2021届中考数学专题复习训练——二次函数 专题11二次函数综合之相似三角形

合集下载

中考数学总复习《二次函数与相似三角形问题综合》专项检测卷(带答案)

中考数学总复习《二次函数与相似三角形问题综合》专项检测卷(带答案)

中考数学总复习《二次函数与相似三角形问题综合》专项检测卷(带答案)学校:___________姓名:___________班级:___________考号:___________1.如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于点()2,0A -和()1,0B .(1)求抛物线的函数表达式;(2)直线43y x h =-+经过点B ,交抛物线于另一点C .P 是线段BC 上一点,过点P 作直线PQ y ∥轴交抛物线于点Q ,且PB PQ =,求点P 的坐标;(3)M ,N 是抛物线上的动点(不与点B 重合),直线BM ,BN 分别交y 轴于点E ,F ,若EBF EOB ∽△△,求证:直线MN 经过一个定点.2.如题,在平面直角坐标系xOy 中,抛物线22y ax bx =++与x 轴交于点()1,0A -,点()4,0B ,与y 轴交于点C ,连接AC ,BC .(1)求抛物线的解析式.(2)点D 为抛物线的对称轴上一动点,当ACD 周长最小时,求点D 的坐标.(3)点E 是OC 的中点,射线AE 交抛物线于点F ,P 是抛物线上一动点,过点P 作y 轴的平行线,交射线AF 与点G ,是否存在点P 使得PFG △与AOE △相似?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于点()2,0A -和()4,0B ,与y 轴交于点C ,连接BC .(1)求抛物线的解析式;(2)P 是第一象限内抛物线上的一个动点,过点P 作直线l x ⊥轴于点(),0M m ,交BC 于点N ,连接CM PB PC ,,.PCB 的面积记为1S ,BCM 的面积记为2S ,当12S S 时,求m 的值;(3)在(2)的条件下,点Q 在抛物线上,直线MQ 与直线BC 交于点H ,当HMN △与BCM 相似时,请直接写出点Q 的坐标.4.如图,在平面直角坐标系中,已知抛物线214y x bx c =-++与x 轴分别相交于()2,0A -,()8,0B 两点.(1)求该抛物线的解析式;(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE BF +的最大值;①若G 是AC 的中点,以点C D E 为顶点的三角形与AOG 相似 求点D 的坐标. 5.如图 抛物线223y x x =-++交x 轴于A B 两点 交y 轴于点C 连接AC BC .(1)求ABC 的面积;(2)点M 为y 轴上一点 是否存在点M 使得MBC 与ABC 相似?若存在 请求出点M 的坐标;若不存在 请说明理由;(3)点P 为抛物线上一点(点P 与点B 不重合) 且使得PAC △中有一个角是45︒ 请直接写出点P 的坐标.6.在平面直角坐标系xOy 中 把与x 轴交点相同的二次函数图象称为“共根抛物线”.如图 抛物线1L :245y x x =-++的顶点为D 交x 轴于点A B (点A 在点B 左侧) 交y 轴于点C .抛物线2L 与1L 是“共根抛物线” 其顶点为P .(1)若抛物线2L 经过点()38-,求抛物线L 1对应的函数关系式; (2)连接BC .设点Q 是抛物线1L 上且位于其对称轴右侧的一个动点 若DPQ 与BOC 相似 求其“共根抛物线”2L 的顶点Р的坐标.7.如图 直线23y x c =-+与x 轴交于点()3,0A 与y 轴交于点B 抛物线243y x bx c =-++经过点A B .(1)求点B 的坐标和抛物线的解析式;(2)(),0M m 为x 轴上一动点 过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P N .①点M 在线段OA 上运动 若以B P N 为顶点的三角形与APM ∆相似 求点M 的坐标; ①点M 在x 轴上自由运动 若三个点M P N 中恰有一点是其它两点所连线段的中点(三点重合除外) 则称M P N 三点为“共谐点”.请直接写出使得M P N 三点成为“共谐点”的m 的值.8.如图 二次函数2y ax bx c =++(0a <)的图象与x 轴交于()1,0A - B 两点 与y 轴交于点C 已知3OB OA = OC OB =.(1)求该二次函数的表达式;(2)点M 为抛物线对称轴上一动点 是否存在点M 使得BM CM -有最大值 若存在 请直接写出其最大值及此时点M 坐标 若不存在 请说明理由.(3)连接AC P 为第一象限内抛物线上一点 过点P 作PD x ⊥轴 垂足为D 连接PA 若PDA 与COA 相似 请求出满足条件的P 点坐标:若没有满足条件的P 点 请说明理由.9.如图 在平面直角坐标系中 二次函数的图象交坐标轴于()20A -,()40B , ()08C ,三点 点P 是直线BC 上方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P 运动到什么位置时 PBC 的面积最大 求此时P 点坐标及PBC 面积的最大值;(3)在y 轴上是否存在点Q 使以O B Q 为顶点的三角形与AOC 相似?若存在 请直接写出点Q 的坐标;若不存在 请说明理由.10.如图 已知抛物线经过()40A ,()10B , ()02C -,三点.(1)求该抛物线的解析式;(2)若P 是直线4x =右侧的抛物线上一动点 过点P 作PM x ⊥轴 垂足为M 是否存在点P 使得以A P M 为顶点的三角形与OAC 相似?若存在 请求出符合条件的点P 的坐标;若不存在 请说明理由11.综合与探究:如图 在平面直角坐标系中 抛物线24y ax bx =+-与x 轴交于点()1,0A - ()3,0B 与y 轴交于点C 连接BC .若在第四象限的抛物线上取一点M 过点M 作MD x ⊥轴于点D 交直线BC 于点E .(1)求抛物线的表达式;(2)试探究抛物线上是否存在点M 使ME 有最大值?若存在 求出点M 的坐标和ME 的最大值;若不存在 请说明理由;(3)连接 CM 试探究是否存在点M 使得以M C E 为顶点的三角形和BDE △相似?若存在 请求出点M 的坐标;若不存在 请说明理由.12.综合与探究如图 抛物线213222y x x =-++的图象与x 轴交于A B 两点 点A 在点B 的左侧 与y 轴交于点C 连接BC .(1)求点B C 的坐标.(2)C '是点C 关于抛物线对称轴的对称点 D 是BC 线段上一点 已知25BD BC = 求直线C D '的解析式.(3)若C 关于x 轴的对称点为M 连接BM N 是线段AB 上的动点 过点N 作x 轴的垂线交抛物线于点P 交直线BM 于点Q 当以B P Q 为顶点的三角形与BOM 相似时 请直接写出点P 的坐标.13.如图 抛物线26y ax bx =+-与y 轴交于点A 与x 轴交于点()3,0B - ()1,0C P 是线段AB 下方抛物线上的一个动点 过点Р作x 轴的垂线 交x 轴于点H 交AB 于点D .设点P 的横坐标为()30t t -<<.(1)求抛物线的解析式.(2)用含t 的式子表示线段PD 的长 并求线段PD 长度的最大值.(3)连接AP 当DPA 与DHB △相似时 求点P 的坐标.14.如图 抛物线经过点()2,0A - ()3,3B -和坐标原点O 顶点为C .(1)求抛物线的表达式;(2)求证:BOC 是直角三角形;(3)若点P 是抛物线上第一象限内的一个动点 过点P 作PM x ⊥轴 垂足为M 是否存在点P 使得以P M A 为顶点的三角形与BOC 相似?若存在 求出点P 的坐标;若不存在 请说明理由.15.在平面直角坐标系中 抛物线()26160y ax ax a a =--≠与x 轴的两个交点分别为A B 、与y 轴相交于点C 连接BC 已知点()04C ,.(1)求A B 、两点坐标和抛物线的解析式;(2)设点P 是抛物线上在第一象限内的动点(不与C B 、重合) 过点P 作PD BC ⊥ 垂足为点D .①点P 在运动过程中 线段PD 的长度是否存在最大值?若存在 求出最大值以及此时点D 的坐标;若不存在 请说明理由:①当以P D C 、、为顶点的三角形与COA 相似时 求点P 的坐标.参考答案:1.(1)解:将()2,0A - ()1,0B 代入2y x bx c =++得:()2202201b c b c⎧=--+⎪⎨=++⎪⎩ 解得:12=⎧⎨=-⎩b c ∴抛物线的函数表达式为:22y x x =+-;(2)解:将()1,0B 代入43y x h =-+ 得:4013h =-⨯+ 解得:43h = ∴直线BC 的解析式为:4433y x =-+ 联立直线BC 与抛物线得:244332y x y x x ⎧=-+⎪⎨⎪=+-⎩ 解得:103529x y ⎧=-⎪⎪⎨⎪=⎪⎩或10x y =⎧⎨=⎩ 1052,39C ⎛⎫∴- ⎪⎝⎭设44,33P m m⎛⎫-+⎪⎝⎭则()2,2Q m m m+-PB PQ=()()2224444123333m m m m m⎛⎫⎛⎫-+-+-+-+-⎪ ⎪⎝⎭⎝⎭()22257101933m m m-=--+即()257101333m m m--=--+或()257101333m m m-=--+解得:1m=或53m=-或5m=-P是线段BC上一点()1,0B1052,39C⎛⎫-⎪⎝⎭53m∴=-532,39P⎛⎫∴-⎪⎝⎭;(3)解:设()()()2211122212,2,,21,1 M x x x N x x x x x+-+-≠≠直线MN的解析式为y kx n=+即2111222222x x kx nx x kx n⎧+-=+⎨+-=+⎩解得:()121212k x xn x x=++⎧⎨=-+⎩∴直线MN的解析式为:()()121212y x x x x x=++-+直线BM的解析式为y k x n''=+即21112x x k x nk n⎧+-=+'=+'''⎨⎩解得:()1122k xn x=+⎧⎨=-+''⎩∴直线BM的解析式为:()()1122y x x x=+-+当0x=时()12y x=-+()10,2E x∴--直线BN的解析式为y k x n''''=+即222220x x k x n k n '''⎧+-=+⎨=+'''''⎩解得:()2222k x n x =+⎧⎨=-+''''⎩∴直线BN 的解析式为:()()2222y x x x =+-+当0x =时 ()22y x =-+()20,2F x ∴--12EF x x ∴=-EBF EOB ∽△△EF BE BE OE∴= 112BE OE x ==+()21121122x x x x ∴++=-⋅+即()221111212542x x x x x x x ++=+-- ∴()121252x x x x =--+∴()()()()()()121212121212125223y x x x x x x x x x x x x x x ⎡⎤=++-+=++---+=++++⎣⎦ ∴当2x =-时 1y =∴直线MN 经过一个定点()2,1-.2.(1)解:把点()1,0A - ()4,0B 分别代入22y ax bx =++得2016420a b a b -+=⎧⎨++=⎩解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩①抛物线的解析式为213222y x x =-++. (2)①()1,0A - ()4,0B①对称轴为直线14322x -+== 点A 关于对称轴的对称点为点B 连接BC 交对称轴于点D 连接AD 此时AD CD +最小当0x =时 2y =①点()0,2C .设直线BC 的解析式为2y kx =+ 代入()4,0B 得420k += ①12k =- ①直线BC 的解析式为122y x =-+ 当32x =时 54y = ①点35,24D ⎛⎫ ⎪⎝⎭. (3)存在.①()0,2C E 是OC 的中点∴()0,1E .又()1,0A -①直线AE 的解析式为1y x =+ 1OE OA ==. 联立2132221y x x y x ⎧=-++⎪⎨⎪=+⎩得2132122x x x -++=+. 解得12x = 21x =-(舍).当2x =时 3y =.①()2,3F . 设213,222P n n n ⎛⎫-++ ⎪⎝⎭则(),1G n n +. ①2213112112222PG n n n n n =-++--=-++. 分以下两种情况:①如图2 若FPG AOE ∽△△ 则90FPG PF PG =.①PF x ∥轴.①2PF n =-. ①2112122n n n -=-++.解得1n =或2n =(舍).①()1,3P .①如图3 若PFG AOE ∽△△ 则90PFG ∠=︒ PF FG =.过点F 作FH PG ⊥于点H 则2PG FH = 即()21112222n n n ⎛⎫--++=- ⎪⎝⎭.解得3n =或2n =(舍).①()3,2P .综上 点P 的坐标为()1,3或()3,2.3.(1)解:抛物线212y x bx c =-++与x 轴交于()20A -,()40B ,两点 ∴()221220214402b c b c ⎧-⨯--+=⎪⎪⎨⎪-⨯++=⎪⎩解得:14b c =⎧⎨=⎩①抛物线的函数表达式为2142y x x =-++; (2)解:抛物线2142y x x =-++与y 轴交于点C ∴()0,4C∴4OC =设直线BC 的解析式为y kx d =+ 把()4,0B ()0,4C 代入 得: 404k d d +=⎧⎨=⎩解得14k d =-⎧⎨=⎩ ∴直线BC 的解析式为4y x =-+直线l x ⊥轴 (),0M m21,42P m m m ⎛⎫∴-++ ⎪⎝⎭(),4N m m -+ ()221144222PN m m m m m ∴=-++--+=-+ 221111244222B C S PN x x m m m m ⎛⎫∴=⋅-=⨯-+⨯=-+ ⎪⎝⎭()4,0B ()0,4C (),0M m()211448222C S BM y m m ∴=⋅=⨯-⨯=- 12S S2482m m m ∴-+=-解得2m =或4m =(P 与B 重合 舍去)m ∴的值为2;(3)解:()4,0B ()0,4COB OC ∴= BOC ∴是等腰直角三角形45CBO ∴∠=︒BMN ∴是等腰直角三角形45BNM MBN ∴∠=∠=︒HMN 与BCM 相似 且45MNH CBM ∠=∠=︒H ∴在MN 的右侧 且NH MN BC BM=或NH MN BM BC = 设(),4H t t -+ 由(2)知()2,0M ()2,2N ()4,0B ()4,0CBC ∴= 2BM = 2MN =2NH - 当NHMNBC BM =时 如图:∴222242t -=解得6t =或2t =-(此时H 在MN 左侧 舍去)()6,2H ∴-由()2,0M ()6,2H - 同(2)得直线MH 解析式为112y x =-+2112142y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩①点Q 的坐标为⎝⎭或⎝⎭;当NH MNBM BC =时 如图:∴222242t -=解得32t =(舍去)或52t =5322H ⎛⎫∴ ⎪⎝⎭, 由()2,0M 5322H ⎛⎫ ⎪⎝⎭, 同(2)得直线MH 解析式为36y x =- 236142y x y x x =-⎧⎪⎨=-++⎪⎩解得261266x y ⎧=-+⎪⎨=-+⎪⎩2261266x y ⎧=--⎪⎨=--⎪⎩①点Q 的坐标为(226,1266-+-+或(226,1266----.综上所述 点Q 的坐标为333133+-⎝⎭或333133-+⎝⎭或(226,1266-+-+或(226,1266----. 4.(1)将()2,0A - ()8,0B 代入抛物线214y x bx c =-++ 得()221220418804b c b c ⎧-⨯--+=⎪⎪⎨⎪-⨯++=⎪⎩解得324b c ⎧=⎪⎨⎪=⎩ ∴该抛物线的解析式为213442y x x =-++. (2)①由抛物线的解析式为213442y x x =-++ 得()0,4C .设直线BC 的解析式为y kx t =+ 将()8,0B ()0,4C 代入得80,4,k t t +=⎧⎨=⎩解得1,24,k t ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为142y x =-+. 设第一象限内的点D 的坐标为213,442m m m ⎛⎫-++ ⎪⎝⎭ 则1,42E m m ⎛⎫-+ ⎪⎝⎭ 2213114424224DE m m m m m ⎛⎫⎛⎫∴=-++--+=-+ ⎪ ⎪⎝⎭⎝⎭8BF m =- ()()2211282944DE BF m m m m ⎛⎫∴+=-++-=--+ ⎪⎝⎭. 104-< ∴当2m =时 DE BF +有最大值 为9.①()2,0A - ()8,0B ()0,4C2OA ∴= 8OB = 4OC = 10AB =22220AC OA OC ∴=+= 22280BC OB OC =+= 2210100AB == 222AC BC AB ∴+=90ACB ∴∠=︒90CAB CBA ∴∠+∠=︒.DF x ⊥轴于点F90FEB CBA ∴∠+∠=︒CAB FEB DEC ∴∠=∠=∠.以点C D E 为顶点的三角形与AOG 相似 只需OA AG DE CE =或OA AG CE DE =. G 是AC 的中点 ()2,0A - ()0,4C()1,2G ∴- 2OA =12AG AC == 由①知2124DE m m =-+ 1,42E m m ⎛⎫-+ ⎪⎝⎭CE ∴=. 当OA AG DE CE =时22124m m =-+解得4m =或0m =(舍去) ()4,6D ∴. 当OAAGCE DE =时 251524m m m -+解得3m =或0m =(舍去) 253,4D ⎛⎫∴ ⎪⎝⎭.综上所述 以点C D E 为顶点的三角形与AOG 相似点D 的坐标为()4,6或253,4⎛⎫ ⎪⎝⎭. 5.(1)解:对于抛物线223y x x =-++ 当0x =时 可有3y = 即(0,3)C 当0y =时 可有2230x x -++= 解得11x =- 23x =即(1,0)A - (3,0)B①3OC = 3(1)4AB =--= ①1143622ABC S AB OC =⋅=⨯⨯=;(2)解:存在 点M 的坐标为30,2⎛⎫- ⎪⎝⎭ 或()01M -,理由如下:①(1,0)A - (3,0)B (0,3)C ①221310AC =+= 4AB = 223332BC =+如下图 当BCA CMB ∽时则有BCABCM BC = 3232①92CM = ①93322OM CM OC =-=-= ①30,2M ⎛⎫- ⎪⎝⎭;当BAC CMB ∽时 如图:则有BC ABCM BC = 4CM =①4CM =①1OM CM OC =-=则()01M -, 综上:30,2M ⎛⎫- ⎪⎝⎭或()01M -,(3)解:根据题意 点P 与点B 不重合;且45APC ∠=︒ 如图结合二次函数的对称性 且=45ABC ∠︒ ①45BAP ∠=︒①CP AB ∥则3P C y y ==①223y x x =-++①对称轴()2121x =-=⨯- 则()112C P x x += 则2P x =①P 的坐标为()23,当45PAC ∠=︒时 如下图设AP 交y 轴于点H 过点H 作HN AC ⊥于点N ①45PAC ∠=︒①9045NHA PAC PAC ∠=︒-∠=︒=∠ ①HN NA =①(1,0)A - (0,3)C①1OA = 3OC = ①1tan 3NH OA ACO CN OC ∠=== 设HN NA t == 则3CN t = 2AH t = ①310AC t t =+解得10t =①52AH t = ①2212OH AH OA =-=①10,2H ⎛⎫ ⎪⎝⎭设直线AH 的解析式为111(0)y k x b k =+≠ 将点(1,0)A - 10,2H ⎛⎫ ⎪⎝⎭代入 可得111012k b b =-+⎧⎪⎨=⎪⎩ 解得111212k b ⎧=⎪⎪⎨⎪=⎪⎩①直线AH 的解析式为1122y x =+ 联立直线AH 的解析式1122y x =+与抛物线解析式223y x x =-++ 可得2112223y x y x x ⎧=+⎪⎨⎪=-++⎩ 解得=1x -(舍去)或52x =①点57,24P ⎛⎫ ⎪⎝⎭; 当45ACP ∠=︒时 如下图 设CP 交x 轴于点T 过点T 作TK BC ⊥于点K ①(3,0)B (0,3)C ①3OB OC == ①190452OCB CBT ∠=∠=⨯︒=︒ ①45ACP OCB ∠=∠=︒ 即ACO OCP OCP PCB ∠+∠=∠+∠①ACO PCB ∠=∠ ①1tan tan 3TK BCP ACO CK ∠==∠= ①45KBT ∠=︒①9045KTB KBT KBT ∠=︒-∠=︒=∠①KB KT =设KT KB t == 则3CK t = 2BT t ①332BC t t =+=解得32t = ①322BT t ==①3,02T ⎛⎫ ⎪⎝⎭ 设直线CT 的解析式为222(0)y k x b k =+≠ 将点(0,3)C 3,02T ⎛⎫ ⎪⎝⎭代入 可得2223302b k b =⎧⎪⎨=+⎪⎩解得2223k b =-⎧⎨=⎩ ①直线CT 的解析式为23y x =-+联立直线CT 的解析式23y x =-+与抛物线解析式223y x x =-++可得22323y x y x x =-+⎧⎨=-++⎩解得0x =(舍去)或4x =①点(4,5)P -.