高等数学第二型曲面积分

合集下载

高等数学第10章 曲线积分与曲面积分

高等数学第10章 曲线积分与曲面积分
79
80
81
82
10.7.2 旋度的定义及其物理意义
83
84
85
66
67
实际上,我们常常碰到的曲面是双侧曲面,但单侧 曲面也存在,最有名的单侧曲面是拓扑学中的莫比乌斯 带,如图10.28所示.它的产生是将长方形纸条ABCD 先 扭转一次,然后使B与D,及A与C粘合起来构成的一个 非闭的环带.若想象一只蚂蚁从环带上一侧的某一点出发, 蚂蚁可以不用跨越环带的边界而到达环带的另一侧,然 后再回到起点;或者用一种颜色涂这个环带,不用越过 边界,可以涂满环带的两侧.显然这是双侧曲面不可能出 现的现象
第10章 曲线积分与曲面积分
解决许多几何、物理以及其他实际问题时,不仅需 要用到重积分,而且还需要将积分区域推广到一段曲线 弧或一片曲面上,这样推广后的积分称为曲线积分和曲 面积分.本章还将介绍格林公式、高斯公式及斯托克斯公 式,这三个公式刻画了不同类型的积分之间的内在联系, 并且在微积分、场论及其他学科中有着广泛的应用。
46
47
48
49
50
51
10.4 第一型曲面积分
通过讨论非均匀密度的空间曲面壳质量这一物理问 题,本节引入第一型曲面积分的概念并研究了相关性质。 10.4.1 实例 质量分布在可求面积的曲面壳上,曲面壳占有空间 曲面Σ,其密度函数为ρ(x,y,z),求曲面壳的质量.
52
53
54
55
15
16
17
18
19
20
21
10.2.3 向量值函数在有向曲线上的积分的计算法 设向量值函数F(x,y,z)=P(x,y,z)i+Q(x, y,z)j+R(x,y,z)k在有向曲线Γ上有定义且连续, 有向曲线弧Γ为简单曲线,它的参数方程为

曲面积分(第十讲)

曲面积分(第十讲)
a
- x2
= ò dq ò (
0 0
- r 2 cos 2 q a -r
2 a 2
+ 2a 2 - 2a a 2 - r 2 - r 2 )rdr
= -4 ò 2 cos 2 q dq ò
0
p
0
1 + p a3 6 a -r
2 2
r 3 dr
p p 1 1 = -4a 3 ò 2 cos 2 q dq ò 2 sin 3 tdt + p a 3 = - p a3 0 0 6 2
r ur uuuuu I = òò Pdydz + Qdxdz + Rdxdy = òò {P, Q, R} ×{dydz, dxdz, dxdy} = òò F × n 0 dS
S
S
U
注意:曲面前侧取“正” ,后侧取“负” ;右侧取“正” ,左侧取“负” ;上侧取“正” ,下侧 取“负” . 三、向量点积法(转换投影法)
2 2 2
曲面 S 在 xoy 平面的投影域为 Dxy = {( y, z ) | x + y £ 1} ,
2 2

òò xdydz = òò
S
S前(向后)
xdydz + òò xdydz
S后
D yz
is
Dyz
= - òò a 2 - y 2 - z 2 dydz - òò a 2 - y 2 - z 2 dydz
曲面 S:z = - a - x - y ,
2 2 2
U
r n = {- f x¢ , - f y¢ ,1} = {
nR
=
1 1 ( z + a ) 2 dxdy = òò (a - a 2 - x 2 - y 2 ) 2 dxdy òò a S a Dxy

