数学期望性质

合集下载

数学期望6

数学期望6
可以得到这100天中 每天的平均次品数为
32天没有出次品; 30天每天出一件次品; 17天每天出两件次品; 21天每天出三件次品;
这个数能否作为 X的平均值吗?
0 32 1 30 2 17 3 21 1.27 100 100 100 100
一般来说, 若统计n天 ,
(假定小张每天至多出 三件废品)
甲获胜的概率0.75 ,乙获胜的概率0.25,意味着堵四 局甲获胜3局,获赌资300元,乙获胜1局,获100元
因此 按照甲75,乙25分配比较合理
甲获得 100
0
概率 0.75
0.25
于是 75=100 0.75+0 0.25 正是甲期望得到的
期望值正来源于赌博,虽然字面含义不清,但也成为了
习惯名称,相对而言均值更直观
例9 设(X,Y)在区域A上服从均匀分布,
其中A为x轴,y轴和直线x+y+1=0所围成的区域。
求EX,E(-3X+2Y),E(XY)。
y
解: f (x, y) 02,,
(x, y) A 其它;
0x
0
0
1
EX= xf (x, y)dxdy dx x 2dy
1 1x
3
x y 1 0
看一下大家普遍关注本科生、研究生初次就业的起薪 起薪可以看作是一个随机变量,要明确的写出来他的 分布函数是一件不可能的事情 实际上,用平均数 以及高低差就能说明一个大概
平均数和高低差用一个数字在某种意义上对随机变量 (起薪)进行了刻画 我们称之为随机变量的数字特征
思考题:体会掷骰子掷出点数的平均值 第一种思路:重复掷大量次数,取平均 第二种思路:不做试验,尝试利用分布规律计算 1、每个面出现的概率均为1/6,平均值为? 2、如果筛子五个面为1,一个面为6,平均值多少? 简单平均不合理,应采用加权平均,权重如何取? 分析:概率大代表着取到的机会就大,赋权就大 权重取各个可能值得概率应该是一个合理的选择

《概率论与数理统计》数学期望

《概率论与数理统计》数学期望

§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
概率论与数理统计
§4.4 协方差和相关系数
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 协方差
1. 定义
§4.4 协方差和相关系数 协方差
2. 协方差的计算公式
概率论与数理统计
§4.1 数学期望
离散型随机变量的数学期望
连续型随机变量的数学期望
授课内容
数学期望的性质
§4.1 数学期望 离散型随机变量的数学期望
1. 定义
§4.1 数学期望 离散型随机变量的数学期望
关于定义的几点说明
(2) 级数的绝对收敛性保证了级数的和不随级数各项次序的改变 而改变 , 之所以这样要求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变.
§4.4 协方差和相关系数 相关系数
3. 不相关的定义
§4.4 协方差和相关系数 相关系数
4. 不相关性的判定
以下四个条件等价 (1) ρ 0; (2)Cov( X ,Y ) 0; (3) D( X Y ) DX DY;
(4)3 随机变量函数的数学期望 二维随机变量函数的数学期望
§4.3 随机变量函数的数学期望 二维随机变量函数的数学期望
一维随机变量函数的数学期望 二维随机变量函数的数学期望 授课内容 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
5 .不相关与相互独立的关系
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 例题

概率论第三章

概率论第三章
第三章 随机变量的数字特征
一、数学期望的概念 二、数学期望的性质 三、应用实例

停 下
§3.1
数学期望
一、数学期望的概念
1. 问题的提出 1654年, 一个名叫梅累的骑士就“两个赌徒 约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望








因而其数学期望E(X)不存在.
§3.2 数学期望的性质 一、性质
性质3.1 设C是常数, 则有ECC. 证
E X E C 1 C C . E CX CE X .
性质3.2 设 X 是一个随机变量, C 是常数, 则有 证 E CX Cxk pk C xk pk CE X .

