最优风险资产风险组合
投资学基础讲义 第7章 最优风险资产组合

第7章最优风险资产组合7.1分散化与组合风险•投资组合的风险来源:·来自一般经济状况的风险(系统风险)·特别因素风险(非系统风险) 图7.1 组合风险关于股票数量的函数图7.2 组合分散化7.2 两个风险资产的组合设某一风险资产组合P 由长期债券组合D 和股票基金E 组成2222222222()()() 2(,)(,)211P D D E E P D D E E D E D E D E DE D E P D D E E D E D E DEDE E r w E r w E r w w w w Cov r r Cov r r w w w w σσσρσσσσσσσρρ=+=++=⇒=++-≤≤Q 则有:又:∴ρ越大,组合P 的方差越大 三个风险资产的组合112233()()()()p E r w E r w E r w E r =++2222222112233121,2131,3232,3222p w w w w w w w w w σσσσσσσ=+++++分散化的效果:如果协方差为负,组合的方差会降低,即使协方差为正,组合的标准差依然低于两个证券标准差的加权平均,除非两个证券是完全正相关221() DE P D D E E P D D E Ew w w w ρσσσσσσ==+=+若,则有:即:结论:ρ=1时组合P 的风险就是两个收益完全正相关资产标准差的加权平均。
221() -0,1DE P D D E E P D D E E D D E E E DD E D D E D Ew w w w w w w w w ρσσσσσσσσσσσσσσ=-=-=-=⇒==-=++若,则有:即:令结论:ρ=-1组合P 的风险可降至零11 1DE P D D E Ew w P ρσσσρ-<<<+<若,则有:结论:时组合的风险可有一定程度降低表7-1两个共同基金的描述性统计表7.2 不同相关系数下的期望收益与标准差图7.3组合期望收益关于投资比例的函数图7.4 组合标准差关于投资比例的函数最小方差组合由具有最小标准差的风险资产组成,这一组合的风险最低。
第八章资产组合理论

如果我们的资产组合中的风险资产仍然 是债券基金与股票基金,但是,现在我 们也投资于年收益率为5%的无风险的国 库券,那会发生什么情况呢?我们从图 解开始,图8 - 6显示了根据表8 - 1计算出 的股票基金与债券基金的联合概率分布 的机会集合。
两条可能的资本配置线( C A L)从无风险 利率( rf=5%)连到两种可行的资产组合。
8.2 两种风险资产的资产组合
在上一节我们考虑了几种证券等权重的分散资 产组合。现在开始研究有效分散,这可以构建 任意给定期望收益条件下的最低风险的资产组 合。
两种资产的资产组合相对易于分析,它们体现 的原则与思考可以适用于多种资产的资产组合。 我们将考察一个包括两个共同基金的资产组合, 一个是专门投资于长期债券的债券资产组合D, 一个是专门投资于股权证券的股票基金E,表8 - 1列出了影响这些基金收益率的参数,这些参 数可以从真实的基金中估计得出。
在上一节,我们推导了资产组合中两种风险资产的比例, 在此基础上,我们引入第三种选择—无风险的资产组合。 这可以使我们处理好资金在三种关键资产:股票、债券与 无风险货币市场证券之间的配置,一旦投资者掌握了这个 原则,他将可以很容易地构造由多种风险资产组成的资产 组合。
最优风险资产组合:两种风险资产和一种 无风险资产
低于组合中各个资产的标准差。
ch08最优风险资产组合

单个股票风险 Single Security Risk
σR2 = ∑ Pi(Ri - E( R ))2 (I=1 to n) = (1/4)(15-11)2 +(1/2)(10-11)2 +(1/4)(8-11)2 =6.75 (1/4)(15+(1/2)(10+(1/4)(8σR= (6.75)(1/2)=2.6 6.75) 1/2) σ(R)2 均方差 σ(R) 标准方差
8-13