综上所述 点P 坐标为(2,3) 57,24⎛⎫ ⎪⎝⎭或(4,5)-. 6.(1)解:在抛物线1L :245y x x =-++中令0y = 则2450x x -++=解得11x =- 25x = 即()10A -, ()50B , 根据题意 设抛物线L 2的函数关系式为()()15y a x x =+-将点()38-,代入得()()83135a =-+-- 解得12a = ①抛物线2L 的函数关系式为()()2115152222y x x x x =+-=--;(2)解:由题意得 5OB OC ==①BOC 为等腰直角三角形①抛物线1L :()224529y x x x =-++=--+①顶点()29D ,由题意可知PDQ ∠不可能为直角①当90DPQ ∠=︒时 如图 DPQ BOC ∽或DPQ COB ∽ 则DP QP =设Q 2()45m m m -++,①2QP m =- ()2945DP m m =--++①()22945m m m -=--++ 解得12m =(舍去) 23m = ①当3m =时 2458m m -++=①()28P ,①当90DQP ∠=︒时 如图 DPQ BCO ∽或DPQ CBO ∽ 过点Q 作QM DP ⊥垂足为点M 则DM QM MP ==由①可知()28M ,①1MP DM ==①()27P ,综上所述:点P 的坐标为()28P ,或()27P ,.7.(1)解:23y x c =-+与x 轴交于点()3,0A 与y 轴交于点B 02c 解得2c =(0,2)B ∴抛物线243y x bx c =-++经过点A B ∴12302b c c -++=⎧⎨=⎩ 解得1032b c ⎧=⎪⎨⎪=⎩ ∴抛物线解析式为2410233y x x =-++; (2)解:①由(1)可知直线解析式为223y x =-+ (,0)M m 为x 轴上一动点 过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P N2,23P m m ⎛⎫∴-+ ⎪⎝⎭2410,233N m m m ⎛⎫-++ ⎪⎝⎭ 223PM m 3AM m 22410242243333PN m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭BPN △和APM △相似 且BPN APM ∠=∠90BNP AMP 或90NBP AMP ∠=∠=︒当90BNP ∠=︒时 则有BN MN ⊥N ∴点的纵坐标为224102233m m ∴-++= 解得0m =(舍去)或52m = 502M ⎛⎫∴ ⎪⎝⎭,; 当90NBP ∠=︒时 过点N 作NC y ⊥轴于点C则90NBC BNC ∠+∠=︒ NC m = 22410410223333BC m m m m =-++-=-+ 90NBP ∠=︒90NBC ABO ∴∠+∠=︒ABO BNCRt Rt NCB BOA ∴∽△△ ∴NC CB OB OA= ∴24103323m m m -+= 解得0m =(舍去)或118m = 1108M ⎛⎫∴ ⎪⎝⎭,; 综上可知当以B P N 为顶点的三角形与APM △相似时 点M 的坐标为502⎛⎫ ⎪⎝⎭,或1108⎛⎫ ⎪⎝⎭,; ①由①可知(,0)M m 2,23P m m ⎛⎫-+ ⎪⎝⎭ 2410,233N m m m ⎛⎫-++ ⎪⎝⎭M P N 三点为“共谐点”∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点当P 为线段MN 的中点时 则有22410222333m m m ⎛⎫-+=-++ ⎪⎝⎭解得3m =(舍去)或0.5m =;当M 为线段PN 的中点时 则有22410220333m m m ⎛⎫-++-++= ⎪⎝⎭解得3m =(舍去)或1m =-;当N 为线段PM 的中点时 则有22410222333m m m ⎛⎫-+=-++ ⎪⎝⎭解得3m =(舍去)或14m =-; 综上可知当M P N 三点成为“共谐点”时m 的值为0.5或1-或14-. 8.(1)解:(1,0)A -1OA ∴=3OB OA = OC OB =3OB OC ∴==.(3,0)∴B (0,3)C二次函数()2<0y ax bx c a =++的图象经过点A B C∴09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩ 解得:123a b c =-⎧⎪=⎨⎪=⎩∴该二次函数的表达式为223y x x =-++;(2)解:①()222314y x x x =-++=--+①抛物线对称轴为直线1x =延长AC 交对称轴于点M 此时BM CM AM CM AC -=-=有最大值①()1,0A - (0,3)C ①221310AC =+=设直线AC 的解析式为3y mx =+ 代入()1,0A -得03m =-+ 解得3m =①直线AC 的解析式为33y x =+①当1x =时 336y =+=①点M 坐标为()16,;答:BM CM - 点M 坐标为()16,; (3)解:设2(,23)P m m m -++PD x ⊥轴 P 为第一象限内抛物线上一点 0m ∴> OD m = 223PD m m =-++ 1AD OA OD m ∴=+=+ PDA 与COA 相似 ∴OA AD OC PD =或OA PD OC AD= ∴211323m m m +=-++或212331m m m -++=+. 解得:10m = 21m =-或31m =- 483m =.0m >83m ∴=. PDA ∴与COA 相似 满足条件的P 点坐标为81139⎛⎫⎪⎝⎭,. 9.(1)解:①(0,8)C 则设抛物线解析式为28y ax bx =++把A 、B 两点坐标代入可得428016480a b a b -+=⎧⎨++=⎩解得:12a b =-⎧⎨=⎩①抛物线解析式为228y x x =-++;(2)解:①点P 在抛物线上①可设()228P t t t -++,过P 作PE x ⊥轴于点E 交直线BC 于点F 如图①(40)B ,(08)C , 设直线BC 解析式为8y kx =+则048k =+解得2k =-①直线BC 解析式为28y x =-+①(28)F t t -+,①()2228(28)4PF t t t t t =-++--+=-+ ①1111()2222PBC S PF OE PF BE PF OE BE PF OB =⋅+⋅=⋅+=⋅△ ()221442(2)82t t t =-+⨯=--+ ①当2t =时 PBC S 最大值为8 此时2288t t -++=①当P 点坐标为(2,8)时 PBC 的最大面积为8; (3)解:设(0)Q m ,①=90AOC ︒∠①分AOC QOB ∽△△和AOC BOQ ∽△△两种情况 当AOC QOB ∽△△时①OA OC OQ OB= 即284m = 解得1m =±①点Q 的坐标为()01,或()01-,; 当AOC BOQ ∽△△时 ①OA OC OB OQ= 即284m = 解得16m =±①点Q 的坐标为()016,或()016-,; 综上 点Q 的坐标为()016,或()016-,或()01,或()01-,. 10.(1)解:①该抛物线过点()02C -,①可设该抛物线的解析式为22y ax bx =+-.将()40A ,()10B ,代入 得1642020a b a b +-=⎧⎨+-=⎩解得1252a b ⎧=-⎪⎪⎨⎪=⎪⎩①此抛物线的解析式为215222y x x =-+-; (2)解:存在;设P 点的横坐标为m 则P 点的纵坐标为215222m m -+- 由题意 4m > 如图 4AM m =- 215222PM m m =-+①90COA PMA ∠=∠=︒ ①12PM OC AM OA ==或①2PM OA AM OC ==当12PM OC AM OA ==时 则21522422m m m ⎛⎫-+=- ⎪⎝⎭ 解得:1224m m ==, (都不符合题意 舍去); 当2PM OA AM OC==时 则()21522422m m m -+=- 解得:1254m m ==,(4m =不符合题意舍去)此时 2152222m m -+-=- 则()52P -, 综上所述 符合条件的点P 为()52-,. 11.(1)解:把点()1,0A - ()3,0B 代入24y ax bx =+-中得:409340a b a b --=⎧⎨+-=⎩解得:4383a b ⎧=⎪⎪⎨⎪=-⎪⎩则抛物线的表达式为则抛物线的表达式为:248433y x x -=-; (2)存在 理由如下:由抛物线解析式可知:点()0,4C - 设BC 的表达式为:4y kx =-将点B 的坐标代入上式得:034k =- 解得:43k = 则直线BC 的表达式为:443y x =- 设点4,43E x x ⎛⎫- ⎪⎝⎭ 则点248,433M x x x ⎛⎫-- ⎪⎝⎭则224484(4)(4)43333ME x x x x x =----=-+ ①403-< 故ME 有最大值 当32x =时 ME 的最大值为3 此时 点3,52M ⎛⎫- ⎪⎝⎭; (3)存在 理由如下:DEB CEM M C E ∠=∠,,,为顶点的三角形和BDE △相似 ①当CME ∠为直角时则点C 、M 关于抛物线对称轴对称 而抛物线的对称轴为32x =则点()3,4M -;①当90ECM ∠=︒时 如图:由(1)得()0,4C - 设直线BC 的解析式为: 14y k x =- 把()3,0B 代入得1340k -=143k ∴= 设直线CM 的解析式为:24y k x =- 易知:121k k234k ∴=- 故直线CM 的表达式为:344y x =-- 联立抛物线表达式和上式得:248344334x x x --=-- 解得:0x =(舍去)或2316x =即点23325(,)1664M -; 综上 点M 的坐标为:23325,1664⎛⎫-⎪⎝⎭或()3,4-12.(1)解:令2132022x x -++= 解得11x =- 24x =①点A 在点B 的左侧①()10A -,()40B , 将0x =代入213222y x x =-++ 可得:2y =①()02C ,; (2)证明:如图 过点D 作DD x '⊥轴于点D根据题意 可得:DD OC '∥①BDD BCO '∽ ①25BD DD BD BO CO BC ''=== ①()40B ,()02C , ①4BO = 2CO =①2425BD DD ''== 解得85BD '= 45DD '= ①125OD BO BD ''=-=①12455D ⎛⎫ ⎪⎝⎭, 由抛物线213222y x x =-++ 可知对称轴为直线32x = ①点C 、C '关于抛物线对称轴对称①()32C ',设直线C D '的解析式为()0y kx b k =+≠把()32C ',、12455D ⎛⎫ ⎪⎝⎭,代入解析式 可得:3212455k b k b +=⎧⎪⎨+=⎪⎩ 解得:24k b =⎧⎨=-⎩ ①直线C D '的解析式为24y x =-;(3)解:①()02C ,①点C 关于x 轴的对称点M 的坐标为()02-,设直线BM 的解析式为()0y ax n a =+≠把()40B ,()02M -,代入解析式 可得:402a n n +=⎧⎨=-⎩ 解得:122a n ⎧=⎪⎨⎪=-⎩ ①直线BM 的解析式为122y x =- 设点N 的坐标为()0m , 则213222P m m m ⎛⎫-++ ⎪⎝⎭,、()12142Q m m m ⎛⎫--≤≤ ⎪⎝⎭, ①PQ x ⊥轴①OM PQ ∥①BMO BQP ∠=∠①90BOM ∠=︒ 而90BQP ∠<︒①可分以下两种情况:①如图2 连接BP 当90QBP MOB ∠=∠=︒时 PBQ BOM ∽①BPQ QBN ∠=∠①90BNP QNB ∠=∠=︒①BNP QNB ∽ ①PN NBBN NQ = ①21324221422m m mm m++-=-- ①()21324221442m m mm m ++-=-- ①21322224m m m ++=-解得:4m =或3m =检验:当4m =时 40m -= 等式不成立 且点B 、P 、Q 重合 BPQ 不存在此情况舍去;将3m =代入213222y x x =-++ 可得2y =①()32P ,; ①如图3 当90BPQ MOB ∠=∠=︒时 此时点P 与点A 、点N 重合 BOM BPQ ∽此时1m =- 点P 的坐标为()10-,; 综上所述 以点B 、P 、Q 为顶点的三角形与BOM 相似时 点P 的坐标为()32,或()10-,.13.(1)解:①抛物线26y ax bx =+-与x 轴交于点()3,0B -()1,0C ①936060a b a b --=⎧⎨+-=⎩解得:24a b =⎧⎨=⎩①抛物线为:2246y x x =+-;(2)解:①2246y x x =+-当0x =时 y =-6①()0,6A -设直线AB 为y kx n =+①630n k n =-⎧⎨-+=⎩ 解得:26k n =-⎧⎨=-⎩①直线AB 为26y x =--设点P 的横坐标为()30t t -<<.①()2,246P t t t +- (),26D t t --①222624626PD t t t t t =----+=--当()63222t -=-=-⨯-时 PD 的最大值为:233926222⎛⎫⎛⎫-⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭. (3)解:如图 连接AP①BDH ADP ∠=∠ 而DPA 与DHB △相似①分两种情况讨论:当DPA DHB ∽时 ①DP AP DH BH= 90APD BHD ∠=∠=︒ ①AP x ∥轴 OH AP =①A P 关于抛物线的对称轴对称①()3,0B - ()1,0C①抛物线的对称轴为直线3112x -+==- 而()0,6A - ①()2,6P --;如图 当DHB DAP ∽时 过A 作AQ PH ⊥于Q①AQ OH = 6AO QH ==设AQ OH n ==①DHB DAP ∽①90DHB DAP ∠=∠=︒①90ADP APD APQ QAP ∠+∠=∠+∠=︒①PAQ ADP ∠=∠由PH y ∥轴 可得ADP BAO ∠=∠①PAQ BAO ∠=∠ ①31tan tan 62PAQ BAO ∠=∠== ①12PQ AQ 即12PQ n = ①1,62P n n ⎛⎫--- ⎪⎝⎭ ①()()2124662n n n -+⨯--=-- 解得:74n =(0n =舍去) ①755,48P ⎛⎫-- ⎪⎝⎭. 综上:()2,6P --或755,48P ⎛⎫-- ⎪⎝⎭. 14.(1)解:设抛物线的解析式为2(0)y ax bx c a =++≠ 将点(2,0)A - (3,3)B - (0,0)O 代入可得:4209330a b c a b c c -+=⎧⎪-+=⎨⎪=⎩解得:120a b c =⎧⎪=⎨⎪=⎩所以函数解析式为:22y x x =+;(2)证明:①()22211y x x x =+=+-①抛物线的顶点C 的坐标为()1,1--①()0,0O ()3,3B -①()()22303018OB =--+-= ()()2210102OC =--+--=()()22313120BC =---+--=⎡⎤⎡⎤⎣⎦⎣⎦ ①222OB OC BC +=①BOC 是直角三角形;(3)解:假设存在点P 使以P M A 为顶点的三角形与BOC 相似 如图设(,)P x y 由题意知0x > 0y > 且22y x x =+由(2)知 BOC 为直角三角形 90COB ∠=︒ 且:1:3OC OB = ①若PMA COB ∽ 则AM PM BO CO= 即223(2)x x x +=+ 得 113x = 22x =-(舍去) 当13x =时 79y = 即1(3P 7)9; ①若PMA BOC ∽AM PM OC BO= 即:223(2)x x x +=+ 得:13x = 22x =-(舍去)当3x =时 15y = 即(3,15)P .①存在 当点P 坐标为17,39⎛⎫ ⎪⎝⎭或(3,15) 使得以P M A 为顶点的三角形与BOC 相似. 15.(1)解:①2616y ax ax a =--经过()04C ,①164a -= 解得14a =- ①213442y x x =-++; 令0y = 即2134=042x x -++ 解得:122,8x x =-=①()()2,0,8,0A B -(2)设直线BC 的关系式为y kx b =+ ()8,0B ()04C ,①408b k b =⎧⎨=+⎩解得124k b ⎧=-⎪⎨⎪=⎩. ①直线BC 的方程为142y x =-+. 如图 过点P 作PG x ⊥轴于点G PG ,交CB 于点E①PG CO ∥①PED OCB ∠=∠又90PDE COB ∠=∠=︒①PDE BOC ∽△△ ①PD PE BO BC= ①8,4BO CO ==①BC =①BO PD PE PE BC =⨯ ①当线段PE 最长时 PD 的长度最大. 设213(4)42P t t t -++, 则1(,4)2E t t -+. 即213442PG t t =-++ 142EG t =-+. ①22112(4)444PE PG EC t t t =-=-+=--+()08t <<. 当4t =时 PE 有最大值是4 此时P 点坐标为()46,.①25854PD == 设1,42D m m ⎛⎫-+ ⎪⎝⎭ ①()2221854462m m ⎛⎫-+-+-= ⎪⎝⎭⎝⎭ 解得12125m m == ①111214442255m -+=-⨯+= 即点D 的坐标为121455⎛⎫ ⎪⎝⎭,. ①①284OA OB OC ===,,①2222420AC =+= ()2228100AB =+= 2224880BC =+=. 可得222AC BC AB =+.①90ACB ∠=︒.①COA BOC ∽.故当PDC △与COA 相似时 则PDC △与BOC 相似. ①PCD CBO ∠∠=或PCD BCO ∠∠=.(i )如图 当PCD CBO ∠=∠时即PDC COB ∽①PCD CBO ∠=∠①CP AB ∥①()04C ,①4P y =. ①2134442t t -++= 解得1260x x ==,(舍)即PDC COB ∽时 (64)P ,; (ii )当PCD BCO ∠=∠时 即PDC BOC ∽如图 过点P 作PG x ⊥轴于G 与直线BC 交于F①PF OC ∥①PFC BCO ∠=∠①PCD PFC ∠=∠①PF PC =. 设213(4)42P n n n -++, 则2124PF n n =-+ 过点P 作y 轴的垂线 垂足为N在Rt PNC △中 22222243213131344421644PC PN NC n n n n n n ⎡⎤=+=+-++-=-+⎢⎥⎣⎦() ①22PF PC = 即2243211313(2)41644n n n n n -+=-+ 解得120=3=n n , (舍).即PDC BOC ∽时 25(3)4P ,. ①当PDC △与COA 相似时 点P 的坐标为(64)P ,或2534P ⎛⎫ ⎪⎝⎭,.。