数学期望, 记为EX, 即
E X

xp x dx .
4. 数学期望不存在的实例
例3
设随机变量X的分布律为 1 PX n , n 1,2,, nn 1
求证: 随机变量X没有数学期望.
证 由定义, 数学期望应为

1 E X npn . n1 n 1 n 1
求EX, EY, E (Y / X ), E[( X Y )2 ]. 思考: X2的分布律?
例7 设随机变量X ~ N0,1, Y ~U0,1, Z~B5,0.5, 且X, Y, Z相互独立, 求随机变量W 2X+3Y4Z1
的数学期望.

《数学期望》课件

《数学期望》课件
注意事项
在计算过程中需要注意积分的上下 限以及概率密度函数的取值范围。
连续型随机变量的数学期望的性质
01
02
03
非负性
E(X) ≥ 0,即数学期望的 值总是非负的。
可加性
如果X和Y是两个独立的随 机变量,那么E(X+Y) = E(X) + E(Y)。
线性性质
如果a和b是常数,那么 E(aX+b) = aE(X)+b。
方差是数学期望的度量,表示随机变量取值 与数学期望的偏离程度。
04
CATALOGUE
连续型随机变量的数学期望
连续型随机变量的定义
连续型随机变量
如果一个随机变量X的所有可能 取值是实数轴上的一个区间变量。
概率密度函数
描述连续型随机变量X在各个点 上取值的概率分布情况,其数学
《数学期望》PPT课件
CATALOGUE
目 录
• 引言 • 数学期望的基本性质 • 离散型随机变量的数学期望 • 连续型随机变量的数学期望 • 数学期望的应用 • 总结与展望
01
CATALOGUE
引言
数学期望的定义
数学期望是概率论和统计学中的 一个重要概念,它表示随机变量
取值的平均数或加权平均数。
数学期望的定义基于概率论的基 本原理,通过将每个可能的结果 与其对应的概率相乘,然后将这
些乘积相加得到。
数学期望具有一些重要的性质, 如线性性质、期望值不变性质等 ,这些性质在概率论和统计学中
有着广泛的应用。
数学期望的起源和历史
数学期望的起源可以追溯到17世纪,当时的一些数学家开始研究概率论和统计学中 的一些基本概念。
通过计算投资组合的数学期望, 我们可以了解投资组合的预期收 益,从而制定更加合理的投资策

数学期望的性质与条件期望

数学期望的性质与条件期望
j
η
的条件期望, 的条件期望 记作
E{η ξ = xi },

同样可以定义给定的 η = y j 时关于 ξ 的条件期望为
E ξ η = y j = ∑ xi P{ξ = x i η = yi }
i
E { ξ = xi } = ∑ y j P{η = y j ξ = xi } η
{
}
对于二元连续型随机变量 (ξ ,η ), 定义
ξ 表示 名射手所需子弹数目, 则 ξ = ∑ ξ i , 表示9名射手所需子弹数目 名射手所需子弹数目, i =1 的分布如下: 并且 ξi 的分布如下:
9
2 3 1 P 0.8 0.16 0.04 Eξ i = 0.8 + 2 × 0.16 + 3 × 0.04 = 1.24
Eξ = E ( ∑ ξ i ) = ∑ Eξ i = 9 × 1.24 = 11.16
ξ 与 η 是否独立? 是否独立?
ξ /η
−1 1
0 .3 0.6 解 ξ⋅η − 1 0 1 0 .1 0 .2 0 .1 0.4 P 0.4 0.2 0.4 η 0.4 0.2 0.4 1 1.因为 p−1,0 = 0 ≠ P{ξ = −1} ⋅ P {η = 0} = 0.6 × 0.2 0
2. Eξ = −1 × 0.6 + 1 × 0.4 = −0.2, Eη = −1 × 0.4 + 0 × 0.2 + 1 × 0.4 = 0 E (ξ ⋅ η ) = −1 × 0.4 + 0 × 0.2 + 1 × 0.4 = 0
( 2) j
= ∑ x i p (i 1) ⋅ ∑ y j p (j2 ) = Eξ ⋅ Eη
i