高等数学 曲线积分和曲面积分 (10.2.2)--第二类曲线积分和第二类曲面积分

高等数学  曲线积分和曲面积分  (10.2.2)--第二类曲线积分和第二类曲面积分

习题10.21. 把下列第二类曲线积分化为第一类曲线积分.(1) 2d d Cx y x x y -⎰, 其中C 为曲线3y x =上从点(1,1)--到点(1,1)的弧段; (2) d d d LP x Q y R z ++⎰, 其中L 为曲线32===t z t y t x ,,上相应于参数t 从0变到1的弧段.2. 计算曲线积分22()d d OAx y x xy y -+⎰,其中O 为坐标原点,点A 的坐标为(1,1):(1) OA 为直线段x y =; (2) OA 为抛物线段2=x y ; (3) OA 为0=y ,1=x 的折线段. 3. 计算下列第二类曲线积分:(1)d d ||||C x yx y ++⎰,其中C 为1||y x =-上从点(1,0)经点(0,1)到点(1,0)-的折线段;(2) d d C y x x y +⎰, 其中C 为⎩⎨⎧==t a y t a x sin ,cos π:04t ⎛⎫→ ⎪⎝⎭; (3) 222()d 2d d Ly z x yz y x z -+-⎰, 其中L 为⎪⎩⎪⎨⎧===32t z t y t x ,,(:01)t →.(4) ()d ()d ()d L z y x x z y y x z -+-+-⎰, 其中L 为椭圆221,2,x y x y z ⎧+=⎨-+=⎩且从z 轴正向看去, L 取顺时针方向.4. 计算下列变力F 在质点沿指定曲线移动过程中所作的功.(1) ),(2xy y x -=F , 沿平面曲线34()(,)t t t =r 从参数0t =到1t =的点. (2) ),,(22z xy x =F , 沿空间曲线2()(sin ,cos ,)t t t t =r 从参数0t =到π2t =的点. 5. 设变力F 在点(,)M x y 处的大小||||||||k =F r ,方向与r 成2π的角, 其中OM =r (图10-38),试求当质点沿下列曲线从点)0,(a A 移到点),(a B 0时F 所作的功:(1) 圆周222=+a y x 在第一象限内的弧段; (2) 星形线323232=+a y x 在第一象限内的弧段.6. 在过点(0,0)O 和(π,0)A 的曲线族sin (0)y a x a =>中,求一条曲线C ,使沿该曲线从O 到A 的积分3(1)d (2)d Cy x x y y +++⎰的值最小.7. 把第二类曲面积分(,,)d d (,,)d d (,,)d d P x y z y z Q x y z z x R x y z x y ∑++⎰⎰化为第一类曲面积分:(1) ∑为平面x z a +=被柱面222x y a +=所截下的部分, 并取上侧;图 10-38xyOM (x , y )Fr(2) ∑为抛物面222y x z =+被平面2y =所截下的部分, 并取左侧. 8. 计算下列第二类曲面积分:(1) 2d d z x y ∑⎰⎰, 其中∑为平面1x y z ++=位于第一卦限部分, 并取上侧;(2) 22d d xy z x y ∑⎰⎰, 其中∑为球面2222=++R z y x 的下半部分, 并取外侧;(3)2e d d e d d d d yxy z y z x xy x y ∑++⎰⎰, 其中∑为抛物面22z x y =+ (01x ≤≤,1≤≤0y ), 并取上侧;(4)222d d d d d d x y z y z x z x y ∑++⎰⎰, 其中∑为球面2221xy z ++=位于第二卦限部分,并取外侧; (5)d d d d d d xy y z yz z x zx x y ∑++⎰⎰, 其中∑为平面0x =, 0y =, 0z =和1x y z ++=所围立体的表面, 并取外侧;(6) 2222d d d d x y z z x y x y z ∑+++⎰⎰, 其中∑为圆柱面222x y R +=与平面z R =和z R =- (0)R >所围立体的表面, 并取外侧;(7)d d (1)d d y z x z x y ∑-++⎰⎰, 其中∑为圆柱面4=+22y x被平面2=+z x 和0=z 所截下的部分, 并取外侧; (8)2d d d d d d y y z x z x z x y ∑++⎰⎰, 其中∑为螺旋面cos x u v =,sin y u v =,z v =,(01u ≤≤, 0πv ≤≤), 并取上侧.9. 计算下列流场在单位时间内通过曲面∑流向指定侧的流量:(1) ),(),,(222z y x z y x =v , ∑为球面1=++222z y x 第一卦限部分, 流向上侧; (2) ),,(),,(22y xy x z y x =v , ∑为曲面22+=y x z 和平面1=z 所围立体的表面, 流向外侧.。

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

第十章 曲线积分与曲面积分曲线积分一 基本概念定义1 第一类曲线积分(对弧长的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d lim(,)nkkkL AB T k f x y s f sλξη→==∆∑⎰(2)空间曲线()L AB 的积分:()()01(,,)d lim(,,)nkkkk L AB T k f x y z s f s λξηζ→==∆∑⎰其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段曲线弧长的最大值,(,)k k ξη或(,,)k k k ξηζ是第k 段弧上的任意一点。

物理意义:第一类曲线积分表示物质曲线L 的质量,其中被积函数(,)f x y 或(,,)f x y z 表示曲线的线密度。

定义2 第二类曲线积分(对坐标的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d (,)d lim[(,)(,)]nkkkk k k L AB T k P x y x Q x y y f xf y λξηξη→=+=∆+∆∑⎰(2)空间曲线()L AB 的积分:()(,,)d (,,)d (,,)d L AB P x y z x Q x y z y R x y z z ++⎰()01lim[(,,)(,,)(,,)]nkkkk k k k k k k k k T k f x f y f z λξηζξηζξηζ→==∆+∆+∆∑其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段的最大弧长,(,)k k ξη是第k 段弧上的任意一点。