中考数学总复习《二次函数中的相似三角形存在性问题》专题训练-附答案

中考数学总复习《二次函数中的相似三角形存在性问题》专题训练-附答案

中考数学总复习《二次函数中的相似三角形存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系xOy 中,直线AB 的函数表达式为2(0y ax a a =-≠,a 为常数),点A 、B 分别在y 轴和x 轴上,且2OA OB =,点A 关于x 轴的对称点为C ,点B 关于y 轴的对称点为D ,以点C 为顶点的抛物线经过点D .(1)求点,A B 的坐标;(2)求抛物线的解析式;(3)在(2)中拋物线的对称轴上有一点P ,且以点D O P 、、为顶点的三角形与AOB 相似,求出所有满足条件的点P 的坐标.2.已知在平面直角坐标系中,抛物线212y x bx c =-++与x 轴相交于点A ,B ,与y 轴相交于点C ,直线4y x =+经过A ,C 两点(1)求抛物线的表达式;(2)如果点P ,Q 在抛物线上,并与对称轴对称,(P 点在对称轴左边),且2PQ AO =,求P ,Q 的坐标;(3)动点M 在直线4y x =+上,且ABC 与COM 相似,求点M 的坐标.3.已知:抛物线2:3L y x bx =+-交x 轴于(),3,0A B 两点,交y 轴于C .(1)求抛物线的解析式;(2)如图1,点D 在第四象限的抛物线上,DE BC ⊥于点E ,若12DE BE =,求点D 的坐标; (3)如图2,抛物线L 经过平移后得到抛物线21:4H y x =-,直线OP 交抛物线的其中一个点为P ,直线PQ 与抛物线有且只有一个交点P ,且与y 轴不平行,⊥OQ OP 交PQ 于点Q ,求点Q 的纵坐标.4.如图,抛物线22y ax x c =++与x 轴交于1,0A ,B 两点,与y 轴交于点G ,抛物线的对称轴为直线=1x -,交x 轴于点E ,交抛物线于点F ,连接BC .(1)求抛物线的解析式.(2)如图,点P 是线段BC 上一动点,过点P 作PD x ⊥轴,交抛物线于点D ,问当动点P 运动到什么位置时,四边形CEBD 的面积最大?求出四边形CEBD 的最大面积及此时P 点的坐标.(3)坐标轴上是否存在点G ,使得以A ,C ,G 为顶点的三角形与BCF △相似?若存在,请求出点G 的坐标;若不存在,请说明理由.5.如图,抛物线22y ax bx =-+-经过A (4,0),B (1,0)两点.(1)求出抛物线的解析式;(2)P 是抛物线在第一象限上的一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)若抛物线上有一点Q (点Q 不与点B 重合),使得点Q 与点B 到直线AC 的距离相等,请直接写出点Q 坐标.6.如图,已知二次函数的图象与x 轴交于1,0A 和()3,0B -两点,与y 轴交于点()0,3C -,直线2y x m =-+经过点A ,且与y 轴交于点D ,与抛物线交于点E .(1)求抛物线的解析式;(2)如图1,点M 在AE 下方的抛物线上运动,求AME △的面积最大值;(3)如图2,在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与AOD △相似,若存在,求出点P 的坐标;若不存在,试说明理由.7.如图1,平面直角坐标系中,抛物线2y ax bx c =++交x 轴于1,0A ,()3,0B -两点,交y 轴于点()0,3C ,点M 是线段OB 上一个动点,过点M 作x 轴的垂线,交直线BC 于点F ,交抛物线于点E .(1)求抛物线的解析式; (2)当BCE 面积最大时,求M 点的坐标;(3)如图2,是否存在以点C 、E 、F 为顶点的三角形与ABC 相似,若存在,求点M 的坐标;若不存在,请说明理由.8.如图①,抛物线2y x bx c =-++与x 轴交于两点A ,()4,0B (点A 位于点B 的左侧),与y 轴交于点()0,4C ,拋物线的对称轴l 与x 轴交于点N ,长为2的线段PQ (点P 位于点Q 的上方)在x 轴上方的抛物线对称轴上运动.(1)求抛物线的关系式;(2)在线段PQ 运动过程中,当PC PA +的值最小时,求此时点P 的坐标;(3)如图①过点P 作PM y ⊥轴于点M ,当CPM △和QBN 相似时,求点Q 的坐标.9.如图,已知抛物线2y ax bx c =++与x 轴交于A 、()3,0B 两点,与y 轴交于点C ,顶点为()2,1D -,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;(2)点M 是直线l 上的动点,当以点M 、B 、D 为顶点的三角形与ABC 相似时,求点M 的坐标. 10.如图,抛物线23y ax bx =++经过点于()1,0A -,()3,0B 两点,与y 轴交于点C ,连接AC .(1)求抛物线的解析式;(2)如图①,若点E 是第二象限内抛物线上的一点,直线AE 与BC 相交于点F ,连接CE ,BE ,若BCE 的面积3,求点E 的横坐标;(3)如图①,点D 与点C 关于抛物线的对称轴对称,直线AD 交y 轴于点G ,点P 在平面内,以点B ,C ,P 为顶点的三角形与ACG 相似且∠=∠CBP CAG 时,请直接写出符合条件的点P 的坐标.11.如图,顶点为D 的抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,直线3y x =-+经过点B ,C .(1)求抛物线的解析式;(2)连接AC ,CD ,BD .求证:ACO DBC ∽△△;(3)点P 为抛物线对称轴上的一个动点,点M 是平面直角坐标系内一点,当以点A ,C ,M ,P 为顶点的四边形是菱形时,请直接写出点P 的坐标.12.已知抛物线2y x bx c =++与x 轴交于()()1030A B ,、,两点,且与y 轴的公共点为点C ,设该抛物线的顶点为D .(1)求抛物线的表达式,并求出顶点D 的坐标;(2)若点P 为抛物线上一点,且满足PB PC =,求点P 的横坐标;(3)连接CD BC ,,点E 为线段BC 上一点,过点E 作EF CD ⊥交CD 于点F ,若12=DF CF ,求点E 的坐标. 13.如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A B C ,,三点.(1)求证:90ACB ∠=︒;(2)点D 是第一象限内抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F .①求255DE BE +的最大值; ①点G 是AC 的中点,若以点C D E ,,为顶点的三角形与AOG 相似,求点D 的坐标.14.如图,抛物线2134y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D ,抛物线的对称轴与x 轴交于点E ,连接AC ,BD .(1)求点A ,B ,C ,D 的坐标;(2)点F 为抛物线对称轴上的动点,且BEF △与AOC 相似,请直接写出符合条件的点F 的坐标;(3)点P 为抛物线上的动点,是否存在这样的点P ,使BDP △是直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,已知A (﹣2,0)、B (3,0),抛物线y =ax 2+bx +4经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一动点,点P 的横坐标为m .过点P 作PM ①x 轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN ①BC ,垂足为点N .(1)直接写出抛物线的函数关系式 ;(2)请用含m 的代数式表示线段PN 的长 ;(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得①BCO +2①PCN =90°?若存在,请求出m 的值;若不存在,请说明理由;(4)连接AQ ,若△ACQ 为等腰三角形,请直接写出m 的值 .参考答案:1.(1)()0,4A ()2,0B(2)抛物线的解析式为24y x =-(3)满足条件的点P 的坐标为()0,4或()0,4-或()0,1或()0,1-2.(1)2142y x x =--+(2)775,,3,22P Q ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭ (3)84,33⎛⎫- ⎪⎝⎭或()3,1-3.(1)抛物线解析式为223y x x =--(2)()2,3D -(3)12Q y =-4.(1)223y x x =+-(2)当32m =-,四边形CEBD 的面积最大,最大面积为518,此时点P 的坐标为33,22⎛⎫-- ⎪⎝⎭(3)存在,点G 的坐标为()()10,0,0,,9,03⎛⎫- ⎪⎝⎭5.(1)抛物线的解析式为215222y x x =-+- (2)存在,符合条件的点P 的坐标为(2,1)(3)点Q 的坐标为(3,1)或75(27,)22+-或75(27,)22---6.(1)223y x x =+-;(2)27;(3)存在,点P 的坐标为()0,12或290,2⎛⎫ ⎪⎝⎭.7.(1)223y x x =--+;(2)3,02M ⎛⎫- ⎪⎝⎭; (3)存在, 3,02M ⎛⎫- ⎪⎝⎭或5,03M ⎛⎫- ⎪⎝⎭.8.(1)234y x x =-++(2)35,22P ⎛⎫ ⎪⎝⎭(3)Q 的坐标是35,24⎛⎫ ⎪⎝⎭或3,52⎛⎫ ⎪⎝⎭或3219,22⎛⎫+ ⎪ ⎪⎝⎭9.(1)243y x x =-+(2)点M 的坐标是()2,2或12,3⎛⎫- ⎪⎝⎭.10.(1)223y x x =-++(2)3172- (3)()16,3-P 263,55⎛⎫ ⎪⎝⎭P ()30,9P 4129,55⎛⎫ ⎪⎝⎭P11.(1)223y x x =-++(3)()11,或()16,或()16-,或()10,12.(1)243y x x =-+ ()21-,(2)51351322⎛⎫-- ⎪⎝⎭,或51351322⎛⎫++ ⎪⎝⎭, (3)207,99⎛⎫ ⎪⎝⎭13.(2)①9;①(4,6)D 或25(3,)4D .14.(1)()()2,0,6,0A B - ()0,3C ()2,4D (2)()2,6或()2,6-或82,3⎛⎫ ⎪⎝⎭或82,3⎛⎫- ⎪⎝⎭; (3)()2,0-或()6,12--15.(1)222433y x x =-++(2)22655PN m m =-+(3)存在 74 (4)65或125。

中考数学二次函数与相似三角形有关问题专项训练

中考数学二次函数与相似三角形有关问题专项训练

二次函数与相似三角形有关问题专项训练1.(2021•黔东南州)如图,抛物线y=ax2﹣2x+c(a≠0)与x轴交于A、B(3,0)两点,与y轴交于点C(0,﹣3),抛物线的顶点为D.(1)求抛物线的解析式;(2)已知点M是x轴上的动点,过点M作x的垂线交抛物线于点G,是否存在这样的点M,使得以点A、M、G为顶点的三角形与△BCD相似,若存在,请求出点M的坐标;若不存在,请说明理由.【解答】解:(1)将点B(3,0),C(0,﹣3)分别代入y=ax2﹣2x+c中,得:,解得,∴抛物线的函数关系为y=x2﹣2x﹣3;(2)由抛物线的表达式知,其对称轴为x=﹣=1,故设点P(1,m),点Q(x,0),B(3,0),C(0,﹣3),①以PB为对角线时,,解得:,∴P(1,﹣3),Q(4,0);(2)当y=0时,x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),又y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点D的坐标为(1,﹣4),∵C(0,﹣3)、B(3,0)、D(1,﹣4),∴BD2=22+42=20,CD2=12+12,BC2=32+32,∴BD2=CD2+BC2,∴△BDC是直角三角形,且∠BCD=90°,设点M的坐标(m,0),则点G的坐标为(m,m2﹣2m﹣3),根据题意知:∠AMG=∠BCD=90°,∴要使以A、M、G为顶点的三角形与△BCD相似,需要满足条件:,①当m<﹣1时,此时有:,解得:,m2=﹣1或m1=0,m2=﹣1,都不符合m<﹣1,所以m<﹣1时无解;②当﹣1<m≤3时,此时有:,解得:,m2=﹣1(不符合要求,舍去)或m1=0,m2=﹣1(不符合要求,舍去),∴M()或M(0,0),③当m>3时,此时有:或,解得:(不符合要求,舍去)或m1=6,m2=﹣1(不符要求,舍去),∴点M(6,0)或M(,0),答:存在点M,使得A、M、G为顶点的三角形与△BCD相似,点M的坐标为:M(0,0)或M(,0)或M(6,0)或M(,0).2.(2021•无锡)在平面直角坐标系中,O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,二次函数y=ax2+2x+c的图象过B、C两点,且与x轴交于另一点A,点M为线段OB上的一个动点,过点M作直线l平行于y轴交BC于点F,交二次函数y =ax2+2x+c的图象于点E.(1)求二次函数的表达式;(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;【解答】解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,∴B(3,0),C(0,3),把B(3,0),C(0,3)代入y=ax2+2x+c得:,解得,∴二次函数的表达式为y=﹣x2+2x+3;(2)如图:在y=﹣x2+2x+3中,令y=0得x=3或x=﹣1,∴A(﹣1,0),∵B(3,0),C(0,3),∴OB=OC,AB=4,BC=3,∴∠ABC=∠MFB=∠CFE=45°,∴以C、E、F为顶点的三角形与△ABC相似,B和F为对应点,设E(m,﹣m2+2m+3),则F(m,﹣m+3),∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,CF==m,①△ABC∽△CFE时,=,∴=,解得m=或m=0(舍去),∴EF=,②△ABC∽△EFC时,=,∴=,解得m=0(舍去)或m=,∴EF=,综上所述,EF=或.3.(2021•济宁)如图,直线y=﹣x+分别交x轴、y轴于点A,B,过点A的抛物线y=﹣x2+bx+c与x轴的另一交点为C,与y轴交于点D(0,3),抛物线的对称轴l交AD 于点E,连接OE交AB于点F.(1)求抛物线的解析式;(2)求证:OE⊥AB;(3)P为抛物线上的一动点,直线PO交AD于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与△ACD相似?若存在,求点P的横坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=﹣x+分别交x轴、y轴于点A,B,∴A(3,0),B(0,),∵抛物线y=﹣x2+bx+c经过A(3,0),D(0,3),∴,解得:,∴该抛物线的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,设直线AD的解析式为y=kx+a,将A(3,0),D(0,3)代入,得:,解得:,∴直线AD的解析式为y=﹣x+3,∴E(1,2),∵G(1,0),∠EGO=90°,∴tan∠OEG==,∵OA=3,OB=,∠AOB=90°,∴tan∠OAB===,∴tan∠OAB=tan∠OEG,∴∠OAB=∠OEG,∵∠OEG+∠EOG=90°,∴∠OAB+∠EOG=90°,∴∠AFO=90°,∴OE⊥AB;(3)存在.∵A(3,0),抛物线的对称轴为直线x=1,∴C(﹣1,0),∴AC=3﹣(﹣1)=4,∵OA=OD=3,∠AOD=90°,∴AD=OA=3,设直线CD解析式为y=mx+n,∵C(﹣1,0),D(0,3),∴,解得:,∴直线CD解析式为y=3x+3,①当△AOM∽△ACD时,∠AOM=∠ACD,如图2,∴OM∥CD,∴直线OM的解析式为y=3x,结合抛物线的解析式为y=﹣x2+2x+3,得:3x=﹣x2+2x+3,解得:x1=,x2=,②当△AMO∽△ACD时,如图3,∴=,∴AM===2,过点M作MG⊥x轴于点G,则∠AGM=90°,∵∠OAD=45°,∴AG=MG=AM•sin45°=2×=2,∴OG=OA﹣AG=3﹣2=1,∴M(1,2),设直线OM解析式为y=m1x,将M(1,2)代入,得:m1=2,∴直线OM解析式为y=2x,结合抛物线的解析式为y=﹣x2+2x+3,得:2x=﹣x2+2x+3,解得:x=±,综上所述,点P的横坐标为±或.4.(2021•怀化)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;【解答】解:(1)由题意得,点A、B、C的坐标分别为(﹣2,0)、(4,0)、(0,8),设抛物线的表达式为y=ax2+bx+c,则,解得,故抛物线的表达式为y=﹣x2+2x+8;(2)存在,理由:当∠CP′M为直角时,则以P、C、M为顶点的三角形与△MNB相似时,则P′C∥x轴,则点P′的坐标为(1,8);当∠PCM为直角时,在Rt△OBC中,设∠CBO=α,则tan∠CBO==2=tanα,则sinα=,cosα=,在Rt△NMB中,NB=4﹣1=3,则BM==3,同理可得,MN=6,由点B、C的坐标得,BC==4,则CM=BC﹣MB=,在Rt△PCM中,∠CPM=∠OBC=α,则PM===,则PN=MN+PM=6+=,故点P的坐标为(1,),故点P的坐标为(1,8)或(1,);5.(2021•遂宁)如图,已知二次函数的图象与x轴交于A和B(﹣3,0)两点,与y轴交于C(0,﹣3),对称轴为直线x=﹣1,直线y=﹣2x+m经过点A,且与y轴交于点D,与抛物线交于点E,与对称轴交于点F.(1)求抛物线的解析式和m的值;(2)在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△AOD相似,若存在,求出点P的坐标;若不存在,试说明理由;【解答】解:(1)∵抛物线的对称轴x=﹣1,与x轴的交点为A,B(﹣3,0),∴A(1,0),∴可以假设抛物线的解析式为y=a(x+3)(x﹣1),把C(0,﹣3)代入得到,a=1,∴抛物线的解析式为y=x2+2x﹣3.∵直线y=﹣2x+m经过点A(1,0),∴0=﹣2+m,∴m=2.(2)如图1中,∵直线AF的解析式为y=﹣2x+2,直线交y轴于D,与抛物线交于点E,∴D(0,2),由,解得即点A,或,∴E(﹣5,12),过点E作EP⊥y轴于P.∵∠EPD=∠AOD=90°,∠EDP=∠ODA,∴△EDP∽△ADO,∴P(0,12).过点E作EP′⊥DE交y轴于P′,同法可证,△P′DE∽△ADO,∴∠P′=∠DAO,∴tan∠P′=tan∠DAO,∴=,∴=,∴PP′=2.5,∴P′(0,14.5),综上所述,满足条件的点P的坐标为(0,12)或(0,14.5).6.(2021•泸州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+4与两坐标轴分别相交于A,B,C三点.(1)求证:∠ACB=90°;(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.①求DE+BF的最大值;②点G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.【解答】解:(1)y=﹣x2+x+4中,令x=0得y=4,令y=0得x1=﹣2,x2=8,∴A(﹣2,0),B(8,0),C(0,4),∴OA=2,OB=8,OC=4,AB=10,∴AC2=OA2+OC2=20,BC2=OB2+OC2=80,∴AC2+BC2=100,而AB2=102=100,∴AC2+BC2=AB2,∴∠ACB=90°;(2)①设直线BC解析式为y=kx+b,将B(8,0),C(0,4)代入可得:,解得,∴直线BC解析式为y=﹣x+4,设第一象限D(m,+m+4),则E(m,﹣m+4),∴DE=(+m+4)﹣(﹣m+4)=﹣m2+2m,BF=8﹣m,∴DE+BF=(﹣m2+2m)+(8﹣m)=﹣m2+m+8=﹣(m﹣2)2+9,∴当m=2时,DE+BF的最大值是9;②由(1)知∠ACB=90°,∴∠CAB+∠CBA=90°,∵DF⊥x轴于F,∴∠FEB+∠CBA=90°,∴∠CAB=∠FEB=∠DEC,(一)当A与E对应时,以点C,D,E为顶点的三角形与△AOG相似,只需=或=,而G为AC中点,A(﹣2,0),C(0,4),∴G(﹣1,2),OA=2,AG=,由①知:DE=﹣m2+2m,E(m,﹣m+4),∴CE==,当=时,=,解得m=4或m=0(此时D与C重合,舍去)∴D(4,6),当=时,=,解得m=3或m=0(舍去),∴D(3,),∵在Rt△AOC中,G是AC中点,∴OG=AG,∴∠GAO=∠GOA,即∠CAB=∠GOA,∴∠DEC=∠GOA,(二)当O与E对应时,以点C,D,E为顶点的三角形与△AOG相似,只需=或=,∵OG=AG,∴=与=答案相同,同理=与或=答案相同,综上所述,以点C,D,E为顶点的三角形与△AOG相似,则D的坐标为(4,6)或(3,).7.(2021•江岸区校级自主招生)如图,已知对称轴为直线x=﹣1的抛物线y=ax2+bx+3与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(1,0).(1)求点B的坐标及抛物线的表达式;(2)在x轴上是否存在点M,使△MOC与△BCP相似?若不存在,请说明理由;若存在,请直接写出点M的坐标【不必书写求解过程】.【解答】解:(1)由题意,,解得,∴抛物线的解析式y=﹣x2﹣2x+3,令y=0,则﹣x2﹣2x+3=0,解得x=1或﹣3,∴B(﹣3,0).(2)存在.如图2中,连接PB,PC.∵B(﹣3,0),P(﹣1,4),C(0,3),∴BC=3,PC=,PB=2,∴PB2=PC2+CB2,∴∠PCB=90°,PC:BC=:3=1:3,当MO:OC=1:3或OC:MO=1:3时,△COM与△BCP相似,∴OM=1或9,∴满足条件的点M的坐标为(1,0)或(﹣1,0)或(9,0)或(﹣9,0).8.(2020•柳州)如图①,在平面直角坐标系xOy中,抛物线y=x2﹣4x+a(a<0)与y轴交于点A,与x轴交于E、F两点(点E在点F的右侧),顶点为M.直线与x 轴、y轴分别交于B、C两点,与直线AM交于点D.(1)求抛物线的对称轴;(2)在y轴右侧的抛物线上存在点P,使得以P、A、C、D为顶点的四边形是平行四边形,求a的值;(3)如图②,过抛物线顶点M作MN⊥x轴于N,连接ME,点Q为抛物线上任意一点,过点Q作QG⊥x轴于G,连接QE.当a=﹣5时,是否存在点Q,使得以Q、E、G为顶点的三角形与△MNE相似(不含全等)?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵y=x2﹣4x+a=(x﹣2)2+a﹣4,∴抛物线的对称轴为直线x=2;(2)由y=(x﹣2)2+a﹣4得:A(0,a),M(2,a﹣4),由y=x﹣a得C(0,﹣a),设直线AM的解析式为y=kx+a,将M(2,a﹣4)代入y=kx+a中,得2k+a=a﹣4,解得k=﹣2,直线AM的解析式为y=﹣2x+a,联立方程组得,解得,∴D(a,a),∵a<0,∴点D在第二象限,又点A与点C关于原点对称,∴AC是以P、A、C、D为顶点的平行四边形的对角线,则点P与点D关于原点对称,即P(a,a),将点P(﹣a,a)代入抛物线y=x2﹣4x+a,解得a=或a=0(舍去),∴a=;(3)存在,理由如下:当a=﹣5时,y=x2﹣4x﹣5=(x﹣2)2﹣9,此时M(2,﹣9),令y=0,即(x﹣2)2﹣9=0,解得x1=﹣1,x2=5,∴点F(﹣1,0)E(5,0),∴EN=FN=3 MN=9,设点Q(m,m2﹣4m﹣5),则G(m,0),∴EG=|m﹣5|,QG=|m2﹣4m﹣5|,又△QEG与△MNE都是直角三角形,且∠MNE=∠QGE=90°,如图所示,需分两种情况进行讨论:i)当==3时,即=3,当m=2时点Q与点M重合,不符合题意,舍去,当m=﹣4时,此时Q坐标为点Q1(﹣4,27);ii)当===时,即=,解得m=或m=或m=5(舍去),当m=时,Q坐标为点Q2(,),当m=,Q坐标为点Q3(,),综上所述,点Q的坐标为(﹣4,27)或(,)或(,).9.(2020•鄂州)如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)针对于直线y=x﹣2,令x=0,则y=﹣2,∴C(0,﹣2),令y=0,则0=x﹣2,∴x=4,∴B(4,0),将点B,C坐标代入抛物线y=x2+bx+c中,得,∴,∴抛物线的解析式为y=x2﹣x﹣2;(2)①∵PM⊥x轴,M(m,0),∴P(m,m2﹣m﹣2),D(m,m﹣2),∵P、D、M三点中恰有一点是其它两点所连线段的中点,∴Ⅰ、当点D是PM的中点时,(0+m2﹣m﹣2)=m﹣2,∴m=1或m=4(此时点D,M,P三点重合,舍去),Ⅱ、当点P是DM的中点时,(0+m﹣2)=m2﹣m﹣2,∴m=﹣或m=4(此时点D,M,P三点重合,舍去),Ⅲ、当点M是DP的中点时,(m2﹣m﹣2+m﹣2)=0,∴m=﹣2或m=4(此时点D,M,P三点重合,舍去),即满足条件的m的值为﹣或1或﹣2;②存在,由(1)知,抛物线的解析式为y=x2﹣x﹣2,令y=0,则0=x2﹣x﹣2,∴x=﹣1或x=4,∴点A(﹣1,0),∴OA=1,∵B(4,0),C(0,﹣2),∴OB=4,OC=2,∴,∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠OAC=∠OCB,∠ACO=∠OBC,∵△PNC与△AOC相似,∴Ⅰ、当△PNC∽△AOC,∴∠PCN=∠ACO,∴∠PCN=∠OBC,∴CP∥OB,∴点P的纵坐标为﹣2,∴m2﹣m﹣2=﹣2,∴m=0(舍)或m=3,∴P(3,﹣2);Ⅱ、当△PNC∽△COA时,∴∠PCN=∠CAO,∴∠OCB=∠PCD,∵PD∥OC,∴∠OCB=∠CDP,∴∠PCD=∠PDC,∴PC=PD,由①知,P(m,m2﹣m﹣2),D(m,m﹣2),∵C(0,﹣2),∴PD=2m﹣m2,PC==,∴2m﹣m2=,∴m=或m=0(舍),∴P(,﹣).即满足条件的点P的坐标为(3,﹣2)或(,﹣).10.(2020•潍坊)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+8(a≠0)过点A(﹣2,0)和点B(8,0),∴,解得.∴抛物线解析式为:;(2)存在,点M的坐标为:(3,8),或(3,11).∵C(0,8),B(8,0),∠COB=90°,∴△OBC为等腰直角三角形,抛物线的对称轴为,∴点E的横坐标为3,又∵点E在直线BC上,∴点E的纵坐标为5,∴E(3,5),设,①当MN=EM,∠EMN=90°,△NME∽△COB,则,解得或(舍去),∴此时点M的坐标为(3,8),②当ME=EN,当∠MEN=90°时,则,解得:或(舍去),∴此时点M的坐标为;③当MN=EN,∠MNE=90°时,此时△MNE与△COB相似,此时的点M与点E关于①的结果(3,8)对称,设M(3,m),则m﹣8=8﹣5,解得m=11,∴M(3,11);此时点M的坐标为(3,11);故在射线ED上存在点M,使得以点M,N,E为顶点的三角形与△OBC相似,点M的坐标为:(3,8)或或(3,11).11.(2020•怀化)如图所示,抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标.(2)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O 为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)令y=x2﹣2x﹣3中x=0,此时y=﹣3,故C点坐标为(0,﹣3),又∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点M的坐标为(1,﹣4);(2)存在,理由如下:连接AC,OP,如图2所示:设MC的解析式为:y=kx+m,将C(0,﹣3),M(1,﹣4)代入MC的解析式得:,解得:∴MC的解析式为:y=﹣x﹣3,令y=0,则x=﹣3,∴E点坐标为(﹣3,0),∴OE=OB=3,且OC⊥BE,∴CE=CB,∴∠CBE=∠E,设P(x,﹣x﹣3),又∵P点在线段EC上,∴﹣3<x<0,则,,由题意知:△PEO相似于△ABC,分情况讨论:①△PEO∽△CBA,∴,∴,解得,满足﹣3<x<0,此时P的坐标为;②△PEO∽△ABC,∴,∴,解得x=﹣1,满足﹣3<x<0,此时P的坐标为(﹣1,﹣2).综上所述,存在以点P、E、O为顶点的三角形与△ABC相似,P点的坐标为或(﹣1,﹣2).12.(2020•连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A 在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线”L2的顶点P的坐标.【解答】解:(1)当y=0时,x2﹣x﹣2=0,解得x=﹣1或4,∴A(﹣1,0),B(4,0),C(0,﹣2),由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),把(2,﹣12)代入y=a(x+1)(x﹣4),﹣12=﹣6a,解得a=2,∴抛物线的解析式为y=2(x+1)(x﹣4)=2x2﹣6x﹣8.(2)∵抛物线L2与L1是“共根抛物线”,A(﹣1,0),B(4,0),∴抛物线L1,L2的对称轴是直线x=,∴点P在直线x=上,∴BP=AP,如图1中,当A,C,P共线时,BP﹣PC的值最大,此时点P为直线AC与直线x=的交点,∵直线AC的解析式为y=﹣2x﹣2,∴P(,﹣5)(3)由题意,AB=5,CB=2,CA=,∴AB2=BC2+AC2,∴∠ACB=90°,CB=2CA,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点D(,﹣),由题意,∠PDQ不可能是直角,第一种情形:当∠DPQ=90°时,①如图3﹣1中,当△QDP∽△ABC时,==,设Q(x,x2﹣x﹣2),则P(,x2﹣x﹣2),∴DP=x2﹣x﹣2﹣(﹣)=x2﹣x+,QP=x﹣,∵PD=2QP,∴2x﹣3=x2﹣x+,解得x=或(舍弃),∴P(,).②如图3﹣2中,当△DQP∽△ABC时,同法可得PQ=2PD,x﹣=x2﹣3x+,解得x=或(舍弃),∴P(,﹣).第二种情形:当∠DQP=90°.①如图3﹣3中,当△PDQ∽△ABC时,==,过点Q作QM⊥PD于M.则△QDM∽△PDQ,∴==,由图3﹣3可知,M(,),Q(,),∴MD=8,MQ=4,∴DQ=4,由=,可得PD=10,∵D(,﹣)∴P(,).②当△DPQ∽△ABC时,过点Q作QM⊥PD于M.同法可得M(,﹣),Q(,﹣),∴DM=,QM=1,QD=,由=,可得PD=,∴P(,﹣).综上所述:P点坐标为(,)或(,﹣)或(,)或(,﹣).13.(2020•铜仁市)如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+6,得:,解得:,∴抛物线的解析式为y=﹣2x2+4x+6.(3)存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似.如图2,∠CMN=90°,当点M位于点C上方,过点M作MD⊥y轴于点D,∵∠CDM=∠CMN=90°,∠DCM=∠NCM,∴△MCD∽△NCM,若△CMN与△OBC相似,则△MCD与△OBC相似,设M(a,﹣2a2+4a+6),C(0,6),∴DC=﹣2a2+4a,DM=a,当时,△COB∽△CDM∽△CMN,∴,解得,a=1,∴M(1,8),此时ND=DM=,∴N(0,),当时,△COB∽△MDC∽△NMC,∴,解得a=,∴M(,),此时N(0,).如图3,当点M位于点C的下方,过点M作ME⊥y轴于点E,设M(a,﹣2a2+4a+6),C(0,6),∴EC=2a2﹣4a,EM=a,同理可得:或=2,△CMN与△OBC相似,解得a=或a=3,∴M(,)或M(3,0),此时N点坐标为(0,)或(0,﹣).综合以上得,存在M(1,8),N(0,)或M(,),N(0,)或M(,),N(0,)或M(3,0),N(0,﹣),使得∠CMN=90°,且△CMN与△OBC相似.。

