2.2.1条件概率与事件的相互独立性(学、教案)

2.2.1条件概率与事件的相互独立性(学、教案)
2.2.1条件概率与事件的相互独立性(学、教案)

2. 2.1条件概率与事件的相互独立性

教学目标:1、通过对具体情景的分析,了解条件概率的定义。理解两个事件相互独立的概念。

2,掌握一些简单的条件概率的计算。能进行一些与事件独立有关的概率的计算。 3,通过对实例的分析,会进行简单的应用

教学重点:条件概率定义的理解

教学难点:概率计算公式的应用

教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式

教学过程:概念:1,对于两个事件A 与B ,如果P(A)>0,称P(B ︱A)=P(AB)/P(A),为在事件A 发生的条件下,事件B 发生的条件概率.

2,如果两个事件A 与B 满足等式 P(AB)=P(A)P(B),称事件A 与B 是相互独立的,简称A 与B 独立。

例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自

动提款机上取钱时,忘记了密码的最后一位数字.求

(1) 任意按最后一位数字,不超过2次就对的概率;

(2) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率.

解:设第i 次按对密码为事件i A (i=1,2) ,则1

12()A A A A =表示不超过2次就按对

密码. (1)因为事件1A 与事件12A A 互斥,由概率的加法公式得

1121911()()()101095

P A P A P A A ?=+=+=?. (2)用B 表示最后一位按偶数的事件,则

112(|)(|)(|)P A B P A B P A A B =+

14125545

?=+=?. 例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩,

问这时另一个小孩是男孩的概率是多少?

解:一个家庭的两个孩子有四种可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。

这个家庭中有一个女孩的情况有三种:{(男,女)},{(女,男)},{(女,女)}。在这种情况下“其中一个小孩是男孩”占两种情况,因此所求概率为2/3.

例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算:

(1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“两人各投一次,都投中”就是事件AB 发生,因此所求概率为

P ( AB )=P (A )P (B )=0.6×0.6=0.36

(2)分析:“两人各投一次,恰有一人投中”包括两种情况:甲投中,乙未投中;甲未击中,乙击中。

因此所求概率为

48.06.0)6.01()6.01(6.0)()()()()()(=?-+-?=+=+B P A P B P A P B A P B A P 。

(3)分析:“两人各投一次,至少有一人投中”包括三种情况:甲投中,乙未投中(事件AB 发生);甲未投中,乙投中(事件AB 发生);甲、乙两人都击中目标(事件AB 发生) 解法一:“两人各投一次,至少有一人投中”的概率为

P=P(AB) +P(AB) +P(AB) =0.6×0.6 + 0.6×(1-0.6) +(1-0.6) ×0.6

=0.36 +0.48 =0.84

方法二:分析:“两人都未投中目标(事件AB 发生)”的概率为

P (A·B)=P (A ) · P(B )=(1-0.6) ×(1-0.6)=0.16

P=1-P (AB )=1-0.16=0.84

例4.在一段线路中并联着三个独立自动控制的开关,只要其中有一个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是7.0,计算在这段时间内线路正常工作的概率.

解:分别记这段时间内开关JA,JB,JC 能够闭合为事件A ,B ,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是

∴这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是

自我检测

1. 设A 、B 为两个事件,且()0>A P ,若()31=AB P ,()3

2=A P ,则()=A B P ( ) A .21 B .92 C . 91 D .9

4 2.某人忘记了电话号码的最后一个数字,如果已知最后一个数字是不小于5的数,则他按对的概率是( )

A .

51 B .52 C .53 D .5

4 3.甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为 ( )

A .43

B .32

C .107

D .5

4 4,某产品的制作需三道工序,设这三道工序出现次品的概率分别是P1,P2,P3。假设三道工序互不影响,则制作出来的产品是正品的概率是 。

5.在5道题中,有3道选择题和2道解答题,如果不放回地依次抽取2道题:

(1)则第一次抽到选择题的概率为 .

(2)第一次和第二次都抽到选择题的概率为 .

(3)则在第一次抽到选择题的条件下,第二次抽到选择题的概率为

6.甲、乙两人分别对一目标射击1次,甲射中的概率为8.0,乙射中的概率为9.0,求

(1)2人都射中的概率; (2)2人中恰有1人射中的概率;

(3)2人至少有1人射中的概率;

答案:1,A 。2,A 。3,A 。4,(1-P1) (1-P2) (1-P3)。5,(1)0.6(2)0.3(3)0.5. 6,(1)0.72.(2)0.26.(3)0.98

小结:

1、条件概率的定义:设A ,B 为两个事件,则在事件A 发生的条件下,

事件B 发生的概率就叫做的条件概率

2、条件概率的计算公式; ()()()

n AB P B A n A =()()P AB P A =

3,相互独立事件的定义:

设A,B两个事件,如果事件A是否发生对事件B发生的概率没有影响(即P(AB)=P(A)P(B) ), 则称事件A与事件B相互独立.

作业;P60,1,2.

2. 2.1条件概率与事件的相互独立性

预习目标:1、了解条件概率的概念,能利用概率公式解决有关问题;

2、理解事件的相互独立性,掌握相互独立事件同时发生的概率. 学习重点:条件概率的计算公式及相互独立事件同时发生的概率的求法.

学习过程:

一.课前预习:内化知识 夯实基础

(一) 基本知识回顾

1. 的两个事件叫做相互独立事件.

2、两个相互独立事件同时发生的概率,等于每个事件发生的 ,即()=?B A P .