相关系数:取值范围 相关系数: Correlation Coefficients: Possible Values
如果 ρ = 1.0 If ρ = 1.0
σp2 = wD2σD2 + wE2σE2 + 2wDwE σD σ E σp2 = (wDσD + wEσE)2 σp = wDσD + wEσE
8-3
分散化与风险
Risk Reduction with Diversification
标准方差 St. Deviation
独特风险(非系统风险 独特风险 非系统风险) 非系统风险 Unique Risk
市场风险(系统风险 市场风险 系统风险) 系统风险 Market Risk
股票数量 Number of Securities
多种证券组合的一般性
In General, For an n-Security Portfolio: nrp =多种证券的加权平均 rp = Weighted average of the n securities σp2 = (考虑全部成双量的协方差) 考虑全部成双量的协方差) σp2 = (Consider all pair-wise covariance measures)
实验4:多种风险资产与无风险资产的最优投资组合决策

实验四:无风险资产与多种风险型资产最优投资组合的模型分析 一、实验目的通过上机实验,使学生充分理解Excel 软件系统管理和基本原理,掌握多资产投资组合优化的Excel 应用。
二、预备知识(一)相关的计算机知识: Windows 操作系统的常用操作;数据库的基础知识;Excel 软件的基本操作。
(二)实验理论预备知识现代资产组合理论发端于Markowitz(1952)提出的关于投资组合的理论。
该理论假设投资者只关心金融资产(组合)收益的均值(期望收益)和方差,在一定方差下追求尽可能高的期望收益,或者在一定的期望水平上尽可能降低投资收益的方差。
投资者的效用是关于投资组合的期望回报率和方差的函数,理性的投资者通过选择有效地投资组合以实现期望效用最大。
该理论第一次将统计学中期望与方差的概念引入投资组合的研究,提出用资产收益率的期望来衡量预期收益,用资产预期收益的标准差来度量风险的思想。
1、理论假设(Ⅰ)市场上存在n ≥2种风险资产,资产的收益率服从多元正态分布,允许卖空行为的存在。
{}12(,,,)T n ωωωωω=,代表投资到这n 种资产上的财富(投资资金)相对份额,它是n 维列向量,有11=∑=ni i ω,允许0<i ω,即卖空不受限制。
(Ⅱ) 用e 表示所有由n 种风险资产的期望收益率组成的列向量。
12(,,,)T n e R R R R == (1)p r 表示资产组合的收益率,)(p r E 和)(p r σ分别为资产组合p 的期望收益率和收益率标准差。
∑=⋅=⋅=ni ii Tp e r E 1)(μωω (2)(Ⅲ)假设n 种资产的收益是非共线性的(其经济意义为:没有任何一种资产的期望收益率可以通过其他资产的线性组合来得到,它们的期望收益是线性独立的。
)。
这样它们的方差-协方差矩阵可以表示为:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=nn n n n n Q σσσσσσσσσ212222111211 (3)由于总是假定非负的总体方差,它还必须是一个正定矩阵,即对于任何非0的n 维列向量a ,都有0T a Qa >。
博迪《投资学》(第9版)课后习题-最优风险资产组合(圣才出品)

第7章最优风险资产组合一、习题1.以下哪些因素反映了单纯市场风险?a.短期利率上升b.公司仓库失火c.保险成本增加d.首席执行官死亡e.劳动力成本上升答:ae。
2.当增加房地产到一个股票、债券和货币的资产组合中,房地产收益的哪些因素影响组合风险?a.标准差b.期望收益c.和其他资产的相关性答:ac。
房地产被添加到组合中后,在投资组合中有四个资产类别:股票、债券、现金和房地产。
现在投资组合的方差包括房地产收益的方差项和房地产收益与其他三个资产类别之间的协方差项。