中考数学总复习《二次函数与相似三角形问题》专项训练题(附有答案)

中考数学总复习《二次函数与相似三角形问题》专项训练题(附有答案)

中考数学总复习《二次函数与相似三角形问题》专项训练题(附有答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,矩形OABC 的边3OA =,AB=4,点A 在x 轴的正半轴上,点C 在y 轴的负半轴上,抛物线243y x bx c =++经过A ,C 两点,连接AC .(1)请直接写出b ,c 的值;(2)若动点(),0E m 在边OA (不与O ,A 两点重合)上,过点E 作x 轴的垂线l 交BC 于点F ,交AC 于点M ,交抛物线于点P ,连接PC . ①设线段PM 的长为h ,求h 与m 的函数关系式;①当点P 在BC 下方的抛物线上时,以P ,C ,F 为顶点的三角形与AEM △是否相似?若相似,请求出此时点E 的坐标;若不相似,请说明理由.2.如图,在平面直角坐标系中,抛物线22y ax b =++过点()1,3,且交x 轴于点()1,0A -,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PD 的最大值及此时点P 的坐标;(3)将该抛物线沿射线CB 方向平移5个单位长度,点M 为平移后的抛物线的对称轴上一点.是否存在M 使得M ,B 关于PD 对称,若存在直接写出M 的坐标,若不存在,请说明理由.3.综合与探究:如图,抛物线2134y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A ,B ,C 的坐标;(2)点P 在直线BC 上方的抛物线上,过点P 作x 轴的垂线l ,连接AP 交BC 于点D .当PD AD最大时,求点P 的坐标及PDAD的最大值; (3)在(2)的条件下,在l 上是否存在点Q ,使BCQ △是直角三角形.若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.如图,抛物线2122y x bx =-++交x 轴于A (1-,0),B (4,0)两点,交y 轴于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.(1)求抛物线解析式;(2)过点P 作y 轴的垂线与射线BC 交于点Q ,设线段PQ 的长度为d ,点P 的横坐标为m ,求d 与m 的函数关系式;(3)若点P 在y 轴右侧,过点P 作直线CD 的垂线,垂足为Q ,若将①CPQ 沿CP 翻折,点Q 的对应点为Q ′.是否存在点P ,使Q ′恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.5.综合与探究如图,直线243y x =-+与x 轴,y 轴分别交于B ,C 两点,抛物线243y ax x c =++经过B ,C 两点,与x 轴的另一个交点为A (点A 在点B 的左侧),抛物线的顶点为点D .抛物线的对称轴与x 轴交于点E .(1)求抛物线的表达式及顶点D 的坐标;(2)点M 是线段BC 上一动点,连接DM 并延长交x 轴交于点F ,当:1:4FM FD =时,求点M 的坐标;(3)点P 是该抛物线上的一动点,设点P 的横坐标为m ,试判断是否存在这样的点P ,使90PAB BCO ∠+∠=︒,若存在,请直接写出m 的值;若不存在,请说明理由.6.如图,抛物线与x 轴交于点A ,B ,与y 轴交于点C ,且点()1,0A -,点()0,2C ,抛物线的对称轴为直线32x =,连接AC ,BC .(1)求抛物线的解析式;(2)将ABC 沿直线BC 折叠,得到DBC △,请问:点A 的对应点D 是否落在抛物线的对称轴上?若点D 落在对称轴上,请求出点D 的坐标;若点D 没有落在对称轴上,请说明理由;(3)若点E 是抛物线位于第一象限内的一个动点,连接AE 交直线BC 于点F ,设EFn AF=,求n 的最大值并求出此时点E 的坐标.7.如图,抛物线22y ax bx =++与x 轴交于A ,B 两点,点()2,0A 且2OA OB =,与y 轴交于点C ,连接BC ,D 为第一象限内抛物线上一动点,过点D 作DE OA ⊥于点E ,与AC 交于点F ,设点D 的横坐标为m .(1)求抛物线的表达式;(2)求ACD 面积的最大值及此时D 点的坐标;(3)抛物线上是否存在点D ,使得以点O 、D 、E 为顶点的三角形与BOC 相似?若存在,求出m 的值;若不存在,请说明理由.8.如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于()8,0A 和()2,0B -两点,与y 轴交于点C ,连接AC .(1)求抛物线的表达式;(2)如图1,直线CD 交x 轴于点()2,0D ,点P 为线段AC 下方抛物线上的一点,过点P 作PH y ∥轴交直线CD 于点H ,在直线CD 上取点Q ,连接PQ ,使得HQ PQ =,求524PQ PH -的最大值及此时P 点的坐标; (3)连接BC ,把原抛物线214y x bx c =++沿射线BC 方向平移25个单位长度,点M是平移后新抛物线上的一点,过点M 作MN 垂直x 轴于点N ,连接AM ,直接写出所有使得AMN ABC ∽的点M 的横坐标.9.已知抛物线223y x x =--与x 轴相交于A ,B 两点,与y 轴交于点C .若点(),0N n 为x 轴上的动点,过点N 作x 轴的垂线交抛物线于点P .(1)直接写出A ,B ,C 三点的坐标;(2)①如图1,直线PN 交直线BC 于点G ,若点G 恰好在线段PB 的垂直平分线上,且3n <时,求n 的值;①如图2,连接AC ,AP ,抛物线上存在一点P ,使得以P ,A ,N 为顶点的三角形与CAO △相似,求点P 的坐标.10.已知抛物线:2616(0)y ax ax a a =-->与x 轴交点为A ,B (A 在B 的左侧),与y 轴交于点C ,点G 是AC 的中点.(1)求点A ,B 的坐标及抛物线的对称轴;(2)直线32y x =-与抛物线交于点M ,N 且MO NO =,求抛物线解析式.*提示:如果一元二次方程20(0)ax bx c a ++=≠的两个根是1x 和2x ,那么12b x x a+=-和12cx x a⋅=;(3)已知点P 是(2)中抛物线上第四象限内的动点,过点P 作x 轴的垂线交BC 于点E ,交x 轴于点F .若以点C ,P ,E 为顶点的三角形与AOG 相似,求点P 的坐标.11.抛物线22230yx mx m m 与x 轴交于A ,B 两点,A 点在B 点左边,与y 轴交于C 点,顶点为M .(1)当1m =时,求点A ,B ,M 的坐标;(2)如图1,在(1)的条件下,若P 为抛物线对称轴上一个动点,且PAC △为等腰三角形,求P 点坐标;(3)如图2,若一次函数y kx b =+的图象过A 点且与抛物线交于另一点F ,交对称轴于E ,MG x 轴,FG MG ⊥和AM AF ⊥.若45AMEF ,求MG AB的值.12.如图1,在平面直角坐标系中,抛物线233322y x x =-++与x 轴交于点A 和点B (点A 在点B 左侧),与y 轴交于点C .(1)求直线BC 的解析式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作y 轴的平行线交BC 于点D ,过点P 作x 轴的平行线交BC 于点E ,求3PE PD +的最大值及此时点P 的坐标; (3)如图2,在(2)中3PE PD +取得最大值的条件下,将抛物线233322y x x =-++沿着射线CB 方向平移得到新抛物线y ',且新抛物线y '经过线段BC 的中点F ,新抛物线y '与y 轴交于点M ,点N 为新抛物线y '对称轴上一点,点Q 为坐标平面内一点,若以点P ,Q ,M ,N 为顶点的四边形是以PN 为边的菱形,写出所有符合条件的点Q 的坐标,并写出求解点Q 的坐标的其中一种情况的过程.13.直线33y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线2y x bx c =-++经过B ,C 两点,与x 轴的另一交点为A ,连接AC ,点P 为AC 上方的抛物线上一动点.(1)求抛物线的解析式;(2)如图①,连接BP ,交线段AC 于点D ,若:5:16PD BD =,求此时点P 的坐标; (3)如图①,连接PC ,过点P 作PE y 轴,交线段AC 于点E ,若PCE 与ABC 相似,求出点P 的横坐标及线段PE 长.14.如图,已知二次函数2y x bx c =-++的图像交x 轴于点()1,0A -和()5,0B ,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B 出发,以每秒2个单位长度的速度沿线段BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒(0<t <5).当t 为何值时,BMN 的面积最大?最大面积是多少? (3)求t 为何值时,BMN 是等腰三角形?15.如图1,抛物线 ²2y ax x c =++, 交x 轴于A 、B 两点,交y 轴于点C .当0y ≥时13x -≤≤.(1)求抛物线的表达式;(2)若点D 是抛物线上第一象限的点.①如图1,连接AD ,交线段BC 于点G ,若12DG AG =时,求D 点的坐标; ①如图2,在①条件下,当点D 靠近抛物线对称轴时,过点D 作DP x ⊥轴,点H 是DP 上一点,连接AH ,求1010AH DH +的最小值; (3)如图3,F 为抛物线顶点,直线EF 垂直于x 轴于点E ,直线AD BD ,分别与抛物线对称轴交于M 、N 两点.试问,EM EN +是否为定值?如果是,请直接写出这个定值:如果不是,请说明理由.参考答案: 1.(1)83b =- 4c =- (2)①2443h m m =-+,①相似,()1,0或23,016⎛⎫ ⎪⎝⎭2.(1)213222y x x =-++ (2)PD 有最大值,最大值为455,此时点P 的坐标为(2,3) (3)不存在3.(1)()()()2,0,6,0,0,3A B C - (2)153,4P ⎛⎫ ⎪⎝⎭,PD AD的最大值为916 (3)存在,()3,6-或353,2⎛⎫+ ⎪ ⎪⎝⎭或353,2⎛⎫- ⎪ ⎪⎝⎭或()3,94.(1)213222y x x =-++ (2)当P 在y 轴右侧时,24d m m =-+;当P 在y 轴左侧时24d m m =-(3)存在 931313,2P ⎛⎫-+ ⎪ ⎪⎝⎭5.(1)214-433y x x =++ 16(2,)3;(2)44,3⎛⎫ ⎪⎝⎭;(3)存在,m 的值为4或8 6.(1)213222y x x =-++ (2)D 点不在对称轴32x =上 (3)45 ()2,3E7.(1)22y x x =-++(2)ACD 面积的最大值1 ()1,2D(3)1334m +=或1m =. 8.(1)213442y x x =-- (2)524PQ PH -取得最大值49516 97,4P ⎛⎫- ⎪⎝⎭ (3)12或0或443-或443+9.(1)()1,0A -,()3,0B 和()0,3C -(2)①2n =±;①点P 的坐标为()6,21,1013,39⎛⎫ ⎪⎝⎭和811,39⎛⎫- ⎪⎝⎭10.(1)()20A -,和()80B ,,对称轴为直线3x =; (2)213442y x x =--; (3)P 点坐标为()46-,或2534⎛⎫- ⎪⎝⎭,.11.(1)()1,0A -,()3,0B 和()1,4M -(2)1,1或()1,6或()1,6-或()1,0 (3)54m12.(1)332y x =-+ (2)3PE PD +的最大任为52,此时()1,3P (3)11173,236Q ⎛⎫- ⎪⎝⎭,21330,22Q ⎛⎫-+ ⎪⎝⎭和31330,22Q ⎛⎫-- ⎪⎝⎭13.(1)223y x x =--+(2)点P 的坐标为1(2-,15)4或5(2-,7)4).(3)P 的横坐标为32-或53-,PE 的长为94或209.14.(1)二次函数的表达式为245y x x =-++(2)当52t =时,BMN 的面积最大,最大面积是258(3)t 的值为53,525-或5215.(1)223y x x =-++(2)①()14,,()23,①10(3)是定值,定值为8。