一般的,如果事件1A 、n A A 、2相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的 ,即()=???n A A A P 21 .

3、一般的,设A ,B 为两个事件,且()0>A P ,称 为在事件A 发生的条件下,事件B 发生的条件概率.

4、条件概率的性质:

(1) (2)

5、计算事件A 发生的条件下B 的条件概率,有2种方法:

(1)利用定义:()()()

A P A

B P A B P = (2)利用古典概型公式:()()()A n AB n A B P = 二.过关练习

1、在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为 ( )

A .

49 B .52 C .101 D .10

3 2、从一副不含大小王的52张扑克牌中不放回地抽取2张,每次抽1张,已知第一次抽到A ,第二次也抽到A 的概率为 . 3、掷骰子2次,每个结果以()y x ,记之,其中1x ,2x 分别表示第一颗,第二颗骰子的点数,设(){}10,2121=+=x x x x A ,(){}2121,x x x x B >=,则()=A B P . 4、事件A 、B 、C 相互独立,如果()61=?B A P ,()81=?C B P ,()81=??C B A P ,则()

=?B A P .

三.课堂互动:积极参与 领悟技巧

例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自

动提款机上取钱时,忘记了密码的最后一位数字.求

(3) 任意按最后一位数字,不超过2次就对的概率;

(4) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率.

例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩,

问这时另一个小孩是男孩的概率是多少?

例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算:

(1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率.

例4.在一段线路中并联着三个独立自动控制的开关,只要其中有一个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是7.0,计算在这段时间内线路正常工作的概率.

四.强化训练:自我检测 能力升级

1. 设A 、B 为两个事件,且()0>A P ,若()31=AB P ,()3

2=A P ,则()=A B P ( ) A .21 B .92 C . 91 D .94 2.某人忘记了电话号码的最后一个数字,如果已知最后一个数字是不小于5的数,则他按对的概率是( )

A .

51 B .52 C .53 D .5

4 3.甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为 ( )

A .43

B .32

C .107

D .5

4 4,某产品的制作需三道工序,设这三道工序出现次品的概率分别是P1,P2,P3。假设三道工序互不影响,则制作出来的产品是正品的概率是 。

5.在5道题中,有3道选择题和2道解答题,如果不放回地依次抽取2道题:

(1)则第一次抽到选择题的概率为 .

(2)第一次和第二次都抽到选择题的概率为 .

(3)则在第一次抽到选择题的条件下,第二次抽到选择题的概率为 .

6.甲、乙两人分别对一目标射击1次,甲射中的概率为8.0,乙射中的概率为9.0,求

(1)2人都射中的概率; (2)2人中恰有1人射中的概率;

(3)2人至少有1人射中的概率;

答案:答案:1,A 。2,A 。3,A 。4,(1-P1) (1-P2) (1-P3)。5,(1)0.6(2)0.3(3)0.5. 6,(1)0.72.(2)0.26.(3)0.98

小结:

1、 条件概率的定义

2、 条件概率的计算公式;

3、 相互独立事件的定义:

作业;P60,1,2.

2.2.2独立重复实验与二项分布

教学目标:

知识与技能:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。 过程与方法:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

教学重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题 教学难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算授课类型:新授课

课时安排:1课时

讲解新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验

2.独立重复试验的概率公式:

一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个

事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(.

它是[](1)n

P P -+展开式的第1k +项 3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是

k n k k n n q p C k P -==)(ξ,

(k =0,1,2,…,n ,p q -=1).

由于k n k k n q p C -恰好是二项展开式

011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--

中的各项的值,所以称这样的随机变量ξ服从二项分布,

记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ).

例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,

(1)恰有 8 次击中目标的概率;

(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)

解:设X 为击中目标的次数,则X ~B (10, 0.8 ) .

(1)在 10 次射击中,恰有 8 次击中目标的概率为

P (X = 8 ) =88108100.8(10.8)0.30C -??-≈.

(2)在 10 次射击中,至少有 8 次击中目标的概率为

P (X ≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )

8810899109101010101010100.8(10.8)0.8(10.8)0.8(10.8)C C C ---??-+??-+??-

0.68≈.

例2.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).

解:依题意,随机变量ξ~B ??? ??61,5.

∴P (ξ=4)=6561445???? ??C =777625,P (ξ=5)=55C 561??

? ??=77761. ∴P (ξ>3)=P(ξ=4)+P (ξ=5)=

3888

13 例3.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): (1)5次预报中恰有4次准确的概率;

(2)5次预报中至少有4次准确的概率

解:(1)记“预报1次,结果准确”为事件A .预报5次相当于5次独立重复试验,根据n 次独立重复试验中某事件恰好发生k 次的概率计算公式,5次预报中恰有4次准确的

概率4454455(4)0.8(10.8)

0.80.41P C -=??-=≈ 答:5次预报中恰有4次准确的概率约为0.41.

(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即

4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==??-+??- 450.80.80.4100.328=+≈+≈

答:5次预报中至少有4次准确的概率约为0.74. 例4.某车间的5台机床在1小时内需要工人照管的概率都是14

,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)

解:记事件A =“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验 1小时内5台机床中没有1台需要工人照管的概率55

513(0)(1)()44

P =-=,

1小时内5台机床中恰有1台需要工人照管的概率145511(1)(1)44P C =??-, 所以1小时内5台机床中至少2台需要工人照管的概率为

[]551(0)(1)P P P =-+≈ 答:1小时内5台机床中至少2台需要工人照管的概率约为0.37.