物理意义:第二类曲线积分表示变力F 沿曲线L 所作的功,被积函数(,),(,)P x y Q x y 或(,,),(,,),(,,)P x y z Q x y z R x y z 表示力F 在各坐标轴上的分量。

二 基本结论定理1 (第一类曲线积分的性质) (1)无向性()()(,)d (,)d L AB L BA f x y s f x y s =⎰⎰.(2)线性性质 (1)(,)d (,)d LLk f x y s k f x y s =⎰⎰;(2)[(,)(,)]d (,)d (,)d LLLf x yg x y s f x y s g x y s ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y s f x y s f x y s =+⎰⎰⎰.(4)弧长公式d Ls L =⎰(L 表示曲线L 的弧长).(5)恒等变换 积函数可用积分曲线方程作变换. (6)奇偶性与对称性 如果积分弧段()L AB 关于y 轴对称,()(,)d L AB f x y s ⎰存在,则()()0,(,)(,)d 2(,)d (,)L AB L OB f x y x f x y s f x y s f x y x ⎧⎪=⎨⎪⎩⎰⎰关于是奇函数,,关于是偶函数.其中O 点是曲线弧段()L AB 与y 轴的交点.定理2 (第二类曲线积分的性质) (1)有向性()()(,)d (,)d L AB L BA P x y x P x y x =-⎰⎰.(2)线性性质 (1)(,)d (,)d LLkf x y x k f x y x =⎰⎰;(2) [(,)(,)]d (,)d (,)d L L Lf x yg x y x f x y x g x y x ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y x f x y x f x y x =+⎰⎰⎰.定理3 (第一类曲线积分与第二类曲线积分的关系)()()d d d d d d d d d d L AB L AB xy z P x Q y R z P Q R s ss s ⎛⎫++=++ ⎪⎝⎭⎰⎰()(cos cos cos )d L AB P Q R s αβγ=++⎰()d L AB =⋅⎰F s其中cos ,cos ,cos αβγ是曲线AB 上的点的切线的方向余弦,且d cos d ,d cos d ,d cos d x s y s z s αβγ===一般地,积分曲线的方向余弦是变量。

高数考研中有关曲面积分问题的求解方法

高数考研中有关曲面积分问题的求解方法

分等。 笔者以近年研究生入学考试试题为例详细论述曲面积
分有关问题的求解方法。
1.利 用 公 式 转 化 为 二 重 积 分
曲面积分的基本的方法都是化为投影域上的二重积分来
计算。
第一型曲面积分的投影法的公式 :设 曲 面S的 方 程 为z=z
(x,y),则 :
姨%
22
蘩蘩f(x,y,z)dS=蘩蘩f(x,y,z(z,y)) 1+zx+zy dxdy。
V 坠x 坠y 坠z
S
(2)
其 中 (cosα,cosβ,cosγ)是 S外 法 线 的 单 位 向 量 。
应 用 高 斯 公 式 时 ,应 注 意 条 件 :①S必 须 是 封 闭 曲 面 ,若 所
讨论的曲面不是封闭曲面,应当适当补上某块曲面,使它成为
封闭曲面 ;②P、Q、R在V上 连 续 且 偏 导 数 也 连 续 ,若 它 们 及 其
3
3
2
22
蘩蘩 2x dydz+2y dzdx+3(z -1)dxdy=蘩蘩蘩6(x +y +z)dxdydz
∑+∑1
Ω

1
2
1-r
2
=6蘩0 dθ蘩0dr0 (z+r )rdz
1
=12π蘩0[
1 2
22 3
2
r(1-r ) +r (1-r )]dr=2π,
3
3
2
而蘩蘩2x dydz+2y dzdx+3(z -1)dxdy=- 蘩蘩 -3dxdy=3π,
蘩蘩 x + y
dxdy =