中考复习:二次函数和相似三角形问题(含答案)

中考复习:二次函数和相似三角形问题(含答案)

综合题讲解 函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。

⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x 41y 2+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。

分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

y xEQ PC B OA 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、B 两点,交y 轴于点C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标;(2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形?并证明你的结论;(3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式.练习1、已知抛物线2y ax bx c =++经过5330P E ⎫⎪⎪⎝⎭,,,及原点(00)O ,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为225333y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?练习2、如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D处。

2021年河北省中考复习数学《相似三角形》专题复习(人教版)(Word版附答案)

2021年河北省中考复习数学《相似三角形》专题复习(人教版)(Word版附答案)

节相似三角形1.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10%C.增加了(1+10%) D.没有改变2.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.图①乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.图②A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对3.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()4.(2020·河北中考)在如图所示的网格中,以点O 为位似中心,四边形 ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR5.在平面直角坐标系中,已知点A (-4,2),B (-6,-4),以原点O 为位似中心,相似比为12 ,把△ABO 缩小,则点B 的对应点B ′的坐标是( )A .(-3,-2)B .(-12,-8)C .(-3,-2)或(3,2)D .(-12,-8)或(12,8)6.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.2 7.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE ∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE=AGAD B.DFCF=DGADC.FGAC=EGBD D.AEBE=CFDF8.(2020·邯郸丛台区三模)如图,△ABC中,D,E分别是AB,AC上的点,且BD=2AD,CE=2AE.(1)求证:△ADE∽△ABC;(2)若DF=2,求FC的长度.9.(2020·温州中考)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为()A.14B.15C.83D.6510.(2020·黔东南中考)如图,矩形ABCD中,AB=2,BC=2,E为CD 的中点,连接AE,BD交于点P,过点P作PQ⊥BC于点Q,则PQ=.11.如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点的坐标分别为A(-1,2),B(2,1),C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为2,并求出△A2B2C2的面积.12.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C,O,C′三点在同一直线上C.AO∶AA′=1∶2D.AB∥A′B′13.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.节相似三角形1.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比(D)A.增加了10% B.减少了10%C.增加了(1+10%) D.没有改变2.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.图①乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.图②A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对3.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(C)4.(2020·河北中考)在如图所示的网格中,以点O 为位似中心,四边形 ABCD 的位似图形是(A )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR5.在平面直角坐标系中,已知点A (-4,2),B (-6,-4),以原点O 为位似中心,相似比为12 ,把△ABO 缩小,则点B 的对应点B ′的坐标是(C )A .(-3,-2)B .(-12,-8)C .(-3,-2)或(3,2)D .(-12,-8)或(12,8)6.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =1.2,则DF 的长为(B )A .3.6B .4.8C .5D .5.2 7.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE ∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是(D)A.ABAE=AGAD B.DFCF=DGADC.FGAC=EGBD D.AEBE=CFDF8.(2020·邯郸丛台区三模)如图,△ABC中,D,E分别是AB,AC上的点,且BD=2AD,CE=2AE.(1)求证:△ADE∽△ABC;(2)若DF=2,求FC的长度.【解答】(1)证明:∵BD=2AD,CE=2AE,∴ADAB=AEAC=13.又∵∠DAE=∠BAC,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴DEBC=ADAB=13,∠ADE=∠ABC.∴DE∥BC.∴△DEF∽△CBF.∴DFCF=DECB,即2CF=13.∴FC=6.9.(2020·温州中考)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为(A)A.14B.15C.83D.6510.(2020·黔东南中考)如图,矩形ABCD中,AB=2,BC=2,E为CD的中点,连接AE,BD交于点P,过点P作PQ⊥BC于点Q,则PQ=4 3.11.如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点的坐标分别为A(-1,2),B(2,1),C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为2,并求出△A2B2C2的面积.解:(1)如图,△A1B1C1即为所求作的三角形;(2)如图,△A2B2C2即为所求作的三角形.分别过点A2,C2作y轴的平行线,过点B2作x轴的平行线.∵A(-1,2),B(2,1),C(4,5),△A2B2C2与△ABC位似,且相似比为2,∴A 2(-2,4),B 2(4,2),C 2(8,10).∴S △A 2B 2C 2=(2+8)×102-12 ×2×6-12 ×4×8=28., 12.如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是(C )A.△ABC ∽△A ′B ′C ′B .点C ,O ,C ′三点在同一直线上 C .AO ∶AA ′=1∶2D .AB ∥A ′B ′13.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.(1)在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段A 1B 1(点A ,B 的对应点分别为A 1,B 1),画出线段A 1B 1;(2)将线段A 1B 1绕点B 1逆时针旋转90°得到线段A 2B 1,画出线段A 2B 1; (3)以A ,A 1,B 1,A 2为顶点的四边形AA 1B 1A 2的面积是 个平方单位.解:(1)如图,线段A 1B 1即为所求; (2)如图,线段A 2B 1即为所求;(3)20.[由图可得,四边形AA 1B 1A 2为正方形, ∴四边形AA 1B 1A 2的面积是(22+42 )2=20.]。

湖南省2019-2021年3年中考真题数学分项汇编--专题11 二次函数(解答题)(解析版)

湖南省2019-2021年3年中考真题数学分项汇编--专题11 二次函数(解答题)(解析版)