课堂练习:

1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )

()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p -

2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )

()A 32100.70.3C ?? ()B 12

30.70.3C ?? ()C 310 ()D 21733103A A A ? 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )

()A 33351A A - ()B 211232323355

A A A A A A ??+ ()C 331()5- ()D 22112333232()()()()5555

C C ??+?? 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )

()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()()33

C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)

6,种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:

⑴全部成活的概率; ⑵全部死亡的概率;

⑶恰好成活3棵的概率; ⑷至少成活4棵的概率

答案:1. C 2. D 3. A 4. A 5. 0.784。6,⑴5550.90.59049C =; ⑵

5550.10.00001C =;

⑶()332

5530.90.10.0729P C =?=; ⑷()()55450.91854P P P =+= 小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行试验中的事件是相互独立的生

2.如果1次试验中某事件发生的概率是P ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为k n k k n n P P C k P --=)1()(对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n k -次中A 没有发生,即A 发生,由()P A P =,()1P A =-所以上面的公式恰为n P P ])1[(+-展开式中的第1k +项,可见排列组合、二项式定理及概率间存在着密切的联系

六、课后作业:课本58页 练习1、2、3、4第60页 习题 2. 2 B 组2、3 七、板书设计(略)

八、课后记:

教学反思:

1. 理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。

2. 能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。

2.2.2独立重复实验与二项分布

学习目标:

1,理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。 2,能进行一些与n 次独立重复试验的模型及二项分布有关的概率

学习重点:理解n 次独立重复试验的模型及二项分布,并能解答一些简单的实际问题 学习难点:能进行一些与n 次独立重复试验的模型及二项分布有关的概率的计算学习过程:

一.课前预习:内化知识 夯实基础

1,n 次独立重复试验

在————————————条件下—————————————的n 次试验称为n 次独立重复试验。

2,独立重复试验概型有什么特点?

⑴在同样条件下重复地进行的一种试验;

⑵各次试验之间相互独立,互相之间没有影响;

⑶每一次试验只有两种结果,即某事要么发生,

要么不发生,并且任意一次试验中发生的概率

都是一样的。

3,应用二项分布解决实际问题的步骤:

(1)判断问题是否为独立重复试验;

(2)在不同的实际问题中找出概率模型

中的n 、k 、p ;

(3)运用公式求概率。

4,设诸葛亮解出题目的概率是0.9,三个臭皮匠各自独立解出的概率都是0.6,皮匠中至少一人解出题目即胜出比赛,诸葛亮和臭皮匠团队哪个胜出的可能性大? 解:设皮匠中解出题目的人数为X ,则X 的分布列:

至少一人解出的概率为: 解1:(直接法)P (x ≥1)= P (x=1)+P (x=2)+P (x=3)=0.936.

解2:(间接法)P(x ≥1)=1- P (x=0)=1-0.43

=0.936 因为0.936﹥0.9,所以臭皮匠团队胜出的可能性大

三.课堂互动:积极参与 领悟技巧

例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,

(1)恰有 8 次击中目标的概率;

(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)

解出的

0 1 2 3 概率P

00330.60.4C ??11230.60.4C ??22130.60.4C ??330

30.60.4C ??

例2.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).

例3.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):

(1)5次预报中恰有4次准确的概率;

(2)5次预报中至少有4次准确的概率 例4.某车间的5台机床在1小时内需要工人照管的概率都是14

,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)

课堂练习:

1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )

()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )

()A 32100.70.3C ?? ()B 12

30.70.3C ?? ()C 310 ()D 21733103A A A ? 3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( )

()A 33351A A - ()B 211232323355

A A A A A A ??+ ()C 331()5- ()D 22112333232()()()()5555

C C ??+?? 4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )

()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()()33

C 5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)

6,种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:

⑴全部成活的概率; ⑵全部死亡的概率;

⑶恰好成活3棵的概率; ⑷至少成活4棵的概率

小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行试验中的事件是相互独立的生

2.如果1次试验中某事件发生的概率是P ,那么n 次独立重复试验中这个事件恰好发生k 次

的概率为k n k k n n P P C k P --=)1()(对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n k -次中A 没有发生,即A 发生,由()P A P =,()1P A =-所以上面的公式恰为n P P ])1[(+-展开式中的第1k +项,可见排列组合、二项式定理及概率间存在着密切的联系

六、课后作业:课本58页 练习1、2、3、4第60页 习题 2. 2 B 组2、3

3.1随机事件的概率教案

3.1随机事件的概率教案 篇一:3.1.1随机事件的概率教案 3.1随机事件的概率(一) 教学目标 1.通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念及其意义; 2.根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键; 3.理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法,理解频率和概率的区别和联系; 4.通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识.教学重点 根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象,理解频率和概率的区别和联系. 教学难点 理解随机事件的频率定义及概率的统计定义及计算概率的方法,理解频率和概率的区别和联系. 教学过程 一、问题情景:

[设置情景]1名数学家=10个师 在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力。这句话有一个非同寻常的来历。 1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额。 为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性。一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大。 美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口。结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应。 在自然界和实际生活中,我们会遇到各种各样的现象。如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象。 确定性现象,一般有着较明显得内在规律,因此比较容易掌握它。而随机现象,由于它具有不确定性,因此它成为人们研究的重点。随机

事件的相互独立性教案定稿

2.2.2 事件的相互独立性 一、教学目标 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 二、教学重难点 教学重点:独立事件同时发生的概率。 教学难点:有关独立事件发生的概率计算。 三、教学过程 复习引入: 1. 事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件。 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作() P A. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;