因此,房地产收益的方差(或标准差)和房地产收益与其他资产类别收益之间的相关性影响着投资组合的风险。
(注意房地产收益和现金收益之间的相关性很有可能为零。
)3.以下关于最小方差组合的陈述哪些是正确的? a .它的方差小于其他证券或组合 b .它的期望收益比无风险利率低 c .它可能是最优风险组合 d .它包含所有证券 答:a 。
4.用以下数据回答习题4~10:一个养老金经理考虑3个共同基金。
第一个是股票基金,第二个是长期政府和公司债基金,第三个是短期国债货币基金,收益率为8%。
风险组合的概率分布如表7-1所示。
表7-1基金的收益率之间的相关系数为0.1。
两种风险基金的最小方差投资组合的投资比例是多少?这种投资组合收益率的期望值与标准差各是多少?答:机会集的参数为:E (r S )=20%,E (r B )=12%,σS =30%,σB =15%,ρ=0.10。
根据标准差和相关系数,可以推出协方差矩阵(注意()ov ,S B S B C r r ρσσ=⨯⨯):债券 股票 债券 225 45 股票45900最小方差组合可由下列公式推出:w Min(S)=()()()222,225459002252452,B S BS B S BCov r rCov r rσσσ−−=+−⨯+−=0.1739w Min(B)=1-0.1739=0.8261最小方差组合的均值和标准差为:E(r Min)=(0.1739×0.20)+(0.8261×0.12)=0.1339=13.39%σMin=()122222w w2w w ov,S S B B S B S BC r rσσ/⎡⎤++⎣⎦=[(0.17392×900)+(0.82612×225)+(2×0.1739×0.8261×45)]1/2=13.92%5.制表并画出这两种风险基金的投资可行集,股票基金的投资比率从0~100%按照20%的幅度增长。
投资学第7章最优风险资产组合

w iri c ,
i1
n
wi 1
i1
37
对于上述带有约束条件的优化问题,可以 引入拉格朗日乘子λ 和μ 来解决这一优化 问题。构造拉格朗日函数如下
nn
n
n
L w iw jij( w iric)( w i1 )
i 1j 1
i 1
i 1
上式左右两边对wi求导数,令其一阶条件 为0,得到方程组
38
和方程
L
w
1
n
w j 1 j r1
j1
0
L
w
2
n
w j 2 j r2 0
j1
L
w
n
n
w j nj rn
j1
0
n i1
w i ri
c
n
)
E
E(rD )
D
E(rE
E
)
P
15
两种资产组合(完全正相关),当权重wD从1 减少到0时可以得到一条直线,该直线就构成 了两种资产完全正相关的机会集合(假定不允 许买空卖空)。
收益 E(rp)
E
D
风险σp
16
两种完全负相关资产的可行集
两种资产完全负相关,即ρDE =-1,则有
13
组合的机会集与有效集
资产组合的机会集合(Portfolio opportunity set),即资产可构造出的所有组合的期望收益 和方差。
有效组合(Efficient portfolio ):给定风险水平 下的具有最高收益的组合或者给定收益水平下 具有最小风险的组合。每一个组合代表E(r)和σ 空间中的一个点。
3第三讲 最优风险资产组合

这种偏差来自于证券分析的差异。如果证券分析质量很差,那 么被动的市场指数基金生成的资本配置线都会优于用低质量证 券分析生成的资本配置线(垃圾进-垃圾出)
最优化技术是组合构造问题中最容易的部分,基金经理间真正 的竞争在于证券分析精确性上的角逐
分散化的威力
因为
2 P
wi w jCov(ri , rj )
构造拉格朗日函数
n n 1 n n L wi w j Cov(ri , rj ) ( wi E (ri ) E (rp )) ( wi 1) 2 i 1 j 1 i 1 i 1
然后对每个变量wi求导,并令导数值等于0
w Cov(r , r ) E (r ) 0(i 1, 2, , n)
风险资产的最小方差边界
马科维茨模型
min s.t.