专题11 二次函数(解答题)1.(2021·湖南怀化市·中考真题)某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如下表:(1)求A 、B 两种型号的水杯进价各是多少元?(2)在销售过程中,A 型水杯因为物美价廉而更受消费者喜欢.为了增大B 型水杯的销售量,超市决定对B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B 型水杯降价多少元时,每天售出B 型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A 型水杯可获利10元,售出一个B 型水杯可获利9元,超市决定每售出一个A 型水杯就为当地“新冠疫情防控”捐b 元用于购买防控物资.若A 、B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b 为多少?利润为多少? 【答案】(1)A 型号水杯进价为20元,B 型号水杯进价为30元;(2)超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元;(3)A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元. 【分析】(1)主要运用二元一次方程组,设A 型号水杯为x 元,B 型号水杯为y 元,根据表格即可得出方程组,解出二元一次方程组即可得A 、B 型号水杯的单价;(2)主要运用二次函数,由题意可设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w ,每个水杯的利润为()4430z --元;每降价1元,多售出5个,可得售出的数量为()205z +个,根据:利润=(售价-进价)×数量,可确定函数关系式,依据二次函数的基本性质,开口向下,在对称轴处取得最大值,即可得出答案;(3)根据(1)A 型号水杯为20元,B 型号水杯为30元.设10000元购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,可列出方程组,利用代入消元法化简得到利润W 的函数关系式,由于利润不变,所以令未知项的系数为0,即可求出b ,W . 【详解】(1)解:设A 型号水杯进价为x 元,B 型号水杯进价为y 元,根据题意可得:100200800020030013000x y x y +=⎧⎨+=⎩,解得:2030x y =⎧⎨=⎩,∴A 型号水杯进价为20元,B 型号水杯进价为30元.(2)设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w , 根据题意可得:()()4430205w z z =--+, 化简得:2550280w z z =-++, 当()505225b z a =-=-=⨯-时, 255505280405max w =-⨯+⨯+=,∴超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元. (3)设购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,根据题意可得:()203010000109m n W b m n +=⎧⎨=-+⎩①② 将①代入②可得:()100002010930mW b m -=-+⨯,化简得:()()106300043000W b m b m =--+=-+, 使得A ,B 两种杯子全部售出后,捐款后所得利润不变, 则40b -=,得4b =, 当4b =时,3000W =,∴A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元. 【点睛】题目主要考察二元一次方程、一元二次函数的以及一次函数的应用,难点是对题意的理解及对函数和方程的综合运用.2.(2021·湖南中考真题)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y (单位:万件)与销售单价x (单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y 所对应的点,并画出y 关于x 的函数图象; (2)根据画出的函数图象,求出y 关于x 的函数表达式; (3)设经营此商品的月销售利润为P (单位:万元). ①写出P 关于x 的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见详解;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元. 【分析】(1)由题意可直接进行作图;(2)由图象可得y 与x 满足一次函数的关系,所以设其关系式为y kx b =+,然后任意代入表格中的两组数据进行求解即可;(3)①由题意易得()2P x y =-,然后由(2)可进行求解;②由①及题意可得22203210x x -+-=,然后求解,进而根据销售单价不得超过进价的200%可求解. 【详解】解:(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩, ∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-; ∴P 关于x 的函数表达式为222032P x x =-+-; ②由题意得:2200x ≤⨯%,即4x ≤, ∴22203210x x -+-=, 解得:123,7x x ==, ∴3x =;答:此时的销售单价应定为3元. 【点睛】本题主要考查二次函数与一次函数的应用,熟练掌握二次函数与一次函数的应用是解题的关键.3.(2021·湖南永州市·中考真题)已知关于x 的二次函数21y x bx c =++(实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为1x =,求此二次函数的表达式; (2)若20b c -=,当3b x b -≤≤时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数222y x x m =++,若在(1)的条件下,当01x ≤≤时,总有21y y ≥,求实数m 的最小值.【答案】(1)2124y x x -=+;(2)4;(3)4. 【分析】(1)将点(0,4)代入二次函数的解析式可得c 的值,根据二次函数的对称轴可得b 的值,由此即可得; (2)先求出二次函数的对称轴为2bx =-,再分0b ≤,02b <<和2b ≥三种情况,分别利用二次函数的性质可得一个关于b 的一元二次方程,解方程即可得;(3)先根据21y y ≥可得2340x x m ++-≥,令2334y x x m =++-,再根据二次函数的性质列出不等式,求解即可得. 【详解】解:(1)将点(0,4)代入21y x bx c =++得:4c =, 二次函数的对称轴为1x =,12b∴-=,解得2b =-, 则此二次函数的表达式为2124y x x -=+; (2)20b c -=,即2c b =,222213()24b y x bx b x b =++=++∴,则此二次函数的对称轴为2bx =-,由题意,分以下三种情况: ①当2bb ≤-,即0b ≤时, 在3b x b -≤≤内,1y 随x 的增大而减小, 则当x b =时,1y 取得最小值, 因此有22221b b b ++=,解得b =0b =>(不符题设,舍去); ②当32bb b -<-<,即02b <<时,在32b b x -≤≤-内,1y 随x 的增大而减小;在2bx b -<≤内,1y 随x 的增大而增大, 则当2bx =-时,1y 取得最小值, 因此有23214b =,解得2b =>或0b =-(均不符题设,舍去); ③当32bb -≥-,即2b ≥时, 在3b x b -≤≤内,1y 随x 的增大而增大, 则当3x b =-时,1y 取得最小值,因此有223(3)2124b b b -++=, 解得4b =或12b =-<(不符题设,舍去),综上,b 的值为4;(3)由(1)可知,2124y x x -=+,由21y y ≥得:22224x x m x x ++≥-+,即2340x x m ++-≥, 令2334y x x m =++-,在01x ≤≤内,3y 随x 的增大而增大,要使得当01x ≤≤时,总有23340y x x m =++-≥,则只需当0x =时,30y ≥即可,因此有40m -≥, 解得4m ≥,则实数m 的最小值为4. 【点睛】本题考查了二次函数的图象与性质、解一元二次方程等知识点,较难的是题(2),正确分三种情况讨论是解题关键.4.(2021·湖南长沙市·中考真题)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点()1,A r 与点(),4B s 是关于x 的“T 函数”()()240,0,0,.x x y tx x t t ⎧-<⎪=⎨⎪≥≠⎩是常数的图象上的一对“T 点”,则r =______,s =______,t =______(将正确答案填在相应的横线上);(2)关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”;如果不是,请说明理由;(3)若关于x 的“T 函数”2y ax bx c =++(0a >,且a ,b ,c 是常数)经过坐标原点O ,且与直线:l y mx n =+(0m ≠,0n >,且m ,n 是常数)交于()11,M x y ,()22,N x y 两点,当1x ,2x 满足()11211x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.【答案】(1)4,1,4-;(2)当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”,理由见解析;当0k =时,关于x 的函数y kx p =+(,k p 是常数)是“T 函数”,它有无数对“T 点”;(3)直线l 总经过一定点,该定点的坐标为(1,0). 【分析】(1)先根据关于y 轴对称的点坐标变换规律可得,r s 的值,从而可得点A 的坐标,再将点A 的坐标代入“T 函数”即可得;(2)分0k ≠和0k =两种情况,当0k ≠时,设点000(,)(0)x y x ≠与点00(,)x y -是一对“T 点”,将它们代入函数解析式可求出0k =,与0k ≠矛盾;当0k =时,y p =是一条平行于x 轴的直线,是“T 函数”,且有无数对“T 点”;(3)先将点(0,0)O 代入2y ax bx c =++可得0c,再根据“T 函数”的定义可得0b =,从而可得2y ax =,与直线y mx n =+联立可得12,x x 是方程20mx n ax --=的两实数根,然后利用根与系数的关系可得1212,m n x x x x a a+==-,最后根据()11211x x --+=化简可得n m =-,从而可得y mx m =-,由此即可得出答案. 【详解】解:(1)由题意得:点()1,A r 与点(),4B s 关于y 轴对称,4,1r s ∴==-,()1,4A ∴, 10>,∴将点()1,4A 代入2y tx =得:4t =,故答案为:4,1,4-;(2)由题意,分以下两种情况: ①当0k ≠时,假设关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”,点000(,)(0)x y x ≠与点00(,)x y -是其图象上的一对“T 点”,则0000kx p y kx p y +=⎧⎨-+=⎩,解得0k =,与0k ≠相矛盾,假设不成立,所以当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”; ②当0k =时,函数y kx p p =+=是一条平行于x 轴的直线,是“T 函数”,它有无数对“T 点”;综上,当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”;当0k =时,关于x 的函数y kx p =+(,k p 是常数)是“T 函数”,它有无数对“T 点”;(3)由题意,将(0,0)O 代入2y ax bx c =++得:0c,2y ax bx ∴=+,设点333(,)(0)x y x ≠与点33(,)x y -是“T 函数”2y ax bx =+图象上的一对“T 点”,则23332333ax bx y ax bx y ⎧+=⎨-=⎩,解得0b =, 2(0)y ax a ∴=>,联立2y ax y mx n⎧=⎨=+⎩得:20mx n ax --=,“T 函数”2y ax =与直线y mx n =+交于点()11,M x y ,()22,N x y ,12,x x ∴是关于x 的一元二次方程20mx n ax --=的两个不相等的实数根,1212,m n x x x x a a ∴+==-, ()11211x x --+=,2211x x x x +=∴,即m na a=-, 解得n m =-,则直线l 的解析式为y mx m =-, 当1x =时,0y m m =-=,因此,直线l 总经过一定点,该定点的坐标为(1,0). 【点睛】本题考查了关于y 轴对称的点坐标变换规律、二次函数与一次函数的综合、一元二次方程根与系数的关系等知识点,掌握理解“T 函数”和“T 点”的定义是解题关键.5.(2021·湖南株洲市·中考真题)已知二次函数()20y ax bx c a =++>.(1)若12a =,2b c ==-,求方程20ax bx c ++=的根的判别式的值; (2)如图所示,该二次函数的图像与x 轴交于点()1,0A x 、()2,0B x ,且120x x <<,与y 轴的负半轴交于点C ,点D 在线段OC 上,连接AC 、BD ,满足 ACO ABD ∠=∠,1bc x a-+=. ①求证:AOC DOB ≅;②连接BC ,过点D 作DE BC ⊥于点E ,点()120,F x x -在y 轴的负半轴上,连接AF ,且ACO CAF CBD ∠=∠+∠,求1cx 的值. 【答案】(1)=8∆ (2)①证明见解析;②1c x =2【分析】(1)根据判别式公式代入求解即可.(2)①通过条件,得到OC=OB ,再根据ASA 即可得到两个三角形角形全等. ②通过分析条件,证明AOF DEB △△,得到AO OFDE EB=,再根据相关的线段转换长度,代入求解即可. 【详解】解:(1)当12a =,2b c ==-时,方程为:212202x x --=, ()()2214242=82b ac ∆=-=--⨯⨯-,(2)①证明:∵12b x x a +=-,且1bc x a-+=,∴2x c =-, ∴OC OB c ==, 在AOC △与DOB 中,90ACO ABDOC OBAOC DBO ⎧∠=∠⎪=⎨⎪∠=∠=⎩, ∴()AOC DOB ASA ≅△△.②解:ACO CAF CBD ∠=∠+∠,ACO CFA CAF ∠=∠+∠, ∴CFA CBD ∠=∠, ∵DE BC ⊥, ∴90DEB ∠=, 又∵90AOF ∠=, ∴AOF DEB △△, ∴AO OFDE EB=, ∵OC OB c ==,且90COB ∠=, ∴45OCB ∠=,BC =, 在DEC Rt △中,45OCB ∠=,∴DC ==,又∵AOC DOB ≅△△,∴1OD OA x ==-,又∵OC OD DC =+,∴1DC c x =-+,)122DE CE DC c x ===-+,∴))1122EB BC CE c x c x =-=--+=-+, ∵AO OF DE EB=,1122x x --= , 即:21120c c x x ⎛⎫--= ⎪⎝⎭,∴1c x =2或1c x =-1(舍), 【点睛】本题考查的是二次函数与一元二次方程的关系,韦达定理,以及一元二次方程的解法,三角形全等和相似等相关知识点,根据题意能够找见相关等量关系是解题关键 .6.(2021·湖南娄底市·中考真题)如图,在直角坐标系中,二次函数2y x bx c =++的图象与x 轴相交于点(1,0)A -和点(3,0)B ,与y 轴交于点C .(1)求b c 、的值;(2)点(,)P m n 为抛物线上的动点,过P 作x 轴的垂线交直线:l y x =于点Q .①当03m <<时,求当P 点到直线:l y x =的距离最大时m 的值;②是否存在m ,使得以点O C P Q 、、、为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m 的值.【答案】(1)b =2-,c =3-;(2)①32m =;②不存在,理由见解析 【分析】(1)将A (-1,0),B (3,0)代入y =x 2+bx +c ,可求出答案;(2)①设点P (m ,m 2-2m -3),则点Q (m ,m ),再利用二次函数的性质即可求解;②分情况讨论,利用菱形的性质即可得出结论.【详解】解:(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A (-1,0),B (3,0), ∴10930b c b c -+=⎧⎨++=⎩, 解得:23b c =-⎧⎨=-⎩, ∴b =2-,c =3-;(2)①由(1)得,抛物线的函数表达式为:y =x 223x --,设点P (m ,m 2-2m -3),则点Q (m ,m ),∵0<m <3,∴PQ =m -( m 2-2m -3)=-m 2+3m +3=-232m ⎛⎫- ⎪⎝⎭+214, ∵-1<0, ∴当32m =时,PQ 有最大值,最大值为214; ②∵抛物线的函数表达式为:y =x 2-2x -3,∴C (0,-3),∴OB =OC =3,由题意,点P (m ,m 2-2m -3),则点Q (m ,m ),∵PQ ∥OC ,当OC 为菱形的边,则PQ =OC =3,当点Q 在点P 上方时,∴PQ =2333m m -++=,即230m m -+=,∴()30m m -=,解得0m =或3m =,当0m =时,点P 与点O 重合,菱形不存在,当3m =时,点P 与点B 重合,此时BC OC =≠,菱形也不存在;当点Q 在点P 下方时,若点Q 在第三象限,如图,∵∠COQ=45°,根据菱形的性质∠COQ=∠POQ=45°,则点P与点A重合,此时OA=1≠OC=3,菱形不存在,若点Q在第一象限,如图,同理,菱形不存在,综上,不存在以点O、C、P、Q为顶点的四边形是菱形.【点睛】本题是二次函数综合题,考查的是二次函数的性质,菱形的判定和性质等知识,其中,熟练掌握方程的思想方法和分类讨论的思想方法是解题的关键.7.(2021·湖南衡阳市·中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁1,1,2021,2021……都是“雁点”.点”.例如()()(1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)(2,2)和(2,2)--;(2)①04c <<;②45°;(3)存在,P 点坐标为315,24⎛⎫ ⎪⎝⎭或3122⎛⎫+ ⎪ ⎪⎝⎭或312⎛⎫- ⎪⎝⎭ 【分析】(1)根据“雁点”的定义可得y =x ,再联立4y x=求出 “雁点”坐标即可; (2)根据25y ax x c =++和y =x 可得240ax x c ++=,再利用根的判别式得到4c a =,再求出a 的取值范围;将点c 代入解析式求出点E 的坐标,令y =0,求出M 的坐标,过E 点向x 轴作垂线,垂足为H 点,如图所示,根据EH =MH 得出EM H 为等腰直角三角形,∠EMN 的度数即可求解;(3)存在,根据图1,图2,图3进行分类讨论,设C (m ,m ),P (x ,y ),根据三角形全等得出边相等的关系,再逐步求解,代入解析式得出点P 的坐标.【详解】解:(1)联立4y x y x⎧=⎪⎨⎪=⎩,解得22x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩ 即:函数4y x=上的雁点坐标为(2,2)和(2,2)--. (2)① 联立25y x y ax x c =⎧⎨=++⎩得240ax x c ++=∵ 这样的雁点E 只有一个,即该一元二次方程有两个相等的实根,∴ 2440ac ∆=-=∵ 4c a= ∵ 1a >∴ 04c <<② 将4c a =代入,得2440E E ax x a++= 解得2k x a =-,∴ 22,E a a ⎛⎫-- ⎪⎝⎭对于245y x x aα=++,令0y = 有2450ax x a++= 解得41,N M x x a a=-=-∴ 4,0M a ⎛⎫- ⎪⎝⎭过E 点向x 轴作垂线,垂足为H 点,EH =2a ,MH =242()a a a---= ∴2EH MH a ==∴ EM H 为等腰直角三角形,45EMN ∠=︒(3)存在,理由如下:如图所示:过P 作直线l 垂直于x 轴于点k ,过C 作CH ⊥PK 于点H设C (m ,m ),P (x ,y )∵ △CPB 为等腰三角形,∴PC =PB ,∠CPB =90°,∴∠KPB +∠HPC =90°,∵∠HPC +∠HCP =90°,∴∠KPB =∠HCP ,∵∠H =∠PKB =90°,∴△CHP ≌△PKB ,∴CH =PK ,HP =KB ,即3m x y m y x-=⎧⎨-=-⎩ ∴3232x y m ⎧=⎪⎪⎨⎪=-⎪⎩当32x =时,23315()23224y =-+⨯+= ∴ 315()24P ,如图2所示,同理可得:△KCP ≌△JPB∴ KP =JB ,KC =JP设P (x ,y ),C (m ,m )∴KP =x -m ,KC =y -m ,JB =y ,JP =3-x ,即3x m y y m x -=⎧⎨-=-⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩令23-232x x ++=解得12222x x ==∴3)2P或3)2P如图3所示,∵△RCP ≌△TPB∴RC =TP ,RP =TB设P (x ,y ),C (m ,m )即3y m x x m y -=-⎧⎨-=⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩令23-232x x ++=解得122=22x x = ∴ 此时P 与第②种情况重合综上所述,符合题意P 的坐标为315()24,或3)2,或3)2,【点睛】本题考查了利用待定系数法求函数解析式,图形与坐标,等腰三角形的判定与性质,二次函数的综合运用,理解题意和正确作图逐步求解是解题的关键.8.(2021·湖南张家界市·中考真题)如图,已知二次函数2y ax bx c =++的图象经过点(2,3)C -且与x 轴交于原点及点(8,0)B .(1)求二次函数的表达式;(2)求顶点A 的坐标及直线AB 的表达式;(3)判断ABO 的形状,试说明理由;(4)若点P 为O 上的动点,且O的半径为E 从点A 出发,以每秒2个单位长度的速度沿线段AP 匀速运动到点P ,再以每秒1个单位长度的速度沿线段PB 匀速运动到点B 后停止运动,求点E 的运动时间t 的最小值.【答案】(1)2124y x x -=;(2)()4,4A -,8y x =-;(3)等腰直角三角形,理由见解析;(4)【分析】(1)根据已知条件,运用待定系数法直接列方程组求解即可;(2)根据(1)中二次函数解析式,直接利用顶点坐标公式计算即可,再根据点A 、B 坐标求出AB 解析式即可;(3)根据二次函数对称性可知ABO 为等腰三角形,再根据O 、A 、B 三点坐标,求出三条线段的长,利用勾股定理验证即可;(4)根据题意可知动点E 的运动时间为12t AP PB =+,在OA 上取点D ,使OD =可证明APO △∽PDO △,根据相似三角形比例关系得12PD AP =,即12t AP PB PD PB =+=+,当B 、P 、D 三点共线时,PD PB +取得最小值,再根据等腰直角三角形的性质以及勾股定理进一步计算即可.【详解】解:(1)二次函数()20y ax bx c a =++≠的图象经过(2,3)C -,且与x 轴交于原点及点()8,0B ∴0c ,二次函数表达式可设为:()20y ax bx a =+≠将(2,3)C -,()8,0B 代入2y ax bx =+得:3420648a b a b -=+⎧⎨=+⎩解这个方程组得142a b ⎧=⎪⎨⎪=-⎩ ∵二次函数的函数表达式为2124y x x -= (2)∵点A 为二次函数图像的顶点, ∴421224b x a =-=-⨯=-,22140(2)4414444ac b y a ⨯⨯---===-⨯ ∴顶点坐标为:()4,4A -,设直线AB 的函数表达式为y kx m =+,则有:4408k m k m -=+⎧⎨=+⎩解之得:18k m =⎧⎨=-⎩∴直线AB 的函数表达式为8y x =-(3)ABC 是等腰直角三角形,过点A 作AF OB ⊥于点F ,易知其坐标为(4,0)F∵ABC 的三个顶点分别是()0,0O ,()4,4A -,()8,0B,∴808OB =-=,OA ===AB ===且满足222OB OA AB =+∴ABC 是等腰直角三角形(4)如图,以O 为圆心,P 在圆周上,依题意知:动点E 的运动时间为12t AP PB =+在OA 上取点D ,使OD =连接PD ,则在APO △和PDO △中,满足:2PO AO OD OP==,AOP POD ∠=∠, ∴APO △∽PDO △,∴2AP PO AO PD OD OP===,从而得:12PD AP = ∴12t AP PB PD PB =+=+ 显然当B 、P 、D 三点共线时,PD PB +取得最小值,过点D 作DG OB ⊥于点G ,由于OD =且ABO 为等腰直角三角形,则有1DG =,45DOG ∠=︒,∴动点E 的运动时间t 的最小值为:t DB ==== 【点睛】 本题主要考查待定系数法求函数解析式,抛物线顶点坐标,等腰直角三角形的性质与判定,相似三角形的判定与性质等知识点,将运动时间的最小值转换为线段长度的最小值是解题的关键.9.(2021·湖南常德市·中考真题)如图,在平面直角坐标系xOy 中,平行四边形ABCD 的AB 边与y 轴交于E 点,F 是AD 的中点,B 、C 、D 的坐标分别为()()()2,0,8,0,13,10-.(1)求过B 、E 、C 三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线EF 上;(3)设过F 与AB 平行的直线交y 轴于Q ,M 是线段EQ 之间的动点,射线BM 与抛物线交于另一点P ,当PBQ △的面积最大时,求P 的坐标.【答案】(1)213442y x x =-++;(2)顶点是在直线EF 上,理由见解析;(3)P 点坐标为(9,114-). 【分析】 (1)先求出A 点坐标,再求出直线AB 的解析式,进而求得E 的坐标,然后用待定系数法解答即可; (2)先求出点F 的坐标,再求出直线EF 的解析式,然后根据抛物线的解析式确定顶点坐标,然后进行判定即可;(3)设P 点坐标为(p ,()()1-p+284p -),求出直线BP 的解析式,进而求得M 的坐标;再求FQ 的解析式,确定Q 的坐标,可得|MQ |=()182p -+6,最后根据S △PBQ = S △MBQ + S △PMQ 列出关于p 的二次函数并根据二次函数的性质求最值即可.【详解】解:(1)∵平行四边形ABCD ,B 、C 、D 的坐标分别为()()()2,0,8,0,13,10-∴A (3,10),设直线AB 的解析式为y =kx +b ,则10302k b k b =+⎧⎨=-+⎩ ,解得24k b =⎧⎨=⎩, ∴直线AB 的解析式为y =2x +4,当x =0时,y =4,则E 的坐标为(0,4),设抛物线的解析式为:y =ax 2+bx +c ,()()220220884a b c a b c c ⎧=-+-+⎪=⋅++⎨⎪=⎩ ,解得14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴过B 、E 、C 三点的抛物线的解析式为213442y x x =-++; (2)顶点是在直线EF 上,理由如下:∵F 是AD 的中点,∴F (8,10),设直线EF 的解析式为y =mx +n ,则4108n m n =⎧⎨=+⎩,解得344m n ⎧=⎪⎨⎪=⎩, ∴直线EF 的解析式为y =34x +4, ∵213442y x x =-++, ∴抛物线的顶点坐标为(3,254), ∵254=34×3+4, ∴抛物线的顶点是否在直线EF 上;(3)∵()()21314=-x+28424y x x x =-++-,则设P 点坐标为(p ,()()1-p+284p -),直线BP 的解析式为y =dx +e , 则()()021-p+284d e p pd e =-+⎧⎪⎨-=+⎪⎩ ,解得()()184182d p e p ⎧=--⎪⎪⎨⎪=-⎪⎩, ∴直线EF 的解析式为y =()184p --x +()182p -, 当x =0时,y =()182p -,则M 点坐标为(0,()182p -), ∵AB //FQ , ∴设FQ 的解析式为y =2x +f ,则10=2×8+f ,解得f =-6,∴FQ 的解析式为y =2x -6 ,∴Q 的坐标为(0,-6),∴|MQ |=()182p -+6, ∴S △PBQ = S △MBQ + S △PMQ =1122QM OB QM PN +=()12QM OB PN + =()()1186222p p ⎡⎤-++⎢⎥⎣⎦ =219842p p -++ ∴当p =9时,PBQ △的面积最大时,∴P 点坐标为(9,114-).【点睛】本题主要考查了运用待定系数法求函数解析式、二次函数求最值等知识点,灵活求得所需的函数解析式成为解答本题的关键.10.(2021·湖南中考真题)已知函数2(0)(0)x x y x x -≤⎧=⎨>⎩的图象如图所示,点()11,A x y 在第一象限内的函数图象上.(1)若点()22,B x y 也在上述函数图象上,满足21x x <.①当214y y ==时,求12,x x 的值; ②若21x x =,设12=-w y y ,求w 的最小值;(2)过A 点作y 轴的垂线AP ,垂足为P ,点P 关于x 轴的对称点为P ',过A 点作x 轴的线AQ ,垂足为Q ,Q 关于直线'AP 的对称点为Q ',直线AQ '是否与y 轴交于某定点?若是,求出这个定点的坐标;若不是,请说明理由.【答案】(1)①122,4x x ==-;②14-;(2)直线AQ '与y 轴交于定点,定点的坐标为10,4⎛⎫ ⎪⎝⎭. 【分析】(1)①先确定20x ≤,再根据214y y ==代入求解即可得;②先确定2210,x x x <-=,从而可得21122,y x y x ==-,再代入w 可得一个关于1x 的二次函数,利用二次函数的性质即可得;(2)先分别求出点,,P P Q '的坐标,再利用待定系数法求出直线,AP QQ ''的解析式,从而可得点Q '的坐标,然后利用待定系数法求出直线AQ '的解析式,由此即可得出结论.【详解】解:(1)①对于二次函数2y x ,在0x >内,y 随x 的增大而增大,21211,40,x x x y y <>==,20x ∴≤,则当14y =时,214x =,解得12x =或120x =-<(舍去),当24y =时,24x -=,解得24x =-; ②21121,0,x x x x x <>=,2210,x x x ∴<-=,21122,y x y x ∴==-,则22121211()w y y x x x x =-=--=-, 化成顶点式为2111()24w x =--, 由二次函数的性质可知,在1>0x 内,当112x =时,w 取最小值,最小值为14-; (2)由题意,设'AP 与QQ '交于点B ,画图如下,11(x ,)A y 在已知函数的第一象限内的图象上,211y x ∴=,即211(,)A x x ,AP y ⊥轴,AQ x ⊥轴,点P 关于x 轴的对称点为P ',22111(0,),(0,),(,0)P P Q x x x '∴-,设直线'AP 的解析式为11y k x b =+,将点22111(,),(0,)P A x x x '-代入得:21111211k x b x b x ⎧+=⎨=-⎩,解得112112k x b x =⎧⎨=-⎩, 则直线'AP 的解析式为2112y x x x =-, Q 关于直线'AP 的对称点为Q ',QQ AP ''∴⊥,∴设直线QQ '的解析式为2112b x y x +=-, 将点1(,0)Q x 代入得:121201x b x -+=,解得212b =, 则直线QQ '的解析式为11212x y x +=-, 联立211121122y x x x y x x ⎧=-⎪⎨=-+⎪⎩,解得211212121(12)4141x x x x x y x ⎧+=⎪+⎪⎨⎪=⎪+⎩,即22111221141(12),41x x x B x x ⎛⎫+ ⎪++⎝⎭, 设点Q '的坐标为(,)Q m n ', 则2111212121(12)2410241m x x x x x n x ⎧++=⎪+⎪⎨+⎪=⎪+⎩,解得121212141241x m x x n x ⎧=⎪+⎪⎨⎪=⎪+⎩,即21122114142,1x x Q x x ⎛⎫' ⎪++⎝⎭, 设直线AQ '的解析式为33y k x b =+, 将点22111122112(,),1,414x x A x x Q x x ⎛⎫' ⎪++⎝⎭代入得:2313121133221124141k x b x x x k b x x ⎧+=⎪⎨+=⎪++⎩, 解得2131314414x k x b ⎧-=-⎪⎪⎨⎪=⎪⎩,则直线AQ '的解析式为21144114x y x x -=-+,当0x =时,14y =, 即直线AQ '与y 轴交于定点10,4⎛⎫ ⎪⎝⎭. 【点睛】 本题考查了二次函数与一次函数的综合、轴对称等知识点,熟练掌握待定系数法是解题关键.11.(2021·湖南邵阳市·中考真题)如图,在平面直角坐标系中,抛物线C :()20y ax bx c a =++≠经过点()1,1和()4,1.(1)求抛物线C 的对称轴.(2)当1a =-时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线1C . ①求抛物线1C 的解析式.②设抛物线1C 与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线1C 上一动点,过点D 作DE OA ⊥于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)x =2.5;(2)①()()=-+1-2y x x ;②1或4【分析】 (1)根据函数图像所过的点的特点结合函数性质,可知两点中点横坐标即为对称轴;(2)①根据平移可得已知点平移后点的坐标,平移过程中a 的值不发生改变,所以利用交点式可以求出函数解析式;②根据条件求出A 、B 、C 、D 四点的坐标,由条件可知三角形相似有两种情况,分别讨论两种情况,根据相似的性质可求出m 的值.【详解】解:(1)因为抛物线图像过(1,1)、(4,1)两点,这两点的纵坐标相同,根据抛物线的性质可知,对称轴是x =(1+4)÷2=2.5,;(2)①将点(1,1)、(4,1)向左平移2个单位,再向下平移1个单位,得到(-1,0),(2,0),将点(-1,0),(2,0),a=-1,根据交点式可求出C 1二次函数表达式为()()=-+1-2y x x ;②根据①中的函数关系式,可得A (2,0),B (-1,0),C (0,2),D (m ,2-++2m m ),且m >0 由图像可知∠BOC =∠DEO =90°,则以点O ,D ,E 为顶点的三角形与BOC 相似有两种情况,(i )当△ODE ∽△BCO 时, 则OE DE OB OC =,即2-++2=12m m m , 解得m =1或-2(舍),(ii )当△ODE ∽△CBO 时, 则OE DE OC OB =,即2-++2=21m m m ,解得m所以满足条件的m 的值为1 【点睛】本题主要考查了一元二次函数图形的平移、表达式求法、相似三角形等知识点,熟练运用数形结合是解决问题的关键.12.(2021·湖南湘西土家族苗族自治州·中考真题)如图,已知抛物线24y ax bx =++经过(1,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的解析式;(2)连接BC ,求直线BC 的解析式;(3)请在抛物线的对称轴上找一点P ,使AP PC +的值最小,求点P 的坐标,并求出此时AP PC +的最小值;(4)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使得以A 、C 、M 、N 四点为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.【答案】(1)234y x x =-++;(2)直线BC 的解析式为4y x =-+;(3)35,22P ⎛⎫ ⎪⎝⎭,此时AP PC +的最小值为(4)存在,()3,4N 或4⎫-⎪⎪⎝⎭.【分析】(1)把点A 、B 的坐标代入求解即可;(2)设直线BC 的解析式为y kx b =+,然后把点B 、C 的坐标代入求解即可;(3)由题意易得点A 、B 关于抛物线的对称轴对称,根据轴对称的性质可得AP PC BP PC +=+,要使AP PC +的值为最小,则需满足点B 、P 、C 三点共线时,即为BC 的长,然后问题可求解;(4)由题意可设点()()2,0,,34M m N n n n -++,然后可分①当AC 为对角线时,②当AM 为对角线时,③当AN 为对角线时,进而根据平行四边形的性质及中点坐标公式可进行求解.【详解】解:(1)∵抛物线24y ax bx =++经过()1,0A -,()4,0B 两点,∴4016440a b a b -+=⎧⎨++=⎩,解得:13a b =-⎧⎨=⎩, ∴抛物线的解析式为234y x x =-++;(2)由(1)可得抛物线的解析式为234y x x =-++,∵抛物线与y 轴的交点为C ,∴()0,4C ,设直线BC 的解析式为y kx b =+,把点B 、C 的坐标代入得:404k b b +=⎧⎨=⎩,解得:14k b =-⎧⎨=⎩, ∴直线BC 的解析式为4y x =-+;(3)由抛物线234y x x =-++可得对称轴为直线322b x a =-=,由题意可得如图所示:连接BP 、BC ,∵点A 、B 关于抛物线的对称轴对称,∴AP BP =,∴AP PC BP PC +=+,要使AP PC +的值为最小,则需满足点B 、P 、C 三点共线时,即为BC 的长,此时BC 与对称轴的交点即为所求的P 点,∵4OC OB ==,∴BC =∴AP PC +的最小值为∵点P 在直线BC 上, ∴把32x =代入得:35422y =-+=, ∴35,22P ⎛⎫ ⎪⎝⎭; (4)存在,理由如下:由题意可设点()()2,0,,34M m N n n n -++,()()1,0,0,4A C -,当以A 、C 、M 、N 四点为顶点的四边形是平行四边形,则可分:①当AC 为对角线时,如图所示:连接MN ,交AC 于点D ,∵四边形ANCM 是平行四边形,∴点D 为AC 、MN 的中点,∴根据中点坐标公式可得:A C M N A C M N x x x x y y y y +=+⎧⎨+=+⎩,即21004034m n n n -+=+⎧⎨+=-++⎩, 解得:43m n =-⎧⎨=⎩,∴()3,4N ;②当AM 为对角线时,同理可得:A M C N A M C N x x x x y y y y +=+⎧⎨+=+⎩,即21000434m n n n -+=+⎧⎨+=-++⎩,解得:n =,∴4N ⎫-⎪⎪⎝⎭;③当AN 为对角线时,同理可得:A N M C A N M C x x x x y y y y +=+⎧⎨+=+⎩,即21003440n m n n -+=+⎧⎨-++=+⎩, 解得:3n =,∴()3,4N ;∴综上所述:当以A 、C 、M 、N 四点为顶点的四边形是平行四边形,点N 的坐标为()3,4或4⎫-⎪⎪⎝⎭.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质与图象是解题的关键.13.(2021·湖南岳阳市·中考真题)如图,抛物线22y ax bx =++经过()1,0A -,()4,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的函数表达式;(2)如图2,直线l :3y kx =+经过点A ,点P 为直线l 上的一个动点,且位于x 轴的上方,点Q 为抛物线上的一个动点,当//PQ y 轴时,作QM PQ ⊥,交抛物线于点M (点M 在点Q 的右侧),以PQ ,QM 为邻边构造矩形PQMN ,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为D ,在(2)的条件下,当矩形PQMN 的周长取最小值时,抛物线上是否存在点F ,使得CBF =∠DQM ∠?若存在,请求出点F 的坐标;若不存在,请说明理由.【答案】(1)213222y x x =-++;(2)314;(3)存在,()1,0F -或52839F ⎛⎫ ⎪⎝⎭,. 【分析】(1)直接将()1,0A -,()4,0B 两点坐标代入抛物线解析式之中求出系数的值即可;(2)先利用待定系数法求出直线的解析式,再设出点P 的坐标,接着表示出Q 点和M 点的坐标后,求出线段PQ 和QM 的表达式,再求出它们和的两倍,利用配方法即可求出其最小值;(3)先利用锐角三角函数证明出CBA ∠=DQM ∠,进而得到F 点的其中一个位置,在BC 另一侧,通过构造直角三角形,利用勾股定理建立方程组,即可求出BF 与y 轴的交点,进而求出BF 的解析式,与抛物线的解析式联立,即可确定F 点的坐标.【详解】解:(1)∵抛物线22y ax bx =++经过()1,0A -,()4,0B 两点, ∴2016420a b a b -+=⎧⎨++=⎩, 解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴该抛物线的函数表达式为:213222y x x =-++; (2)∵3y kx =+经过点A ,∴30k -+=,∴3k =,。