4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形。 5. 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件。 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现 的可能性都相等,那么每个基本事件的概率都是1 n ,这种事件叫等可能性事件。 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率 ()m P A n =。 讲解新课: 1.相互独立事件的定义: 设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立. 事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件. 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立. 2.相互独立事件同时发生的概率:()()()P A B P A P B ?=? 问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ?.(简称积事件) 从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54?种等可能的结果。同时摸出白球的结果有32?种所以从这两个坛子里分别摸出1个球,它们

《随机事件及其概率》教学设计

《随机事件及其概率》教学设计 【教学目标】 知识与技能: 1.了解必然事件、不可能事件、随机事件的概念以及随机事件的发生存在规律性. 2.理解随机事件的概率的统计定义. 过程与方法: 通过概率统计定义的形成过程,提高探究问题、分析问题的能力,体会归纳过程,掌握对实验数据进行有效的分析和处理的方式和方法. 情感态度价值观: 通过概念的形成过程,渗透归纳思想,优化思维品质,体会“实践出真知”的含义,了解偶然性寓于必然性之中的辩证唯物主义思想. 教学重点:了解随机现象及其概率的意义. 教学难点:概率定义的形成过程. 【教学方法】 教学方法:引导发现法直观演示法 学习指导:学会学习 【教学手段】通过多媒体辅助教学 【教学过程】 一、问题情境: (1)、生活中到处充斥着随机现象,大到国计民生,小到日常生活,如08春节雪灾、四川地震、前不久英法核潜艇相撞事故;我们身边的出行、考试合格率、掷硬币、投骰子、摸彩票等等。随机事件的结果虽然无法预知,但是如果能够通

过数据加以衡量其发生可能性的大小,就可以采取有针对性的措施,做好预案,兴利除弊。那么,可以通过什么加以衡量随机事件发生可能性的大小呢? (2)、物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映. 引入课题:《随机事件及其概率》 例1试判断以下事件发生的可能性(必然发生?不可能发生?有可能发生?)(1)木柴燃烧,产生热量; (2)明天,地球仍会转动; (3)实心铁块丢入水中,铁块浮; (4)在标准大气压00C以下,雪融化; (5)转动转盘后,指针指向黄色区域; (6)两人各买1张彩票,均中奖. 二、概念提炼 我们将(1)(2)称作必然事件.(3)(4)称作不可能事件.(5)(6)称作随机事件.请学生归纳出这三种事件的定义.强调“在一定条件下”. 必然事件:在一定条件下必然要发生的事件叫必然事件. 不可能事件:在一定条件下不可能发生的事件叫不可能事件. 随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件. 分析事件(5)的条件和结果,给出试验的定义:在数学里对于某个事件让它的条件实现一次就称为做了一次试验. 引导学生分析随机事件和试验结果的关系:一个随机事件包括试验结果的一个或多个但不是全部. 三、试验研究随机事件发生的频率

北师大版高中数学选修条件概率与独立事件一教案

2.3条件概率 教学目标: 知识与技能:通过对具体情景的分析,了解条件概率的定义。 过程与方法:掌握一些简单的条件概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:条件概率定义的理解. 教学难点:概率计算公式的应用. 授课类型:新授课 . 课时安排:1课时. 教具:多媒体、实物投影仪. 教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。 教学过程: 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1 () 3 P B=. 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一 名同学抽到中奖奖券的概率为1 2 ,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽 到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) . 思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,

《随机事件发生的可能性》教案

《随机事件发生的可能性》教案 教学目标 知识与技能 理解随机事件发生的可能性大小. 过程与方法 通过举出生活中常见的例子,体会确定性事件和随机事件的概念,认识随机事件发生的可能性大小. 教学重点 不同的随机事件发生的可能性的大小有可能不同. 教学难点 理解随机事件发生的可能性的大小. 教学过程 一、随机事件发生的可能性大小 动脑筋: ①掷一枚均匀的硬币,是正面朝上的可能性大,还是反面朝上的可能性大? ②一个袋中有8个球,5红3白,球的大小和质地完全相同,搅均匀后从袋中任意取出一个球,是取出红球的可能性大,还是取出白球的可能性大? 【教学说明】教师引导学生讨论,分小组回答完成. 归纳:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性大小有可能不同,可能性的大小也就是概率的大小. 二、例题讲解 例1、如教材134页图13-1,是一个可以转动的转盘.盘面上有8个全等的扇形区域,其中1个是红色,2个是绿色,2个是白色,3个是黄色.用力转动转盘,当转盘停止后,指针对准哪种颜色区域的可能性最小?对准哪种颜色区域的可能性最大? 例2、任意掷一枚骰子,比较下列情况出现的可能性的大小. (1)面朝上的点数系小于2;(2)面朝上的点数是奇数 (3)面朝上的点数是偶数;(4)面朝上的点数大于2. 三、练一练 1、比较下列随机事件发生的可能性大小. (1)如图,转动一个能自由转动的转盘,指针指向红色区域和指向白色区域; (2)小明和小亮做掷硬币的游戏,他们商定:将一枚硬币掷两次,如果两次朝上的面相同,那么小明获胜;如果两次朝上的面不同,那么小亮获胜.谁获胜的可能性大?

