳定性的两个重要指标。汽车在行驶过程中,由于路况的各种不确定因素,驾驶员可能会采取紧急制动和转向的行为来避免交通事故。在此过程中汽车的操纵稳定性会起到关键性的作用,因此对于汽车的稳定性的分析必不可少。本文建立了汽车线性二自由度汽车模型,以前轮转角为输入,运用MATLAB进行时域分析。对不同车型的在相同行驶速度、相同前轮转角下分析横摆角速度瞬态响应;在相同行驶速度下,在不同前轮转角输入下分析达到相同加速度的横摆角速度瞬态响应;随着车速增加,分析车辆瞬时转向响应与系统特征根之间的关系。 关键词:横摆角速度;前轮转角;特征根 引言 车辆稳定性控制是汽车主动安全领域研究的热点,已有的研究如以车辆横摆角速度、质心侧偏角、轮胎的滑移率、侧向加速度及这些变量联合作为控制变量的控制策略研究。本文主要考虑车辆横摆角速度和前轮转角对车辆操纵稳定性的影响,进一步利用MATLAB得出状态空间矩阵的特征根变化趋势,了解车辆瞬时响应与其之间的关系。 1建立汽车数学模型 假设汽车的驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用,忽略左、右车轮轮胎由于载荷的变化而引起轮胎特性的变化以及轮胎回正力矩的作用。汽车模型即可简化为线性二自由度模型,如图1。 图1 线性二自由度模型 根据假设以及图1模型,二自由汽车收到的外力沿y轴方向的合力与绕质心的力

矩和为: ?? ?-=∑+=∑2 12 1cos cos Y Y Z Y Y Y bF aF M F F F δδ (1) 式中,FY1、FY2为地面对前后轮的侧向反作用力;δ为前轮转角;a 、b 分别为汽车前、后轮至质心的距离。 汽车前、后轮侧偏角与其运动参数有关,如图1所示,汽车前、后轴中点的速度u 1、u 2,侧偏角为α1、α2,质心的侧偏角为β,β=v/u 。ξ是u 1与x 轴的夹角,其值为: u aw u aw v r r +=+= βξ (2) 根据坐标系规定,由式(2)得,前、后轮侧偏角为: ??? ??? ?-=-=-+=--=u bw u bw v u aw r r r βαδβξδα21)( (3) 考虑到δ角较小,前、后轮所受到的侧向力与相应的侧偏角成线性关系,则FY1、FY2为: ??? ??? ??-=?=?-+=?=cr u bw cr a FY cf u aw cf a F r r Y )(2)(211βδβ (4) 将公式(2)、(3)、(4)以及公式β=v/u 带入(1),消去α1、α2,得二自由度汽车运动微分方程为: ??? ????+----=---+-=+δδr r r f r f r Z f r r f r aC w u C b C a v u bC aC w I C w u bC aC v u cr cf uw v m 2 2)( (5) 2 MATLAB 系统仿真 本文采用MATLAB 对汽车的操纵稳定性进行仿真研究。以1949 Buick 和Ferrari 轿车为例,进行对比分析。汽车具体参数如表1所示。通过仿真实验分析不同前轮转角和不同车速下横摆角速度和前轮转角对汽车操纵稳定性的影响,并粗略得出状态矩阵的特征根与车辆瞬时转向响应之间的关系。

第3章 工业机器人静力学及动力学分析概要

注:1)2008年春季讲课用;2)带下划线的黑体字为板书内容;3)公式及带波浪线的部分为必讲内容第3章工业机器人静力学及动力学分析 3.1 引言 在第2章中,我们只讨论了工业机器人的位移关系,还未涉及到力、速度、加速度。由理论力学的知识我们知道,动力学研究的是物体的运动和受力之间的关系。要对工业机器人进行合理的设计与性能分析,在使用中实现动态性能良好的实时控制,就需要对工业机器人的动力学进行分析。在本章中,我们将介绍工业机器人在实际作业中遇到的静力学和动力学问题,为以后“工业机器人控制”等章的学习打下一个基础。 在后面的叙述中,我们所说的力或力矩都是“广义的”,包括力和力矩。 工业机器人作业时,在工业机器人与环境之间存在着相互作用力。外界对手部(或末端操作器)的作用力将导致各关节产生相应的作用力。假定工业机器人各关节“锁住”,关节的“锁定用”力与外界环境施加给手部的作用力取得静力学平衡。工业机器人静力学就是分析手部上的作用力与各关节“锁定用”力之间的平衡关系,从而根据外界环境在手部上的作用力求出各关节的“锁定用”力,或者根据已知的关节驱动力求解出手部的输出力。 关节的驱动力与手部施加的力之间的关系是工业机器人操作臂力控制的基础,也是利用达朗贝尔原理解决工业机器人动力学问题的基础。 工业机器人动力学问题有两类:(1)动力学正问题——已知关节的驱动力,求工业机器人系统相应的运动参数,包括关节位移、速度和加速度。(2)动力学逆问题——已知运动轨迹点上的关节位移、速度和加速度,求出相应的关节力矩。 研究工业机器人动力学的目的是多方面的。动力学正问题对工业机器人运动仿真是非常有用的。动力学逆问题对实现工业机器人实时控制是相当有用的。利用动力学模型,实现最优控制,以期达到良好的动态性能和最优指标。 工业机器人动力学模型主要用于工业机器人的设计和离线编程。在设计中需根据连杆质量、运动学和动力学参数,传动机构特征和负载大小进行动态仿真,对其性能进行分析,从而决定工业机器人的结构参数和传动方案,验算设计方案的合理性和可行性。在离线编程时,为了估计工业机器人高速运动引起的动载荷和路径偏差,要进行路径控制仿真和动态模型的仿真。这些都必须以工业机器人动力学模型为基础。 工业机器人是一个非线性的复杂的动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间。因此,简化求解过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 在这一章里,我们将首先讨论与工业机器人速度和静力学有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。