常用分布的数学期望及方差

常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。

数学期望(均值)、方差和协方差的定义与性质

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。

即()1k k k E X x p ∞==∑。

设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。

即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。

性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。

2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。

数学期望及其性质

数学期望及其性质
第十三章
随机变量的数字特征
§1 数学期望
§1 数学期望
例 1:某班有 N 个人,其中有 ni 个人为 ai 分, i = 1,2,L k ,
∑n
i =1
k
i
= N , 求平均成绩。
解:
k ni 1 k 平均成绩为: ∑ ai ni = ∑ ai N i =1 N i =1 ni 若用 X 表示成绩,则 P{X = ai } ≈ N k k ni ai ⋅ ≈ a i ⋅ P{ X = a i } N i =1 i =1
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
例4
设离散型随机变量 X 的分布律为: X 0 1 2 P 0.1 0.2 0.7
则 EXห้องสมุดไป่ตู้= 0*0.1+1*0.2+2*0.7 =1.6
若离散型随机变量 X 的分布律为: X 0 1 2 P 0.7 0.2 0.1 EX = 0*0.7+1*0.2+2*0.1 =0.4
n =1 ∞
时,才能保证级数 ∑ x n pn 的和与其级数 ∑ x n pn
n =1 n =1


的求和顺序无关.
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
例2
甲、乙两人射击,他们的射击水平由下表给出: X:甲击中的环数;
Y:乙击中的环数;
X P
Y P
8 0.1
8 0 .2
9 0.3
9 0 .5
到站时间 8:10,9:10 概率 1/6 8:30,9:30 8:50,9:50 3/6 2/6
返回主目录
第十三章 随机变量的数字特征
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学期望性质
数学期望性质
_________________________
数学期望,也称为期望值,是统计学中一种基本概念。

它用来反映一系列随机变量的可能取值的可能性,并用来衡量它们的结果,也就是说,它指的是一个离散或连续随机变量的预期平均值。

数学期望是一个重要的概念,它在很多领域都有用武之地,例如经济学、金融学、保险学、管理学、社会学、心理学和数理统计学等。

它也可以用于预测和分析复杂的模式,例如蒙特卡洛方法、随机行为、决策理论和数学经济学。

一般来说,数学期望是一种性质,它可以用于度量随机变量的表现,以及评估不同事件发生的可能性。

其中,根据不同的概念,数学期望的定义也有所不同,但其基本性质是一致的。

数学期望性质是指一个随机变量取值的平均值,这个平均值取决于每个可能的取值所对应的概率。

数学期望也可以定义为求和项中每个条件概率乘以它们对应的取值之和。

这就意味着,如果一个随机变量x的数学期望为E(x),那么E(x)就是x的每一个取值的概率加权平均值。

数学期望也具有加法性质,即如果两个随机变量x和y都具有数学期望E(x)和E(y),则
E(x+y)=E(x)+E(y)。

这就意味着,对于任意两个随机变量,它们的数学期望之和就是它们各自的数学期望之和。

此外,数学期望也具有乘法性质,即如果一个随机变量x具有数学期望E(x),则E(cx)=cE(x),其
中c是一个常数。

这意味着,当我们将一个随机变量乘以一个常数时,它的数学期望也会随之变化。

此外,数学期望还具有其他特性,例如对数特性、平方根特性、多元特性等。

其中,对数特性表明如果一个随机变量x具有数学期望E(x),则E(log x)=log E(x);平方根特性表明如果一个随机变量x具有数学期望E(x),则E(sqrt x)=sqrt E(x);多元特性表明如果一个随机变量x具有数学期望
E(x),则E(f(x))=f(E(x))。

通过对数学期望性质的认识,我们就能够更好地理解随机变量的表现。

因此,在实际应用中,我们可以利用这些性质来分析不同情况下随机变量的预测情况,并运用它们来优化我们的决策。

相关文档
最新文档