2、10张扑克牌中有3张黑桃、2张方片、5张红桃.从中任意抽取一张,抽到哪一种花色牌的可能性最大?抽到哪一种花色牌的可能性最小? 四、师生互动,课堂小结 1.师生共同回顾事件的分类及概念,知道随机事件发生的可能性有大小. 2.通过这节课学习,你掌握了哪些知识?还有哪些疑问?请与同学们交流.

人教版高中数学高二选修2-3 第二章《事件的相互独立性》教案

2.2.2事件的相互独立性 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结 果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件 12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,, ,n A A A 彼此互斥,那么 12()n P A A A +++=12()()()n P A P A P A +++ 探究: (1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上 (2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这 两个坛子里分别摸出1个球,它们都是白球的概率是多少? 事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球, 得到白球

浙教版九下简单事件的概率教案(2课时)

2.1简单事件的概率(1) 教学目标: 1.了解事件A 发生的概率为()n m A P = ; 2.掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率. 3.通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力. 教学重点: 进一步经历用树状图、列表法计算随机事件发生的概率. 教学难点: 正确地利用列表法计算随机事件发生的概率. 教学过程: 一、实验操作,探索新知. 师:盒子中装有只有颜色不同的3个黑棋子和2个白棋子,从中摸出 一棋子,是黑棋子的可能性是多少? 生:由几名学生动手摸一摸. (教师准备一个不透明的小袋子,里面装有3个黑围棋和2个白围棋) 师:在数学中,我们把事件发生的可能性的大小称为事件发生的概率,如果事件发生的 各种可能结果的可能性相同,结果总数为n(事件A 发生的可能的结果总数为m), 事件A 发生的概率为()n m A P = . 二、新课教学. 1、热身练习: 如图,三色转盘,每个扇形的圆心角度数相等,让转盘自由转 动一次, “指针落在黄色区域”的概率是多少? 师:结合定义作详细分析,为两个例题教学做准备. (分析:转盘中红、黄、蓝三种颜色所在的扇形面积相同,即指针落在各种颜色区 域的可能性相同,所有可能的结果总数为3=n ,其中“指针落在黄色区域”的可能结 果总数为1=m .若记“指针落在黄色区域”为事件A ,则()n m A P = 3 1=.) 设计说明:通过练习,让学生及时回味知识的形成过程,使学生在学会数学的过程中会学数学. 2、例题讲解: 例1 如图,有甲、乙两个相同的转盘.让两个转盘分别自由转动一次,当转盘停止转动,求(1)转盘转动后所有可能的结果; (2)两个指针落在区域的颜色能配成紫色(红、蓝两色混合配成)的概率; (3)两个指针落在区域的颜色能配成绿色(黄、蓝两色混合配成)或紫色的概率; 例题解析: (1) 例1关键是让学生学会分步思考的方法. (2) 教师分析并让学生学 会画树状图(教师板演). 72°120° 120° 120°72°120°120°120°72°120° 120° 120°

教案.1随机事件与概率(公开课)

第二十五章概率初步 25.1随机事件与概率 学习目标: 1.了解随机事件、必然事件、不可能事件的概念。 2.理解概率的概念和意义。 学习重点与难点:对概率定义的初步理解。 学习过程:自学指导1:看课本125页到127页问题3上面的内容。 自学检测(1): 1、在一定条件下,有些事件____________________, 这样的事件称为必然事件。 2、在一定条件下,有些事件____________________, 这样的事件称为不可能事件。___________和____________统称为确定事件。 3、在一定条件下,有些事件__________________________________的事件,称为随机事件。 4.必然事件发生的可能性是,不可能事件发生的可能性是________,随机事件发生的可能性. 学习过程:自学指导2:看课本127页到131页问题3上面的内容 自学检测(2): 1、对于一个随机事件A,我们把刻画其发生可能性大小的_________,称为随机事 件A发生的概率。 2、一般地,如果在一次试验中,有______种可能的结果,并且它们发生的可能 性都相等,事件A包含其中的种结果,那么事件A发生的概率 P(A)= 。 达标测试 1.(梅州)下列事件中,必然事件是() A.任意掷一枚均匀的硬币,正面朝上 B.黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门 C.通常情况下,水往低处流 D.上学的路上一定能遇到同班同学 2.(台州市)下列事件是随机事件的是()

A .台州今年国庆节当天的最高气温是35℃ B .在一个装着白球和黑球的袋中摸球,摸出红球 C .抛掷一石头,石头终将落地 D .有一名运动员奔跑的速度是20米/秒 3.(甘肃省白银市)如图,小红和小丽在操场上做游戏,她们先在地上画出一个 圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,则投一次就正好投到圆圈内是( ) A .必然事件(必然发生的事件) B .不可能事件(不可能发生的事件) C .确定事件(必然发生或不可能发生的事件) D .不确定事件(随机事件) 4.(湘潭) 将五张分别印有北京2008年奥运会吉祥物 “贝贝,晶晶,欢欢,迎 迎,妮妮”的卡片(卡片的形状、大小一样,质地相同)放入盒中,从中随机抽取一张卡片印有“妮妮”的概率为( ) A. 1 2 B. 13 C. 14 D. 15 5、(宜宾市)一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 ( ) A. 9 4 B. 92 C. 3 1 D. 3 2 6.(广东湛江市)从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是 12 ,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 7.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 8. ( 宁夏回族自治区)从-1,1,2三个数中任取一个,作为一次函数y=kx+3的

04事件的相互独立性(教案)

2. 2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:4课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A ++ +=12()()()n P A P A P A +++