1 n n wi w j Cov(ri , rj ) 2 i 1 j 1
w E (r ) E (r )
i 1 n i i p
n
w 1
i 1 i
方差前面的系数1/2只是为了计算方便而已,它使得最后得出的 结果更加整齐
马科维茨模型(续)
卖出更多的保险意味着增加风险投资的头寸,当投资于更多收 益不相关的资产时,夏普比率升高,但是因为风险资产比例上 升,整体风险也会上升
保险原理(续)
保险原理解释为“风险集合后损失的概率会降低”,从数学上是 正确的,因为夏普比率上升,但是将损失概率的降低和总风险 的降低混为一谈却是错误的
风险共享
马科维茨资产组合选择模型是组合管理的第一步:确认有效的 组合集,即风险资产有效边界
第五章风险与无风险资产组合及最优风险资产组合

第三节 风险与无风险资产组合的分析
假设1: 在风险与无风险资产组合中, 风险资产P的内部结构已固定。要 考虑的是资产组合中投资到风险资 产P的比例y,则余下的比例1-y为 无风险资产F的投资比例。
第三节 风险与无风险资产组合的分析
假设2: 设风险资产P的收益率为rP, 期望收益为E(rP),标准差为δP,无 风险资产F的收益率为rF。由y份风 险资产和1-y份无风险资产构成整 个资产组合M,其收益率为rM。
δM2=y12δ12+y22δ22+2y1y2Cov(r1,r2)
其中,Cov(r1,r2)=∑P(r1-E(r1))(r2-E(r2))
第四节 最优风险资产组合
相关系数:Ρ12 =Cov(r1,r2)/δ1δ2
Cov(r1,r2) =δ1δ2Ρ12
δM2=y12δ12+y22δ22+2y1y2δ1δ2Ρ12
风险资产组合图:
E(R)
最小方差边界
δ
第四节 最优风险资产组合
不同相关系数P的风险组合图:
E(R)
最小方差边界
Ρ3
Ρ2Leabharlann Ρ1δ第四节 最优风险资产组合 案例:找出最优和最差的配置组合:
E(R)
全球资产配置
美国债券与 外汇产品
美国股票 和债券
美国股票和 世界股票
δ
第四节 最优风险资产组合
风险资产组合的选择:
第四节 最优风险资产组合
粮食市场正常 异常
股票P 收益率
概率 股票T 收益率 概率
股市的牛市
股市的熊市
粮价上涨
20%
0.5
股市的牛市
15%
0.4
股市的熊市
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优风险资产的风险组合分散化与资产组合风险分散化(diversification):投资者如果不是进行单一证券的投资,而是投资于由两种以上证券构成的投资组合。
如果构成投资组合的证券不是完全正相关,那么投资组合就会降低风险,在最充分分散条件下还保存的风险是市场风险(market risk),它源于与市场有关的因素,这种风险亦称为系统风险(systematic risk),或不可分散风险(nondiversifiable risk)。
相反,那些可被分散化消除的风险被称为独特风险(unique risk)、特定公司风险(firm-specific risk)、非系统风险(nonsystematic risk)或可分散风险(diversifiable risk)资产组合中股票的个数两种风险资产的资产组合两种资产的资产组合较易于分析,它们体现的原则与思考可以适用于多种资产的资产组合,我们将考察包括的资产组合,一个为只投资于长期债券的资产组合D,另一个专门投资于股权证券的股票基金E,两个共同基金的数据列表(8-1)如下:债券 股权 期望收益率E(r)(%) 8 13 标准差为σ(%) 12 20 协方差Cov(r D, r E ) 72 相关系数ρDE投资于债券基金的份额为w D ,剩下的部分为w E =1- w D 投资于股票基金,这一资产组合的投资收益r p 为: r p =w D r D,+ w E r Er D 为债券基金收益率 r E 为股权基金的收益率。