D
%

2

《高等数学教学课件》2011 第二节 第二型曲线积分

《高等数学教学课件》2011 第二节  第二型曲线积分

x2(t) y2(t)
其中是 s 与x轴正向的夹角.
x2(t) y2(t)
cos sgn( )x(t) sin sgn( ) y(t) ;
x2(t) y2(t)
x2(t) y2(t)
其中是 s 与x轴正向的夹角. 由定义得:
P( x, y)dx Q( x, y)dy [P( x, y)cos Q( x, y)sin]ds
的切向量的方向余弦为cos ,cos ,cos ,则上的三个第
二型(对坐标的)曲线积分可定义为:
P( x, y, z)dx P( x, y, z)cosds
Q( x, y, z)dy Q( x, y, z)cos ds
R( x, y, z)dz R( x, y, z)cosds 即 P( x, y, z)dx Q( x, y, z)dy R( x, y, z)dz
若曲线L
:
x y
x(t ) ,
y(t )
t

f ( x, y)ds
f [ x(t ), y(t )]
x 2 (t ) y 2 (t )dt
L
使用上述计算方法应注意 :
(1).曲线L必须表示为参数方程的形式.
(2).定限后的下限一定小于上限 .
特别地,当曲线L可用显函数表示为L : y y( x), x [a, b]
定理、设L是光滑的有向曲线(从A到B), L可用参数方程
表示为:
L
:
x
y
x(t ) ,
y(t )
t由变化到 , 其中t 对应L的
起点A( x( ), y( )), t 对应于L的终点B( x( ), y( )),
函数x(t ), y(t )导数连续, 设向量值函数

高等数学对坐标的曲面积分

高等数学对坐标的曲面积分

cos
1 1 x2 y2
(z2 x)( x)dxdy
dS
1
z
2 x
z
2 y
dxdy
dxdy
cos
对坐标的曲面积分
(z2 x)dydz (z2 x)( x)dxdy
(z2 x)由dy对dz称性zdxdy
z 1(x2 y2)
[(z2 x14)x((xx2 )yz2 )]d2dxxddyy 0
Q( x, y, z)dzdx Q( x, y, z)cos dS
两类曲面积分之间的联系
Pdydz Qdzdx Rdxdy
(P cos Q cos Rcos )dS
其中cos、cos 、cos 是有向曲面Σ在点 ( x, y, z)
处的法向量的方向余弦. 不论哪一侧都成立.
对坐标的曲面积分
xyzdxdy xyzdxdy xyzdxdy
2
1
xy 1 x2 y2dxdy xy( 1 x2 y2 )dxdy
Dxy
Dxy
对坐标的曲面积分
Dxy : x2 y2 1( x 0, y 0)
xy 1 x2 y2dxdy xy( 1 x2 y2 )dxdy
对坐标的曲面积分 Mobius(1790--1868) 19世纪德国数学家
(2) 单侧曲面
莫比乌斯(Mobius)带.
它是由一张长方形纸条ABCD, 扭转一下,
将A、D粘在一起,B、C 粘在一起形成的环
行带.小毛虫在莫比乌斯带上,不通过边界可以
爬到任何一点去.
这在双侧曲面上是不能实现的.
决定了侧的曲面称为 有向曲面.
i 1
2. 存在条件
当P( x, y, z),Q( x, y, z), R( x, y, z) 在有向光滑

高等数学-第十一章-曲线积分与曲面积分

高等数学-第十一章-曲线积分与曲面积分
⑥牢固掌握 Gauss 公式及其成立条件
对弧长的曲线积分及其计算
y
B
一、问题的提出
实例:曲线形构件的质量
L Mn1
(i,i)
M2
Mi
Mi1
匀质之质量 M s. A M 1
o
x
分割 M 1 , M 2 , , M n 1 s i ,
取 (i,i) s i, M i (i,i) s i.
B
M
实L 例:A : 变B 力,沿曲 线所作的功 ALMM1i1
M
yi 2xi
iMn1
F ( x , y ) P ( x , y ) i Q ( x , y ) j o
x
常力所作的功 W F A . B
分割 A M 0 , M 1 ( x 1 , y 1 ) , M n , 1 ( x n 1 , y n 1 ) M n B , .
3
3
ds
2a3 . 3
(2a d,s球面大) 圆周长
注 关于对弧长的曲线积分的对称性
对 Lf(x,y)ds
①若 L 关于 y 轴对称
( 1 ) 当 f ( x , y ) f ( x , y ) 时 L f ( x , y ) d 0 s
( 2 ) 当 f ( x , y ) f ( x , y ) 时 f ( x , y ) d 2 f s ( x , y ) d
n
f(x ,y ,z)d s l i0im 1f(i,i,i) si.
注意:
1 . 若 L ( 或 ) 是分 , (L 段 L 1 L 2 ) 光
f ( x , y ) d s f ( x , y ) d s f ( x , y ) d . s
L 1 L 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+ R(i ,i , i ) cos i Si
n
lim
n
0 i 1
第二型曲面积分的定义 设S是一个分片光滑的双侧曲面, 在S上选定了一侧, 记选定一侧的单位法向量为 n P
假设在S上给定了一个向量函数 F x, y, z ,
在 Si 上任取一点 Mi i ,i , i , 作和式
v