事件的概率 优质课教案

事件的概率 【教学目标】 1.通过实例理解确定现象与随机现象的含义和随机事件、必然事件、不可能事件的概念及其意义; 2.根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键; 3.理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法,理解频率和概率的区别和联系; 4.通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识。 【教学重难点】 1.根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象,理解频率和概率的区别和联系。 2.理解随机事件的频率定义及概率的统计定义及计算概率的方法,理解频率和概率的区别和联系。 【教学过程】 一、问题情景 设置情景:1名数学家=10个师。 在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力。这句话有一个非同寻常的来历。 1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额。 为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性。一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大。 美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口。结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应。 在自然界和实际生活中,我们会遇到各种各样的现象。如果从结果能否预知的角度来看,

选修2-3教案2.2.2 事件的独立性

§2.2.2 事件的独立性 教学目标 (1)理解两个事件相互独立的概念; (2)能进行一些与事件独立有关的概率的计算. 教学重点,难点:理解事件的独立性,会求一些简单问题的概率. 教学过程 一.问题情境 1.情境:抛掷一枚质地均匀的硬币两次. 在第一次出现正面向上的条件下,第二次出现正面向上的概率是多少? 2.问题:第一次出现正面向上的条件,对第二次出现正面向上的概率是否产生影响. 二.学生活动 设B 表示事件“第一次正面向上”, A 表示事件“第二次正面向上”,由古典概型知 ()12P A = ,()12P B =,()1 4 P AB =, 所以() ()() 1 2 P AB P A B P B = = . 即()() P A P A B =,这说明事件B 的发生不影响事件A 发生的概率. 三.建构数学 1.两个事件的独立性 一般地,若事件A ,B 满足() ()P A B P A =,则称事件A ,B 独立. 当A ,B 独立时,若()0P A >,因为() ()()()P AB P A B P A P B = =, 所以 ()()()P AB P A P B =,反过来() ()() ()P AB P B A P B P A = =, 即B ,A 也独立.这说明A 与B 独立是相互的,此时事件A 和B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率之积,即 ()()()P AB P A P B =.(*) 若我们认为任何事件与必然事件相独立,任何事件与不可能事件相独立,那么两个事件 A , B 相互独立的充要条件是()()()P AB P A P B =.今后我们将遵循此约定. 事实上,若B φ=,则()0P B =,同时就有()0P AB =,此时不论A 是什么事件,都有(*)式成立,亦即任何事件都与φ独立.同理任何事件也与必然事件Ω独立. 2. 个事件的独立性可以推广到(2)n n >个事件的独立性,且若事件12,,,n A A A 相互独立, 则这n 个事件同时发生的概率()()()()1212n n P A A A P A P A P A = .

随机事件及其概率教案(精)

<随机事件及其概率>教案 (一)教学目标: 1、知识目标: 使学生掌握必然事件,不可能事件,随机事件的概念及概率的统计定义,并了解实际生活中的随机现象,能用概率的知识初步解释这些现象 2、能力目标: 通过自主探究,动手实践的方法使学生理解相关概念,使学生学会主动探究问题,自主实践,分析问题,总结问题。 3、德育目标: 1.培养学生的辩证唯物主义观点. 2.增强学生的科学意识 (二)教学重点与难点: 重点:理解概率统计定义。 难点:认识频率与概率之间的联系与区别。 (三)教学过程: 一、引入新课: 试验1:扔钥匙,钥匙下落。 试验2:掷色子,数字几朝上。 讨论:下列事件能否发生? (1)“导体通电时,发热”---------------必然发生(2)“抛一石块,下 落”---------------必然发生 (3)“在常温下,铁熔化” -------------不可能发生 (4)“某人射击一次,中靶” -----可能发生也可能不发生(5)“掷一枚硬币,国徽朝上” -----可能发生也可能不发生(6)“在标准大气压下且温度低于0℃时,冰融化” ---不可能发生思考: 1、“结果”是否发生与“一定条件”有无直接关系? 2、按事件发生的结果,事件可以如何来分类? 二、新授: (一)随机事件: 定义1、在一定条件下必然要发生的事件叫必然事件。 定义2、在一定条件下不可能发生的事件叫不可能事件。 定义3、在一定条件下可能发生也可能不发生的事件叫随机事件。 例1、指出下列事件是必然事件,不可能事件,还是随机事件: (1)扬中明年1月1日刮西北风; x (2)当x是实数时,20 (3)手电筒的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%。 (5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。讨论:各举一个你生活或学习中的必然事件、不可能事件、随机事件的例子 做一做:(投币实验)抛掷一枚硬币,观察它落地时哪一面朝上?(两人一组) 1.你的结果和其他同学一致吗?为什么会出现这样的情况? 2.重复试验10次并记录结果(正面朝上的次数)。(一人试验,一人记录)

随机事件的概率教案(绝对经典)

§12.1 随机事件的概率 会这样考 1.考查随机事件的概率,以选择或填空题形式出现;2.考查互斥事件、对立事件的概率;3.和统计知识相结合,考查概率与统计的综合应用. 1.随机事件和确定事件 (1)在条件S 下,一定会发生的事件,叫作相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件,叫作相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件. (4)在条件S 下可能发生也可能不发生的事件,叫作相对于条件S 的随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C …表示. 2.频率与概率 (1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n 为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率. 3. 4.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式 ①如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ).