资产组合的期望收益:E(r p )=w D E(r D )+ w E E(r E )两资产的资产组合的方差: σ2P =W D 2σ2D + W E 2σE 2+2W D W E Cov(r D ,r E ) 根据第六章式[6-5]得:ρDE =[Cov(r r D, r E )]/[ σD *σE ] Cov(r r D, r E )= ρDE *σD *σE所以:σ2P =W D 2σ2D + W E 2σE 2+2W D W E ρDE *σD *σE当完全正相关时:ρDE =1σ2P =W D 2σ2D + W E 2σE 2+2W D W E *σD *σE =(W D σD + W E σE )2资产组合的标准差 σP =W D σD + W E σE 当完全负相关时:ρDE =-1σ2P =W D 2σ2D - W E 2σE 2+2W D W E *σD *σE =(W D σD - W E σE )2资产组合的标准差σP =︱W D σD - W E σE ︱当完全负相关时:ρDE =-1 则W D σD - W E σE =0 因为 w E =1- w D 两式建立联立方程得运用表(8-1)中的债券与股票数据得:E(r p )=w D E(r D )+ w E E(r E )= 8w D + 13w Eσ2P =W D 2σ2D + W E 2σE 2+2W D W E ρDE *σD *σE=122 W D 2+ 202W E 2+2*12*20**W D W E =144 W D 2+400 W E 2+144 W D W E表8-3 不同相关系数下的期望收益与标准差给定相关性下的资产组合的标准差 WDWe E(rp) ρ=-1 ρ=0 ρ= ρ=1 01132020202012114161091 08 12 12 12 12图8-3中,当债券的投资比例从0-1(股权投资从1-0)时,资产组合的期望收益率从13%(股票的收益率)下降到8%(债券的收益率)1.0 0 -1.0 债券如果wD 〉1, wE〈0时,此时的资产组合策略是做一股权基金空头,并把所得到的资金投入到债券基金。
这将降低资产组合的期望收益率。
如w D =2和wE=-1时,资产组合的期望收益率为 2*8+(-1)*13=3%如果wD〈0, wE〉1时,此时的资产组合策略是做一债券基金空头,并把所得到的资金投入到股权基金。
如wD =-1和wE=2时,资产组合的期望收益率为 -1*8+2*13=16%改变投资比例会影响资产组合的标准差。
根据表(8-3),及公式(8-5)和资产组合的相关系数分别假定为及其它ρ计算出的不同权重下的标准差。
下图显示了标准差和资产组合权重的关系。
当ρDE=的实线,当股权投资比例从0增加到1时,资产组合的标准差首先因分散投资而下降,但随后上升,因为资产组合中股权先是增加,然后全部投资于股权。
那种资产组合的标准差的最小水平时可接受的通过计算机电子表格求得准确解W MIN (D)= W MIN (E)= σMIN =%投资比例的函数,这条线经过w D =1和w E =1两个(两点)非分散化的资产组合。
当ρ=1时,标准差是组合中各资产标准差的简单加权平均值,直线连接非分散化下的全部是债券或全部是股票的资产组合,即w D =1或w E =1,表示资产组合中的资产完全正相关。
时,相关系数越低,分散化就越有效,资产组合风险就越低,最小的标准差为%,低于组合中各个资产的标准差(见表8-1)。
W D =σE /(σD + σE ) = w E =σD /(σD + σE )= σMIN =0图8-5。
对于任一对投资比例为w D ,w E 的资产,我们可以从图8-3得到期望收益率;从图8-4中得到标准差。
股票基金权重 资产组合标准差是投资比例的函数图8-5中的曲线;当ρ=时的资产组合机会集合(Portfolio opportunity set ).我们称它为资产组合机会集合是因为它显示了有两种有关资产构造的所有资产组合的期望收益与标准差。
其他线段显示的是在其他相关系数值下资产组合的机会集合当ρ=1时 为黑色实线连接的两种基金。
对分散化没有益处当ρ=0时 为虚线抛物线,可以从分散化中获得最大利益当ρ=-1时 资产组合机会集合是线性的,它提供了一个完全对冲的机会,此时从分散化中可以获得最大的利益。
并构造了一个零方差的资产组合资产在股票、债券与国库券之间的配置上节内容主要讨论了如何在股票、债券市场进行资金配置,在此基础上,我们引入第三种选择—无风险的资产组合。
对股票、债券与无风险货 14131110 8 58-5 资产组合的期望收益是标准差的函数币市场证券之间的配置。