2021年中考 临考专题训练:相似三角形及其应用(含答案)

2021年中考 临考专题训练:相似三角形及其应用(含答案)

2021中考 临考专题训练:相似三角形及其应用一、选择题 1. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .若BD =2AD ,则( )A. AD AB =12B. AE EC =12C. AD EC =12D. DE BC =122. 下列命题是真命题的是( )A .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为2∶3B .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9C .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为2∶3D .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为4∶93. (2020·永州)如图,在ABC 中,2//,3AE EF BC EB ,四边形BCFE 的面积为21,则ABC 的面积是( )A. 913B. 25C. 35D. 634. (2020·重庆A 卷)如图,在平面直角坐标系中,△ABC 的顶点坐标分别是A(1,2),B (1,1),C (3,1),以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .255. (2019•重庆)下列命题是真命题的是A .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为2∶3B .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9C .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为2∶3D .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为4∶96. (2019•贵港)如图,在ABC △中,点D ,E 分别在AB ,AC 边上,DE BC ∥,ACD B ∠=∠,若2AD BD =,6BC =,则线段CD 的长为A .23B .32C .26D .57. (2020·嘉兴) 如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标为( )A .(﹣1,﹣1)B .(4,13--) C .(41,3--) D .(﹣2,﹣1)8. 如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E.若BC =3,则DE 的长为( ) A . 1 B . 2 C . 3 D . 4二、填空题9. 如图,在△ABC 中,∠ACD=∠B ,若AD=2,BD=3,则AC长为.10. 在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时同地测得一栋楼的影长为90 m ,则这栋楼的高度为 m .11. (2019•大庆)如图,在△ABC 中,D 、E 分别是BC ,AC 的中点,AD 与BE 相交于点G ,若DG=1,则AD=__________.12. 如图,在▱ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG=2BG ,S △BPG =1,则S ▱AEPH = .13. (2020·南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF 的顶点都在网格线的交点上,设△ABC 的周长为C 1,△DEF 的周长为C 2,则12C C 的值等于 ▲ . ABCDEF14. (2020·杭州)如图是一张矩形纸片,点E 在AB 边上,把BCE △沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,2AE ,则DF =______,BE =______.FDBE A C15. (2019•辽阳)如图,平面直角坐标系中,矩形ABOC 的边BO CO ,分别在x 轴,y 轴上,A 点的坐标为(86)-,,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE △∽CBO △,当APC △是等腰三角形时,P 点坐标为__________.16. (2020湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知R t △ABC 是6×6网格图形中的格点三角形,则该图中所有与R t △ABC 相似的格点三角形中.面积最大的三角形的斜边长是 .三、解答题 17. (2019•张家界)如图,在平行四边形ABCD 中,连接对角线AC ,延长AB 至点E ,使BE AB =,连接DE ,分别交BC ,AC 交于点F ,G . (1)求证:BF CF =;(2)若6BC =,4DG =,求FG 的长.18. 如图,AB是☉O的直径,点C为的中点,CF为☉O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.19. 如图,☉O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与☉O相交于E,F两点,P是☉O外一点,且P在直线OD上,连接PA,PC,AF,满足∠PCA=∠ABC.(1)求证:PA是☉O的切线;(2)证明:EF2=4OD·OP;(3)若BC=8,tan∠AFP=,求DE的长.20. (2019·上海)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E ═12∠C ;(2)如图2,如果AE =AB ,且BD ∶DE =2∶3,求cos ∠ABC 的值;(3)如果∠ABC 是锐角,且△ABC 与△ADE 相似,求∠ABC 的度数,并直接写出ADEABC S S 的值.21. 在矩形ABCD 中,AD =4,M 是AD 的中点,点E 是线段AB 上一点,连接EM并延长交线段CD 的延长线于点F . (1)如图①,求证:△AEM ≌△DFM ;(2)如图②,若AB =2,过点M 作MG ⊥EF 交线段BC 于点G ,求证:△GEF 是等腰直角三角形;(3)如图③,若AB =23,过点M 作MG ⊥EF 交线段BC 的延长线于点G ,若MG=nME ,求n 的值.22. 如图,AB是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ; (2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.23. 如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.24. 如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长.2021中考 临考专题训练:相似三角形及其应用-答案一、选择题1. 【答案】B【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∵BD =2AD ,∴AD AB =AE AC =13,∴AE EC =12,故选B .2. 【答案】B3. 【答案】B【详解】解:∵//EF BC ∴AEF B AFE C ∠=∠∠=∠, ∴AEF ABC ∽ ∵23AE EB = ∴25AE AB = ∴255242AEB ABCS S ⎛⎫== ⎪⎝⎭ ∴421AEBBCFESS =四边形 ∵21BCFE S =四边形 ∴AEBS =4∴=25ABCS故选:B .4. 【答案】D【解析】∵A (1,2),B (1,1),C (3,1),∴AB=1,.∵△DEF 与△ABC 成位似图形,且相似比为2,∴DF=2AB=2.5. 【答案】B【解析】A 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9,是假命题;B 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9,是真命题;C 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为16∶81,是假命题;D 、如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为16∶81,是假命题, 故选B .6. 【答案】C【解析】设2AD x =,BD x =,∴3AB x =, ∵DE BC ∥,∴ADE ABC △∽△, ∴DE AD AE BC AB AC ==,∴263DE xx=, ∴4DE =,23AE AC =, ∵ACD B ∠=∠,ADE B ∠=∠,∴ADE ACD ∠=∠, ∵A A ∠=∠,∴ADE ACD △∽△, ∴AD AE DEAC AD CD==, 设2AE y =,3AC y =,∴23AD yy AD=,∴AD =4CD=,∴CD = 故选C .7. 【答案】B【解析】本题考查了在坐标系中,位似图形点的坐标.在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k ,那么与原图形上的点(x ,y )对应的位似图形上的点的坐标为(kx ,ky )或(–kx,–ky).由A(4,3),位似比k=13,可得C(413,--)因此本题选B.8. 【答案】A【解析】∵AD是∠BAC的平分线,AC⊥BC,AE⊥DE, ∴DC=DE,AE=AC.又∵DE是AB的垂直平分线,∴BE=AE,即AB=2AE=2AC, ∴∠B=30°.设DE=x,则BD=3-x.在Rt△BDE中,x3-x=12,解得x=1,∴DE的长为1.二、填空题9. 【答案】[解析]∵∠ACD=∠B,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AC=或AC=-(舍去).10. 【答案】5411. 【答案】3【解析】∵D、E分别是BC,AC的中点,∴点G为△ABC的重心,∴AG=2DG=2,∴AD=AG+DG=2+1=3.故答案为:3.12. 【答案】4[解析]由“平行四边形的对角线把平行四边形分成两个全等的三角形”可推出▱AEPH的面积等于▱PGCF的面积.∵CG=2BG,∴BG∶BC=1∶3,BG∶PF=1∶2.∵△BPG∽△BDC,且相似比为1∶3,∴S△BDC=9S△BPG=9.∵△BPG∽△PDF,且相似比为1∶2,∴S△PDF=4S△BPG=4.∴S▱AEPH=S▱PGCF=9-1-4=4.13.2【解析】由图形易证△ABC与△DEF相似,且相似比为1:21:22.14. 【答案】25-1【解析】设BE =x ,则AB =AE +BE =2+x .∵四边形ABCD 是矩形,∴CD =AB =2+x ,AB ∥CD ,∴∠DCE =∠BEC .由折叠得∠BEC =∠DEC ,EF =BE =x ,∴∠DCE =∠DEC .∴DE =CD =2+x .∵点D ,F ,E 在同一条直线上,∴DF =DE -EF =2+x-x =2.∵AB ∥CD ,∴△DCF ∽△EAF ,∴DC EA =DF EF .∴22x +=2x ,解得x 1=5-1,x 2=-5-1.经检验,x 1=5-1,x 2=-5-1都是分式方程的根.∵x >0,∴x =5-1,即BE =5-1.15. 【答案】326()55-,或(43)-,【解析】∵点P 在矩形ABOC 的内部,且APC △是等腰三角形, ∴P 点在AC 的垂直平分线上或在以点C 为圆心AC 为半径的圆弧上; ①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,如图1所示,∵PE BO ⊥,CO BO ⊥, ∴PE CO ∥, ∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,, ∴点P 横坐标为﹣4,6OC =,8BO =,4BE =, ∵PBE △∽CBO △, ∴PE BE CO BO =,即468PE =, 解得:3PE =,∴点(43)P -,. ②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P , 过点P 作PE BO ⊥于E ,如图2所示,∵CO BO ⊥,∴PE CO ∥, ∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,, ∴8AC BO ==,8CP =,6AB OC ==, ∴22228610BC BO OC =+=+=,∴2BP =, ∵PBE △∽CBO △, ∴PE BE BP CO BO BC ==,即:26810PE BE ==, 解得:65PE =,85BE =, ∴832855OE =-=,∴点326()55P -,, 综上所述:点P 的坐标为:326()55-,或(43)-,, 故答案为:326()55-,或(43)-,.16. 【答案】解:∵在R t △ABC 中,AC =1,BC =2,∴AB ,AC :BC =1:2,∴与R t △ABC 相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE ,EF =2,DF =5的三角形, ∵,∴△ABC ∽△DEF ,∴∠DEF =∠C =90°,∴此时△DEF 的面积为:22=10,△DEF 为面积最大的三角形,其斜边长为:5.故答案为:5.三、解答题17. 【答案】(1)∵四边形ABCD 是平行四边形, ∴AD CD ∥,AD BC =, ∴EBF EAD △∽△, ∴BF BEAD EA=, ∵BE =AB ,AE =AB +BE , ∴12BF AD =, ∴1122BF AD BC ==, ∴BF CF =.(2)∵四边形ABCD 是平行四边形, ∴AD CD ∥, ∴FGC DGA △∽△, ∴FG FC DG AD =,即142FG =, 解得,2FG =.18. 【答案】解:(1)证明:∵C 是的中点,∴=. ∵AB 是☉O 的直径,且CF ⊥AB ,∴=,∴=,∴CD=BF.在△BFG 和△CDG 中,∵∴△BFG ≌△CDG (AAS).(2)如图,过C 作CH ⊥AD ,交AD 延长线于H ,连接AC ,BC ,∵=,∴∠HAC=∠BAC.∵CE⊥AB,∴CH=CE.∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH.∵=,∴CD=BC.又∵CH=CE,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=AD+DH=2+2=4,∴AB=4+2=6.∵AB是☉O的直径,∴∠ACB=90°,∴∠ACB=∠BEC,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴=,∴BC2=AB·BE=6×2=12,∴BF=BC=2.19. 【答案】解:(1)因为点D是AC中点,所以OD⊥AC,所以PA=PC,所以∠PCA=∠PAC,因为AB是☉O的直径,所以∠ACB=90°,所以∠ABC+∠BAC=90°,因为∠PCA=∠ABC,所以∠PAC=∠ABC,所以∠PAC+∠BAC=90°,所以PA⊥AB,所以PA是☉O的切线.(2)因为∠PAO=∠ADO=90°,∠AOD=∠POA,所以△PAO∽△ADO,所以=,所以AO2=OD·OP,所以EF2=AB2=(2AO)2=4AO2=4OD·OP.(3)因为tan∠AFP=,所以设AD=2x,则FD=3x,连接AE,易证△ADE∽△FDA,所以==,所以ED=AD=x,所以EF=x,EO=x,DO=x,在△ABC中,DO为中位线,所以DO=BC=4,所以x=4,x=,所以ED=x=.20. 【答案】解:(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°-∠ADE,∵AD平分∠BAC,∴∠BAD=1 2∠BAC,同理∠ABD=12∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°-∠C,∴∠ADE=12(∠ABC+∠BAC)=90°-12∠C,∴∠E=90°-(90°-12∠C)=12∠C . (2)解:延长AD 交BC 于点F .∵AB =AE ,∴∠ABE =∠E ,BE 平分∠ABC ,∴∠ABE =∠EBC , ∴∠E =∠CBE ,∴AE ∥BC ,∴∠AFB =∠EAD =90°,=,∵BD :DE =2:3,∴cos ∠ABC ===.(3)∵△ABC 与△ADE 相似,∠DAE =90°,∴∠ABC 中必有一个内角为90° ∵∠ABC 是锐角,∴∠ABC ≠90°.当∠BAC =∠DAE =90°时,∵∠E =12∠C ,∴∠ABC =∠E =12∠C ,∵∠ABC +∠C =90°,∴∠ABC =30°,此时=2-.当∠C =∠DAE =90°时,∠E=12∠C =45°,∴∠EDA =45°, ∵△ABC 与△ADE 相似,∴∠ABC =45°,此时=2-.综上所述,∠ABC =30°或45°,=2-3或2-2.21. 【答案】(1)证明:∵四边形ABCD 是矩形, ∴∠EAM =∠FDM =90°, ∵M 是AD 的中点, ∴AM =DM ,在△AME 和△DMF 中,⎩⎨⎧∠A =∠FDBAM =DM∠AME =∠DMF, ∴△AEM ≌△DFM (ASA);(2)证明:如解图①,过点G 作GH ⊥AD 于H ,解图①∵∠A =∠B =∠AHG =90°, ∴四边形ABGH 是矩形, ∴GH =AB =2, ∵M 是AD 的中点, ∴AM =12AD =2,∴AM =GH ,∵MG ⊥EF ,∴∠GME =90° ∴∠AME +∠GMH =90°. ∵∠AME +∠AEM =90°, ∴∠AEM =∠GMH , 在△AEM 和△HMG 中,⎩⎨⎧AM =GH∠AEM =∠GMH ∠A =∠AHG, ∴△AEM ≌△HMG , ∴ME =MG ,∴∠EGM =45°,由(1)得△AEM ≌△DFM , ∴ME =MF , ∵MG ⊥EF , FMG EMG ≌△△∴, ∴GE =GF ,∴∠EGF =2∠EGM =90°, ∴△GEF 是等腰直角三角形.(3)解:如解图②,过点G 作GH ⊥AD 交AD 延长线于点H ,解图②∵∠A =∠B =∠AHG =90°, ∴四边形ABGH 是矩形, ∴GH =AB =23, ∵MG ⊥EF ,∴∠GME =90°,∴∠AME +∠GMH =90°, ∵∠AME +∠AEM =90°, ∴∠AEM =∠GMH ,又∵∠A =∠GHM =90°, ∴△AEM ∽△HMG ,∴EM MG =AMGH,在Rt △GME 中,tan ∠MEG =MGEM = 3.∴n =322. 【答案】(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径, ∴CD ⊥PF , 又∵AF ⊥PC , ∴AF ∥CD ,∴∠OCA =∠CAF , ∵OA =OC ,∴∠OAC =∠OCA , ∴∠CAF =∠OAC , ∴AC 平分∠FAB ;(2)证明:∵AB 是⊙O 的直径, ∴∠ACB =90°, ∵∠DCP =90°,∴∠ACB =∠DCP =90°, 又∵∠BAC =∠D , ∴△ACB ∽△DCP , ∴∠EBC =∠P , ∵CE ⊥AB ,∴∠BEC =90°, ∵CD 是⊙O 的直径, ∴∠DBC =90°, ∴∠CBP =90°, ∴∠BEC =∠CBP , ∴△CBE ∽△CPB , ∴BC PC =CECB,∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB , ∴CF =CE ,∵CF CP =34, ∴CE CP =34,设CE =3k ,则CP =4k , ∴BC 2=3k ·4k =12k 2, ∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形, ∴∠DOB =120°,∴BD ︵=120π·23180=43π3.23. 【答案】(1)证明:∵△ABC ∽△A 1B 1C 1,且相似比为k (k >1), ∴aa 1=k .∴a =ka 1,又∵c =a 1,∴a =kc . (2)解:取a =8,b =6,c =4,同时取a 1=4,b 1=3,c 1=2. 此时a a 1=b b 1=cc 1=2,∴△ABC ∽△A 1B 1C 1且c =a 1.(3)解:不存在这样的△ABC 和△A 1B 1C 1.理由如下: 若k =2,则a =2a 1,b =2b 1,c =2c 1. 又∵b =a 1,c =b 1,∴a =2a 1=2b =4b 1=4c , ∴b =2c .(12分)∴b +c =2c +c <4c =a ,与b +c >a 矛盾, 故不存在这样的△ABC 和△A 1B 1C 1,使得k =2.24. 【答案】(1)如解图①,∵折叠后点A 落在AB 边上的点D 处,解图①∴EF ⊥AB ,△AEF ≌△DEF , ∴S △AEF =S △DEF ,∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF ,∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴14△△AEF ACB S S=, ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC , ∴2△△()AEF ACB S AE AB S =, ∴214()=,AE AB 在Rt △ACB 中,∠ACB =90°,AC =4,BC =3, ∴AB 2=AC 2+BC 2, 即AB =42+32=5, ∴(AE 5)2=14, ∴AE =52;(2)①四边形AEMF 是菱形. 证明:如解图②,∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA , ∴∠CEM =∠EMF , ∴∠CAB =∠CEM , ∴EM ∥AF ,∴四边形AEMF 是平行四边形,而AE =ME , ∴四边形AEMF 是菱形,解图②②如解图②,连接AM ,与EF 交于点O ,设AE =x ,则AE =ME =x ,EC =4-x , ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴Rt △ECM ∽Rt △ACB , ∴EC AC =EMAB,∵AB =5, ∴445-,x x=解得x =209,21 ∴AE =ME =209,EC =169,在Rt △ECM 中,∵∠ECM =90°, ∴CM 2=EM 2-EC 2,即CM=(209)2-(169)2=43,∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S AEMF 菱形=4S △AOE =2OE ·AO , 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM , ∴OE AO =CMAC ,∵CM =43,AC =4,∴AO =3OE ,∴S AEMF 菱形=6OE 2,又∵S AEMF 菱形=AE ·CM ,∴6OE 2=209×43,解得OE =2109,∴EF =2OE =4109.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的判定类型一:直角三角形相似根据相似、三角函数求解【经典例题1】如图,已知二次函数y=﹣x 2+bx +c (b ,c 为常数)的图象经过点A (3,1),点C (0,4),顶点为点M ,过点A 作AB∥x 轴,交y 轴于点D ,交该二次函数图象于点B ,连结BC .(1)求该二次函数的解析式及点M 的坐标;(2)若将该二次函数图象向下平移m (m >0)个单位,使平移后得到的二次函数图象的顶点落在∥ABC 的内部(不包括∥ABC 的边界),求m 的取值范围;(3)点P 是直线AC 上的动点,若点P ,点C ,点M 所构成的三角形与∥BCD 相似,请直接写出所有点P 的坐标(直接写出结果,不必写解答过程).【解析】(1)把点A(3,1),点C(0,4)代入二次函数y=−x 2+bx +c 得, ⎩⎨⎧==++-41332c c b 解得⎩⎨⎧==42c b ∴二次函数解析式为y=−x 2+2x +4,配方得y=−(x −1)2+5,∴点M 的坐标为(1,5);(2)设直线AC 解析式为y=kx +b ,把点A(3,1),C(0,4)代入得,⎩⎨⎧==+413b b k 解得⎩⎨⎧=-=41b k ∴直线AC 的解析式为y=−x +4,如图所示,对称轴直线x =1与△ABC 两边分别交于点E. 点F把x =1代入直线AC 解析式y=−x +4解得y=3,则点E 坐标为(1,3),点F 坐标为(1,1)∴1<5−m<3,解得2<m<4;(3)连接MC ,作MG ⊥y 轴并延长交AC 于点N ,则点G 坐标为(0,5)∵MG=1,GC=5−4=1∴MC=2112222=+=+CG MG , 把y=5代入y=−x +4解得x =−1,则点N 坐标为(−1,5),∵NG=GC ,GM=GC ,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若点P 在AC 上,则∠MCP=90°,则点D 与点C 必为相似三角形对应点①若有△PCM ∽△BDC ,则有MC/CP=CD/BD∵BD=1,CD=3,∴CP=MC ⋅BD/CD=312⨯=32, ∵CD=DA=3,∴∠DCA=45°,若点P 在y 轴右侧,作PH ⊥y 轴,∵∠PCH=45°,CP=32∴PH=232÷=31 把x =31代入y=−x +4,解得y=311, ∴P 1(31,311); 同理可得,若点P 在y 轴左侧,则把x =−31代入y=−x +4,解得y=313 ∴P 2(−31,313); ②若有△PCM ∽△CDB ,则有MC/CP=BD/CD∴CP=132⨯=23∴PH=23÷2=3, 若点P 在y 轴右侧,把x =3代入y=−x +4,解得y=1;若点P 在y 轴左侧,把x =−3代入y=−x +4,解得y=7∴P 3(3,1);P 4(−3,7).∴所有符合题意得点P 坐标有4个,分别为P 1(31,311),P 2(−31,313),P 3(3,1),P 4(−3,7).【经典例题】抛物线y=ax 2+bx+c 过A(2,3),B(4,3),C(6,−5)三点。