②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). ③事件A 的对立事件一般记为A , 则P (A )=1-P (A ) [难点正本 疑点清源] 1.频率和概率 (1)频率与概率有本质的区别,不可混为一谈.频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次 数足够多,所得频率就可以近似地当作随机事件的概率. (2)概率从数量上反映了一个事件发生的可能性的大小;概率的定义实际上也是求一个事件的概率的基本方法. 2.互斥事件与对立事件 互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件. 1.给出下列三个命题,其中正确命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验, 结果3次出现正面,因此正面出现的概率是3 7 ;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,3 7 是频率而非概率;③错,频率不等于概率,这是两 个不同的概念. 2.在n 次重复进行的试验中,事件A 发生的频率为m n ,当n 很大时,P (A )与m n 的关系是( ) A .P (A )≈m n B .P (A )m n D .P (A )=m n 答案 A 解析 在n 次重复进行的试验中,试验次数很大时,频率可近似当作随机事件的概率. 3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有两个红球 答案 D 4.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________. 答案 0.5. 题型一 事件的关系及运算 例1 判断下列给出的每对事件,是互斥事件还是对立事件,并说明理由.从40张扑克牌(红桃、黑桃、 方块、梅花点数从1~10各10张)中,任取一张. (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”. 解 (1)是互斥事件,不是对立事件. (2)既是互斥事件,又是对立事件.

等可能事件的概率教案

课题:等可能性事件的概率 教材:人民教育出版社的全日制普通高级中学教科书(试验修订本.必修)《数学》第二册(下B)第十一章概率第一节(第二课时) 教学目标; (1)知识与技能目标:了解等可能性事件的概率的意义,初步运用排列、组合的公式和枚举法计算一些等可能性事件的概率。(2)过程和方法目标:通过学习、生活中的实际问题的引入,让数学走进生活将生活问题由对具体事例的感性认识上升到对定义的理性认识,可培养学生的梳理归纳能力;通过归纳定义后再加以应用可培养学生的信息迁移和类比推理能力;通过计算等可能性事件的概率,提高综合运用排列、组合知识的能力和分析问题、解决问题的能力。(3)情感与态度目标:营造亲切、和谐的氛围,以“趣”激学;随机事件的发生既有随机性,又有规律性,使学生了解偶然性寓于必然性之中的辩证思想;引导学生树立科学的人生观和价值观,培养学生的综合素质。 教学重点: 等可能性事件的概率的意义及其求法。 教学难点: 等可能性事件概率计算公式的重要前提:每个结果出现的可能性必须相同。 教学方法: 启发式探索法 教学手段: 计算机辅助教学、实物展示台 教具准备: 转盘一个 教学过程: 附:课前兴趣阅读: 生活中的数学 1、你做过这样的调查吗?我们班在座的同学中至少有两位同学在同一天生日的可能性 多大? 2、无为一中进行演讲比赛,参赛选手的演讲顺序通过抽签决定,抽签时有先有后,你 认为公平吗? 同学们,要想解决上面的问题,就让我们继续学习概率吧! 一、复习旧知: 抛掷一枚均匀硬币, (1)出现正面向上;(2)出现正面向上或反面向上;(3)出现正面向上且反面向上. 各是什么事件?概率分别是多少?(学生回答)(1)随机事件,概率是1/2 (2)必然事件,概率是 1 (3)不可能事件,概率是0

《独立性检验》教案)

《独立性检验》教案 一、教学目标 1、知识与技能: 通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题. 2、过程与方法: 通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题。通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据,即样本.问题是这种来自于样本的印象能够在多大程度上代表总体?这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力. 3、情感态度价值观: 通过本节课的学习,加强数学与现实生活的联系。以科学的态度评价两个分类变量有关系的可能性。培养学生运用所学知识,解决实际问题的能力。对问题的自主探究,提高学生独立思考问题的能力;让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性。教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。 二、教学重点 理解独立性检验的基本思想及实施步骤. 三、教学难点 1.了解独立性检验的基本思想; 2.了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。 四、教学方法 以“问题串”的形式,层层设疑,诱思探究。用“讲授法”,循序渐进,引导学生,步步为营,螺蜁上升探究本节课的知识内容. 五、教学过程设计

环 节 互动意图创 设情景、引入新课课下预习,搜集有关分类变量有无关系的一些实例。 情境引入、提出问题:1、吸烟与患肺癌有关系吗? 2、你有多大程度把握吸烟与患肺癌有关? 组织引 导学生 课下预 习问题 背景, 初步明 确定要 解决 “吸烟 与患肺 癌”之 间的关 系问 题. 好的课 堂情景 引入, 能激发 学生求 知欲, 是新问 题能够 顺利解 决的前 提条件 之一. 初步探索、展示内涵 变量有定量变量、分类变量,定量变量—回归分析;分类变 量—独立性检验,引出课题。 问题1、我们在研究“吸烟与患肺癌的关系”时,需要关注哪一些 量呢? 列联表:分类变量的汇总统计表(频数表). 一般我们只 研究每个分类变量只取两个值,这样的列联表称为2*2列联表 . 如吸烟与患肺癌的列联表: 不患肺癌患肺癌总计 不吸烟7775 42 7817 吸烟2099 49 2148 总计9874 91 9965 问题2:由以上列联表,我们估计吸烟是否对患肺癌有影响?①在 不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比 例为________. 1,教师 通过举 例,引 入分类 变量这 个新概 念.引 出课题 2,组织 学生填 表讨论 问题, 初步得 到问题 的结 论. 从实际 问题出 发引入 概念, 提出问 题有利 于学生 明白我 们要学 习这节 课的必 要性。。