A
(2) 设稳定流动的不可压缩流体 (假定密度为1)
v ( x , y , z ) P ( x , y , z )i + Q ( x , y , z ) j + R ( x , y , z ) k
给出. S是速度场中的一片有向曲面, 函数
的速度场由
P ( x , y , z ), Q ( x , y , z ), R ( x , y , z )z
i 1
i 1 n
n
+ R( i , i , i ) cos i ]Si
[ P ( i , i , i )( Si ) yz + Q ( i , i , i )( Si ) xz
i 1 n
+ R( i , i , i )( Si ) xy
3.取极限
vi ni Si
通过si 流向指定侧的流量的近似值为
i=1,2,,n
m vi ni Si
i 1 n
2. 求和
通过S流向指定侧的流量
m vi ni Si
[ P ( i , i , i ) cos i + Q ( i , i , i ) cos i

S
S
其中
k1 , k2
为任意常数.
3 F dS F dS + F dS .
S S1 S2
其中
S 由互不重叠的两个曲面 S1 , S2 组成.
3. 第二Leabharlann 曲面积分的计算 第二型曲面积分可表示成第一型曲面积分的形式 和坐标的形式
n z
都在S上连续 , 求在单位
时间内流向S指定侧的流 体的质量 .
x
S
o
y
1. 分割 把曲面S分成
n 小块 Si
( Si 同时也代表 第 i 小块曲面的面积 ),
Si上任取一点 i ,i , i ,
在 则该点流速为
z
S i
ni
vi
( i , i , i )
vi
的面积为
则规定
( ) x y , 当cos 0时 ( ) x y , 当cos 0时 当cos 0时 0,
类似可规定
(S ) yz , (S ) zx
2. 第二型曲面积分的概念 实例: 流向曲面一侧的流量. (1) 流速场为常向量v ,有向平面区域 A, 求单位 (假定密度为 1). 时间流过 A 的流体的质量
S
o x
y
法向量为 ni .
vi v(i ,i , i )
P(i ,i , i )i + Q( i ,i , i ) j + R(i ,i , i )k ,
该点处曲面S的单位法向量
ni cosi i + cos i j + cos i k
8-5 第二型曲面积分 1. 双侧曲面 1.双侧曲面; 曲面的分类:
典 型 双 侧 曲 面
2.单侧曲面.
n
动点在双侧曲面上连续移动(不跨越曲面的边 界)并返回到起始点时,其法向量的指向不变.
• 曲面分类
双侧曲面
单侧曲面
曲面分上侧和下侧
曲面分左侧和右侧
曲面分内侧和外侧
典型单侧曲面: 莫比乌斯带
F x, y, z 在S所指
则称此极限为向量函数 定一侧上的第二型曲面积分,也称为对坐标的曲 面积分
F x, y, z n x, y, z dS
F x, y, z dS
S

S

dS n x, y, z dS

第二型曲面积分的性质
若单位法向量
n 的方向余弦为
o x
ds
z f ( x, y)
S
y
dS xy
cos x, y, z ,cos x, y, z ,cos x, y, z , cos dS 为dS 在 xOy 平面上的有向投影面积.
dS xy dxdy
dxdy cos dS
.
0 得到流量 m 的精确值 n m lim vi ni Si
0
i 1
设 ni (cos i , cos i , cos i )
,则
P(i ,i , i ) cos i m lim 0 i 1
+ Q(i ,i , i ) cos i
(上正下负)
0, 当0 / 2; 0, 当 / 2 ;
莫比乌斯带
• 指定了侧的曲面叫有向曲面, 其方向用法向量指向 表示 : 方向余弦
侧的规定
cos
cos
cos
封闭曲面
外侧 内侧
> 0 为前侧 > 0 为右侧 > 0 为上侧
< 0 为后侧 < 0 为左侧 < 0 为下侧
• 设 为有向曲面, 其面元 S 在 xOy 面上的投影记为
(S ) x y , (S ) x y
i 1
将S分割成n个不相重叠的小曲面片 Si i 1,2,, n ,
F i ,i , i n i ,i , i Si ,
n
令 是 Si 中直径的最大者
若和式对S的任意一种分割及中间点
i ,i , i
的任意的选取,当
0 时总有极限,
1 F ndS F ndS ,
S+ S
其中 S 与 (2)若积分
+
S 为同一个曲面的两个相反的定向. F dS F dS 与 存在, 则 2 1
S
S


S
k1F1 + k2 F2 dS k1 F1 dS + k2 F2 dS ,
相关文档
最新文档