(1)求抛物线的表达式;(2)如图∥,抛物线上一点D 在线段AC 的上方,DE∥AB 交AC 于点E ,若满足25=AE DE ,求点D 的坐标; (3)如图∥,F 为抛物线顶点,过A 作直线l ∥AB ,若点P 在直线l 上运动,点Q 在x 轴上运动,是否存在这样的点P 、Q ,使得以B 、P 、Q 为顶点的三角形与∥ABF 相似,若存在,求P 、Q 的坐标,并求此时∥BPQ 的面积;若不存在,请说明理由。

【解析】(1)根据题意,设抛物线表达式为y=a (x −3)2+h .把B(4,3),C(6,−5)代入得:⎩⎨⎧-=+=+593h a h a ,解得:⎩⎨⎧=-=41h a , 故抛物线的表达式为:y=−(x −3)2+4=−x 2+6x −5;(2)设直线AC 的表达式为y=kx +n ,则:⎩⎨⎧-=+=+5632n k n k ,解得:k =−2,n =7,∥直线AC 的表达式为y=−2x +7,设点D(m ,−m+6m−5),2<m<6,则点E(m ,−2m+7),∥DE=(−m 2+6m−5)−(−2m+7)=−m 2+8m−12,设直线DE 与直线AB 交于点G ,∥AG∥EG ,∥AG=m−2,EG=3−(−2m+7)=2(m−2),m−2>0,在Rt∥AEG 中,∥AE=5(m−2),由DE/AE=25,得25)2(51282=--+-m m m , 化简得,2m 2−11m+14=0,解得:m 1=27,m 2=2(舍去), 则D(27,415). (3)根据题意得:∥ABF 为等腰直角三角形,假设存在满足条件的点P 、Q ,则∥BPQ 为等腰直角三角形,分三种情况:∥若∥BPQ=90°,BP=PQ ,如图2,过P 作MN∥x 轴,过Q 作QM∥MN 于M ,过B 作BN∥MN 于N , 易证得:∥BAP∥∥QMP ,∥AB=QM=2,PM=AP=3+2=5,∥P(2,−2),Q(−3,0),在Rt∥QMP 中,PM=5,QM=2,由勾股定理得:PQ=295222=+,∥S ∥BPQ =21PQ∥PB=229; 如图3,易证得:∥BAP∥∥PMQ ,∥AB=PM=2,AP=MQ=3−2=1,∥P(2,2),Q(3,0),在Rt∥QMP 中,PM=2,QM=1,由勾股定理得:PQ=5,∥S ∥BPQ =21PQ∥PB=25; ∥若∥BQP=90°,BQ=PQ ,如图4,易得:∥BNQ∥∥QMP ,∥NQ=PM=3,NG=PM−AG=3−2=1,∥BN=MQ=4+1=5,∥P(2,−5),Q(−1,0)∥PQ=345322=+,∥S ∥BPQ =21PQ∥PB=17; 如图5,易得∥QNB∥∥PMQ ,∥NQ=PM=3,∥P(2,−1),Q(5,0), ∥PQ=10, ∥S ∥BPQ =21PQ∥PB=5, ∥若∥PBQ=90°,BQ=BP ,如图6,过Q 作QN∥AB ,交AB 的延长线于N ,易得:∥PAB∥∥BNQ ,∥AB=2,NQ=3,AB≠NQ∥此时不存在符合条件的P 、Q.练习1-1.如图,已知抛物线经过A (2,0)、B (3,3)及原点O ,顶点为C .(1)求抛物线的解析式;(2)点P 是抛物线上第二象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P 使得以点P ,M ,A 为顶点的三角形与△BOC 相似若存在,求出点P 的坐标;若不存在,请说明理由.练习1-2如图,二次函数 y =481(x + 2)(ax + b ) 的图像过点 A(-4,3),B(4,4). (1)求二次函数的解析式:(2)求证:∥ACB 是直角三角形;(3)若点P 在第二象限,且是抛物线上的一动点,过点P 作PH 垂直x 轴于点H ,是否存在以P 、H 、D 为顶点的三角形与∥ABC 相似?若存在,求出点P 的坐标;若不存在,请说明理由。

练习1-3如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.练习1-4如图,抛物线y=ax2+bx+2与x轴交于点A(-1,0),B(4,0)两点,与y轴相交于点C.(1)求抛物线解析式;(2)将∥ABC绕AB中点M旋转180°,得到∥BAD.求出点D坐标;(3)在抛物线对称轴上是否存在一点P,使∥BMP与∥BAD相似,若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.练习1-5如图,已知抛物线y=ax2+4x+c与x轴交于点M,与y轴交于点N,抛物线的对称轴与x轴交于点P,OM=1,ON=5.(1)求抛物线的表达式;(2)点A是y轴正半轴上一动点,点B是抛物线对称轴上的任意一点,连接AB、AM、BM,且AB∥AM.∥AO为何值时,∥ABM∥∥OMN,请说明理由;∥若Rt∥ABM中有一边的长等于MP时,请直接写出点A的坐标.练习1-6如图,已知:抛物线y=x 2+bx+c 与x 轴交于A(−1,0),B(3,0)两点,与y 轴交于点C ,点D 为顶点,连接BD ,CD ,抛物线的对称轴与x 轴交与点 E.(1)求抛物线解析式及点D 的坐标;(2)G 是抛物线上B ,D 之间的一点,且S 四边形CDGB=4S∥DGB ,求出G 点坐标;(3)在抛物线上B ,D 之间是否存在一点M ,过点M 作MN∥CD ,交直线CD 于点N ,使以C ,M ,N 为顶点的三角形与∥BDE 相似?若存在,求出满足条件的点M 的坐标,若不存在,请说明理由。

练习1-7如图,在平面直角坐标系中,抛物线c x ax y ++=232与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C ,点A 的坐标为(4,0),抛物线的对称轴是直线23=x . (1)求抛物线的解析式; (2)M 为第一象限内抛物线上的一个点,过点M 作MG∥x 轴于点G ,交AC 于点H ,当线段CM =CH 时,求点M 的坐标;(3)在(2)的条件下,将线段MG 绕点G 顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段MG 与抛物线交于点N ,在线段GA 上是否存在点P ,使得以P 、N 、G 为顶点的三角形与∥ABC 相似?如果存在,请求出点P 的坐标;如果不存在,请说明理由。

练习1-8如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM∥x 轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∥DAC=90°.(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使∥BPF与∥FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由。

类型二:A 字型或两组对应边成比例其夹角相【经典例题2】如图,已知抛物线c bx x y ++=231经过∥ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC∥x 轴,点P 时直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与∥ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.【解析】(1)∥点A(0,1).B(−9,10)在抛物线上,∥c =1;31×81−9b +c =10,∥b =2;c =1, ∥抛物线的解析式为y=31x 2+2x +1, (2)∥AC∥x 轴,A(0,1)∥31x 2+2x +1=1, ∥x 1=6,x 2=0,∥点C 的坐标(−6,1),∥点A(0,1).B(−9,10),∥直线AB 的解析式为y=−x +1,设点P(m,31m 2+2m+1)∥E(m,−m+1) ∥PE=−m+1−(31m 2+2m+1)=−31m 2−3m , ∥AC∥EP ,AC=6,∥S 四边形AECP =S ∥AEC +S ∥APC =21AC×EF+21AC×PF=21AC×(EF+PF)=21AC×PE=21×6×(−31m 2−3m)=−m 2−9m=−(m+29)2+481, ∥−6<m<0∥当m=−29时,四边形AECP 的面积的最大值是481, 此时点P(−29,−45). (3)∥y=31x 2+2x +1=31(x +3)2−2, ∥P(−3,−2),∥PF=y F −y P =3,CF=x F −x C =3,∥PF=CF ,∥∥PCF=45∥同理可得:∥EAF=45∥,∥∥PCF=∥EAF ,∥在直线AC 上存在满足条件的Q ,设Q(t,1)且AB=92,AC=6,CP=32∥以C. P 、Q 为顶点的三角形与∥ABC 相似,∥当∥CPQ∥∥ABC 时,∥CQ/AC=CP/AB , ∥292366=+t ,∥t=−4, ∥Q(−4,1)∥当∥CQP∥∥ABC 时,∥CQ/AB=CP/AC , ∥623296=+t ,∥t=3, ∥Q(3,1).【经典例题2】(2019娄底)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,且过点D (2,-3).点P 、Q 是抛物线y =ax 2+bx +c 上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求∥POD 面积的最大值;(3)直线OQ 与线段BC 相交于点E ,当∥OBE 与∥ABC 相似时,求点Q 的坐标.【解析】(1)函数的表达式为:y=a (x +1)(x -3),将点D 坐标代入并解得:a =1, 故抛物线的表达式为:y=x 2-2x -3…∥;(2)设直线PD 与y 轴交于点G ,设点P (m ,m 2-2m -3), 将点P 、D 的坐标代入一次函数表达式:y=s x +t 并解得: 直线PD 的表达式为:y=m x -3-2m ,则OG=3+2m ,S ∥POD =21×OG (x D -x P )=21(3+2m )(2-m )=-m 2+21m+3,∥-1<0,故S ∥POD 有最大值,当m=41时,其最大值为1649;(3)∥OB=OC=3,∥∥OCB=∥OBC=45°,∥∥ABC=∥OBE ,故∥OBE 与∥ABC 相似时,分为两种情况: ∥当∥ACB=∥BOQ 时, AB=4,BC=32,AC=10,过点A 作AH∥BC 于点H ,S ∥ABC =21×AH×BC=21AB×OC ,解得:AH=22,则sin∥ACB=AH/AC=52,则tan∥ACB=2, 则直线OQ 的表达式为:y=-2x …∥, 联立∥∥并解得:x =±3,故点Q1(3,-23),Q2(-3,23),∥∥BAC=∥BOQ 时,tan∥BAC=OC/OA=3=tan∥BOQ ,则点Q (n ,3n ), 则直线OQ 的表达式为:y=-3x …∥, 联立∥∥并解得:x =2131+-, 故点Q3(2131+-,21333-),Q4(2131--,21333+);综上,当∥OBE 与∥ABC 相似时,Q 的坐标为:(3,-23)或(2131+-,21333-)或(-3,23)或(2131--,21333+). 练习2-1如图,在平面直角坐标系x oy 中,抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线k h x y +-=2)(.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)求h 、k 的值;(2)判断∥ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使∥AOM 与∥ABC 相似.若存在,求出点M 的坐标;若不存在,说明理由.练习2-2(2019郴州)已知抛物线y =ax 2+bx +3与x 轴分别交于A (-3,0),B (1,0)两点,与y 轴交于点C .(1)求抛物线的表达式及顶点D 的坐标; (2)点F 是线段AD 上一个动点.∥如图∥,设k =AF AD ,当k 为何值时,CF =12AD ?∥如图∥,以A ,F ,O 为顶点的三角形是否与∥ABC 相似?若相似,求出点F 的坐标;若不相似,请说明理由.练习2-3如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m 经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.练习2-4如图,一次函数y=-x-2的图象与二次函数y=ax2+bx-4的图象交于x轴上一点A,与y轴交于点B,在x轴上有一动点C.已知二次函数y=ax2+bx-4的图象与y轴交于点D,对称轴为直线x=n(n<0),n是方程2x2-3x-2=0的一个根,连接AD.(1)求二次函数的解析式;(2)当S△ACB=3S△ADB时,求点C的坐标;(3)试判断坐标轴上是否存在这样的点C,使得以点A、B、C组成的三角形与△ADB相似?若存在,试求出点C的坐标;若不存在,请说明理由.类型三:点在抛物线上:求(设)直线,求点,算长度,验证对应边成比例【经典例题4】(2019襄阳)如图,在直角坐标系中,直线y =-12x +3与x 轴,y 轴分别交于点B ,点C ,对称轴为x =1的抛物线过B , C 两点,且交x 轴于另一点A ,连接AC .(1)直接写出点A ,点B ,点C 的坐标和抛物线的解析式;(2)已知点P 为第一象限内抛物线上一点,当点P 到直线BC 的距离最大时,求点P 的坐标;(3)抛物线上是否存在一点Q (点C 除外),使以点Q ,A ,B 为顶点的三角形与∥ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】(1)抛物线解析式y=81-x 2+41x +3,点A 坐标(-4,0)(2)点P (3,821)(3)存在.∥如图,当CQ1∥AB 交抛物线于点Q1时,81-x 2+41x +3=3,此时Q1(2,3)符合要求 ∥如图,作∥ABQ2=∥ABC 交抛物线于点Q2 此时Q2(-8,-7)不符合要求∥如图,过点B 作BQ3∥AC ,则∥ABC=∥ABQ3,此时Q3(-10,-12)符合要求∥如图,过点A 作AQ4∥BC 交抛物线于点Q4,,此时Q4(10,-7)不符合要求 ∥如图,作∥BAQ5=∥BAC 交抛物线于点Q5.此时Q5(12,-12)符合要求 综上所述,点Q 坐标为(2,3),(-10,-12),(12,-12)。

相关文档
最新文档