事件的相互独立性的教案

事件的相互独立性的教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2.2.2事件的相互独立性 一、教学目标: 1、知识与技能: ①理解事件独立性的概念 ②相互独立事件同时发生的概率公式 2、过程与方法: 通过实例探究事件独立性的过程,学会判断事件相 互独立性的方法。 3、情感态度价值观:通过本节的学习,体会数学来源于实践又服务于 实践,发现数学的应用意识。 二、教学重点:件事相互独立性的概念 三、教学难点:相互独立事件同时发生的概率公式 四,教学过程: 1、复习回顾:(1)条件概率 (2)条件概率计算公式 (3)互斥事件及和事件的概率计算公式 2、思考探究: 三张奖券只有一张可以中奖,现分别由三名同学有放回地抽取,事件A 为“第一位同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”。 事件A 的发生会影响事件B 发生的概率吗? 分析:事件A 的发生不会影响事件B 发生的概率。于是: 3、事件的相互独立性 设A ,B 为两个事件,如果 P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。 即事件A (或B )是否发生,对事件B (或A )发生的概率没有影响,这样两个事件叫做相互独立事件。 注:①如果A 与B 相互独立,那么A 与B ,B 与A ,A 与B 都是相互独立的。(举例说明) ②推广:如果事件12,,...n A A A 相互独立,那么 1212(...)()()...()n n P A A A P A P A P A = (|)()P B A P B =()()(|)P AB P A P B A =()()() P AB P A P B ∴=

高中数学教案——随机事件的概率 第四课时

课 题: 11.1随机事件的概率 (四) 教学目的: 1 掌握求解等可能性事件的概率的基本方法; 2.能正确地对一些较复杂的等可能性事件进行分析 教学重点:等可能性事件及其概率的分析和求解 教学难点:对事件的“等可能性”的准确理解 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件: 一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 例如:投掷硬币出现2种结果叫2个基本事件,通常试验中的某一事件A 由几个基本事件组成(例如:投掷一枚骰子出现正面是3的倍数这一事件由“正面是3”、“正面是6”这两个基本事件组成). 6.等可能性事件: 如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率: 如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如

事件A 事件I 果事件A 包含m 个结果,那么事件A 的概率()m P A n =. ①一个基本事件是一次试验的结果,且每个基本事件的概率都是1n ,即是等可能的; ②公式()m P A n =是求解公式,也是等可能性事件的概率的定义,它与随机事件的频率有本质区别; ③可以从集合的观点来考察事件A 的概率:()()()card A P A card I =8.等可能性事件的概率公式及一般求解方法 二、讲解范例: 例1.4个球投入5个盒子中,求: (1)每个盒子最多1个球的概率; (2)恰有一个盒子放2个球,其余盒子最多放1个球的概率 解:4个球投入5个盒子中,每个球有5个选法,4个球有4 5种不同选择结果, (1)相当于从5个盒子中选4个盒子,每个盒子放1个球,有45A 种不同选择结果, ∴所求概率为454245125 A =. (2)先从5个盒子中选1个,从4个球中选2个放入其中,其余2个球放入剩 余的4个盒子中的2个中,有122544 C C A ??个不同结果, ∴所求概率为1225444725125 C C A ??=. 点评:本题属于古典概率的另一基本题型——盒子投球问题,所投的球可以是真实的球,还可以是学生、旅客等,盒子可以是房间、教室、座位等例2.袋中有4个白球和5个黑球,连续从中取出3个球,计算: (1)“取后放回,且顺序为黑白黑”的概率; (2)“取后不放回,且取出2黑1白”的概率 解:(1)每一次取球都有9种方法,共有3 9种结果,

教案及说课稿:等可能性事件的概率

课题:等可能性事件的概率(一) 一、教学目标: (1)知识与技能目标:了解等可能性事件的概率的意义,运用枚举法计算一些等可能性事件的概率。 (2)过程和方法目标:通过生活中实际问题的引入来创设情境,将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升;在归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三。通过枚举法、图表法、排列的基础知识来计算一些等可能性事件的概率,学生对古典概型有个更深刻的理解。 (3)情感与态度目标:感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。了解部分数学史,知道随机事件的发生既有随机性,又有规律性,了解偶然性寓于必然性之中的辩证思想,培养学生的综合素质。 二、教学重点: 等可能性事件的概率的意义及其求法。 三、教学难点: 等可能性事件的判断以及如何求某个事件所包含的基本事件数。 四、教学方法: 启发式探索法 五、教学过程: 1、复习引入、创设情境 问题1、(师)前面我们学习了随机事件及其概率,请问:事件分为哪三类? (生)必然事件,随机事件,不可能事件。 (师)好! 问题2、(师)我们知道,随机事件的概率一般可以通过大量重复实验来求值。 是不是所有的随机事件都需要大量的重复试验来求得呢? (生)不一定。 (师)好!请同学们观看视屏(播足球比赛前裁判抛硬币的视频)。 问题3、(师)刚才的视屏是足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么? 2、逐层探索,构建新知 问题4、(师)这是一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少? 通过前面抛硬币和掷骰子这两个随机事件的实例,大家观察到只做了一次试验就可以求出其概率,其结果与大量重复试验相吻合。 问题5、(师)这两个随机事件有什么共性呢?(尽量把抽象的问题具体化)(生)(1)、一次试验可能出现的结果是有限个的;(2)、每个结果出现的可能性相同。 我们把具有这两个特征的随机事件叫做等可能性事件;为了方便描述等可能性事件的概念,我们引进一个概念----基本事件的概念。

相关文档
最新文档