核反应堆物理基础-上海交通大学机械与动力工程学院

2008年上海交通大学研究生入学考试课程《核反应堆工程》 考试大纲 1.该课程考试内容包括核反应堆物理和核反应堆热工两部分2.主要参考书目: 核反应堆物理: ?谢仲生主编,《核反应堆物理分析(上册)》,原子能出版社,1994。 ?谢仲生、张少泓,《核反应堆物理理论与计算方法》,西安交通大学出版社,2000。 核反应堆热工: ?于平安等编著,《核反应堆热工分析》,原子能出版社,1986。 ?于平安等编著,《核反应堆热工分析》,上海交通大学出版社,2001。

核反应堆物理基础 一.核反应堆的核物理基础 1.中子与原子核的相互作用 相互作用的机理、中子吸收和中子散射 2.中子截面和核反应率 截面、自由程、中子通量密度、核反应率的概念 宏观截面的计算,各类型截面随中子能量的变化规律 3.共振现象与多普勒效应 4.核裂变过程 裂变能的释放、反应堆功率和中子通量密度之间的关系、裂变中子、裂变产物5.链式裂变反应 临界条件、四因子模型 二.中子慢化与慢化能谱 1.中子的弹性散射过程 弹性散射动力学、慢化剂的选择 2.无限均匀介质的慢化能谱 慢化方程、含氢无吸收介质的慢化谱 3.热中子堆的近似能谱 三.中子扩散理论 1.单能中子扩散方程 斐克定律、单能中子扩散方程 2.非增殖介质扩散方程的解 四.均匀反应堆的临界理论 1.均匀裸堆的单群临界理论 均匀裸堆的单群扩散方程、单群临界条件及临界时的中子通量密度分布2.双区反应堆的单群临界理论 双区反应堆的单群扩散方程、临界条件及临界时的中子通量密度分布3.双群扩散方程 五.非均匀反应堆 1.栅格的非均匀效应 六.反应性随时间的变化 1.核燃料中铀-235的消耗、钚-239的积累 2.氙-135中毒 平衡氙中毒、最大氙中毒、功率瞬变过程中的氙中毒、氙震荡3.钐-149中毒 4.燃耗深度与堆芯寿期 5.核燃料的转换与增殖

反应堆时空动力学方程近似解

!第! "卷!第#期核科学与工程$%&’!"!(%’#!!))"年!*!月+,-./0/1%23.4&%5(26&/4376-/.6/4.89.:-.//3-.:;/6’!! ))"收稿日期!!))=<*)<*>!修回日期!!))"<)=A =#$ %男%湖南人%教授%博士生导师%从事反应堆安全分析教学与研究工作反应堆时空动力学方程近似解 蔡章生!张杨伟!陈!玲 "海军工程大学%湖北武汉#A ))A A $摘要!导出了反应堆时空动力学方程的近似解析解’此解的中子密度空间分布曲率是随堆功率变化的%因此它比点堆模型方程的解析解精确’可用于反应堆现场运行所需的监督性快速计算’对反应堆的安全运行有重要的指导意义’ 关键词!中子动力学!反应堆运行!反应堆安全 中图分类号!B C A !!!文献标识码!D !!文章编号!)!=@<)>*@"!))"$)#<)A *A <)A 8,,0)N .1+%#$)-&%.)*)20#+4%)0$,+4#7%.1#’(*+1.4#T &+%.)*+D G J ,4.:<0,/.:%J K D (H c 4.:

《核反应堆物理分析(谢仲生版)》名词解释及重要概念

《核反应堆物理分析(谢仲生版)》名词解释及重要概念 第一章—核反应堆的核物理基础 直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。 中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。 非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。 弹性散射:分为共振弹性散射和势散射。 111001100[]A A A Z Z Z A A Z Z X n X X n X n X n +*+→→++→+ 微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。 宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量。 平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。 核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。 中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。 多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。 瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。 第二章—中子慢化和慢化能谱 慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。 扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。 平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。 慢化密度:在r 处每秒每单位体积内慢化到能量E 以下的中子数。 分界能或缝合能:通常把某个分界能量E c 以下的中子称为热中子, E c 称为分界能或缝合能。 第三章—中子扩散理论 中子角密度:在r 处单位体积内和能量为E 的单位能量间隔内,运动方向为Ω的单位立体角内的中子数目。 慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。 徙动长度:快中子从源点产生到变为热中子而被吸收时所穿行的直线距离为r M 。

相关文档
最新文档