最优风险资产组合:两种风险资产和一种无风险资产根据表8-1 第一条可能的资本配置线通过最小方差的资产组合A,(债券与股票)即由W MIN (D)= W MIN (E)= 组成 σMIN =%。
资产组合A 期望收益率为:*8+*13=% 由于国库券利率为5%,报酬与波动性比率(REWARD-TO-VARIABILITY RATIO ), 资本配置线(CAL),表示投资者的所有可行的风险收益组合。
它的斜率S ,等于选择资产组合每增加一单位标准差上升的期望收益,即资本配置线的斜率为: S A =[E(r A )-r f ]/ σA =/=第二条可能的资本配置线通过最小方差的资产组合B,即由W MIN (D)= W MIN (E)= 组成σMIN =%。
资产组合B 期望收益率为:*8+*13=% 由于国库券利率为5%,报酬与波动性比例(REWARD-TO-VARIABILITY RATIO ),即资本配置线的斜率为: S A =[E(r B )-r f ]/ σB =/=对图8-6 可理解为,由两条资本配置线,求得的望收益率与最小方差,在其相关系数值下资产组合的机会集合中,在图中找到A,B 两点;我们让资本配置线变动,最终使它的斜率与投资机会集合的斜率一致,从而,获得具有最高的、可行的报酬与波动性比率的资本配置线。
相切的资产组合P (见图8-7)就是加入国库券的最优风险资产组合。
E(r p )=11%,σP =%14 131110 81811 84 08-7 最优资本配置线的债务与股权基金的机会集合与最优风险资产组合如何解决两种风险资产和一种无风险资产的组合问题的通用方法: 在这种情况下,关键是推导出关于最优组合各项资产权重,从而使确定最优化资产组合思路:找出权重w D 和w E ,以使资本配置线的斜率最大即S p =[E(r P )-r f ]/σp对于包含两种风险资产的资产组合P ,它的期望收益和标准差为E(r p )=w D E(r D )+ w E E(r E )σ2P =W D 2σ2D + W E 2σE 2+2W D W E ρDE *σD *σE σ2P = W D 2σ2D + W E 2σE 2+2 w D w E Cov(r D , r E ) =122 W D 2+ 202W E 2+2*12*20**W D W E=144 W D 2+400 W E 2+2*72 W D W Ew D +w E =1在共有两种风险资产的条件下,最优风险资产组合(optimal risky portfolio )P 的权重可表示如下:(对以上方程联立求得) Max S p =[E(r p )-r f ]/ σp因为∑=1Wi ,则有,212222)()],()1(2)1([)1()(E D D D E D D D fD D D r rE p r r Cov w w w w r w r E w MaxS pfp -+-+--+==-σσσ用w D 对S p 求导 w E ,令导数位零:,解w D),(]2)()([])([])([),()]([])([222E D f E D D f E E f D E D f E E f D D r r Cov r r E r E r r E r r E r r Cov r r E r r E w -++-+----=σσσw E =1-w D把数带进去得:w D = w E =从而,求得: E(r p )=w D E(r D )+ w E E(r E )=11%σP =(W D 2σ2D + W E 2σE 2+2W D W E ρDE *σD *σE )1/2=%这个最优风险资产组合的资本配置线的斜率为:S p =该斜率大于任一可能的其它资产组合的斜率。
因此它是最优风险资产组合的资本配置线的斜率。
在第七章中,在给定最优风险资产组合和有这个资产组合与国库券产生的资产配置线下,我们找到了一个最优的完整资产组合。
我们以构造了一个最优风险资产组合P ,如果我们用一个个人的投资风险厌恶程度A 来计算投资于完整资产组合的风险部分的最优比例。
一个风险厌恶相关系数A=4的投资者,他在资产组合P 中的投资头寸为7439.02.14401.051101.0)(22=⨯⨯-=⨯-=Pfp A r r E y σ因此,投资者将74。