数学期望的定义及性质

合集下载

2.4数学期望的定义及性质

2.4数学期望的定义及性质

第四节 数学期望的定义及性质引例:赌场规定,赌客以掷骰子的方式决定输赢,每掷一次骰子,点数ξ在4以上可赢10元,点数ξ为4可赢2元,点数ξ在4一下则输掉8元。

考虑,从总体上看,或平均来看,一个赌徒,每次掷骰子是输还是赢?输赢的钱数为多少?粗糙的做法:102(8)433++-=,因此说,赌徒平均每赌一次,赢得43元。

从直觉就可以判断,上述做法是不合理的,应为没有考虑到每次掷骰子,赢10元,赢2元,输8元的可能性是不同的。

所以,不能把它们平等地加在一起除以3。

考虑下面的做法:如果共掷了N 次骰子,其中点数在4以上的结果共有a N 次,点数为4的结果共有b N 次,点数小于4的结果共有c N 次。

平均来看,赌徒每赌一次,赢(输)的钱数为102(8)102(8)a b c a b c N N N N N NN N N N⋅+⋅+-⋅=⋅+⋅+-⋅上式等号右边是一个加权平均,赢10元,2元,输8元的权重a N N ,b N N ,cN N分别是赢10元,2元,输8元这三种结果在N 次赌博中发生的频率。

这样计算出来的平均值比102(8)3++-合理得多。

但是,用这种方法计算的平均值仍有缺陷,因为对于不同的N ,权重,也即频率a N N ,b N N ,c NN可能不同,因此得到的平均值不同;另外,即使N 相同,今天赌N 次得到的权重a N N ,b N N ,c NN和明天赌N 次得到的权重也未必相同。

因此需要进一步探索更合理的计算均值的方法。

由概率的频率定义知道,当赌博的总次数N →∞时,赢10元,2元,输8元的频率aN N,b N N ,c NN分别趋近于它们的概率a P ,b P ,c P ,再注意到概率的内涵:一个随机事件的概率是做一次随机试验这个随机事件发生的可能性,因此,用a P ,b P ,c P 取代a N N ,b NN,cN N作为权重计算平均值,即 102(8)a b c P P P ⋅+⋅+-⋅显然,上式最能恰当的反映赌客平均每次掷骰子输赢的情况。

常用分布的数学期望及方差

常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。

第29讲 数学期望的性质

第29讲 数学期望的性质

第29讲数学期望的性质2数学期望的性质:可推广到任意有限个随机变量线性组合的情况:0011()().n ni i i i i i E c c X c c E X ==+=+∑∑1. 设c 是常数, 则有();E c c =2. 设X 是一个随机变量, c 是常数, 则有()();E cX cE X =3. 设X, Y 是两个随机变量, 则有()()();E X Y E X E Y +=+()()();E aX bY c aE X bE Y c ++=++将上面三点合起来,则有3可推广到任意有限个相互独立的随机变量之积的情况:11()(),,1,2,,, n ni i i i i E X E X X i n ==∏=∏= 其中 相互独立.4. 设X , Y 是相互独立的两个随机变量, 则有()()();E XY E X E Y =4()().E X E Y =+1.()1,()()1.c P X c E c E X c c ====⨯=是常数,2. ()()()().X X E cX cx f x dx c xf x dx cE X +∞+∞-∞-∞===⎰⎰ 3. ()()(,) (,)(,)E X Y x y f x y dxdy xf x y dxdy yf x y dxdy+∞+∞-∞-∞+∞+∞+∞+∞-∞-∞-∞-∞+=+=+⎰⎰⎰⎰⎰⎰证明:((),(,)(,))X X f x X Y f x y ~~下面仅对连续型随机变量给予证明 设(利用随机变量函数的数学期望的两个定理来证)54. ()(,) ()() ()() ()().X Y X Y E XY xyf x y dxdyxyf x f y dxdyxf x dx yf y dyE X E Y +∞+∞-∞-∞+∞+∞-∞-∞+∞+∞-∞-∞====⎰⎰⎰⎰⎰⎰数学期望的性质:1. 设c是常数, 则有();E c c=2. 设X是一个随机变量, c是常数, 则有()();E cX cE X=3. 设X, Y是两个随机变量, 则有()()();+=+E X Y E X E Y 将上面三点合起来,则有()()();++=++E aX bY c aE X bE Y c4. 设X, Y是相互独立的两个随机变量, 则有=E XY E X E Y()()().672~(,)().X N E X μσμ= 设 ,证明: 例1:, , (0.)X Z Z E Z μσ-==令 则服从标准正态分布且证明:()()()()()0.E X E Z E E Z E Z μσμσμσμσμ=+=+=+=+= 故 2(,) .N μσμ服从 的随机变量的期望为即,X Z μσ=+此时8~(,),01,1,().X B n p p n E X <<≥ 设 求 例2:,, (). X n A P A p =由题意知随机变量可看成是重贝努里试验中事件发生的次 解: 数此时 引入随机变量1,;1,2,,.0,,k A k X k n A k ⎧==⎨⎩ 在第次试验发生在第次试验不发生()()12 ,,,,01,(),, n k X X X p E X p k -=∀ 于是相互独立服从同一分布参数为 121.nn k k X X X X X ==+++=∑ 且 11()()(),n n k k k k E X E X E X np =====∑∑故 ,.() B n p np 服从 的随机变量的期望为即注: 以n , p 为参数的二项分布的随机变量,可分解为n 个相互独立且都服从以p 为参数的(0-1)分布的随机变量之和.9(),1,2,,,,1,2,,.,,,,().n n n X n E X 配对问题一个小班有个同学 编号为号 中秋节前每人准备一件礼物 相应编号为将所有礼物集中放在一起 然后每个同学随机取一件 若取到自己的礼物 就认为配对成功.以表示个同学配对成功的个数求 例3: 1, ;1,2,,.0,,i i X i n i ⎧==⎨⎩ 第号同学配对成功引入随机变量 第号同学未配对成功解:121,01,. n i X X X X X n=+++- 易知: 且服从分布参数为1111()()() 1.n n n i i i i i E X E X E X n=======∑∑∑故 X 注: 不服从二项分布!10,,.X 本题是将分解成数个随机变量之和 然后利用随机变量和的数学期望等于随机变量数学期望之和来求数学期望 这种处理方法具有一定的普遍意义1110010010011()()() 4.5.i i i i E Y E X E X ===∏=∏=从而 0~9,100,,1,2,,100.100,,,().i X i i Y E Y = 计算机程序随机产生中的数字 独立进行次记为第次产生的数字将这个数进行乘积运算得到一数记为求 例4:12100,,,,,,{}1/10,0,1,,9.i X X X P X k k === 由题意知独立同分布其分布律均为 解:901() 4.5,10i k E X k ==⋅=∑故 100121001,i i Y X X X X ===∏ 又。

数学期望(均值)、方差和协方差的定义与性质

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。

即()1k k k E X x p ∞==∑。

设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。

即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。

性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。

2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。

数学期望及其性质

数学期望及其性质
第十三章
随机变量的数字特征
§1 数学期望
§1 数学期望
例 1:某班有 N 个人,其中有 ni 个人为 ai 分, i = 1,2,L k ,
∑n
i =1
k
i
= N , 求平均成绩。
解:
k ni 1 k 平均成绩为: ∑ ai ni = ∑ ai N i =1 N i =1 ni 若用 X 表示成绩,则 P{X = ai } ≈ N k k ni ai ⋅ ≈ a i ⋅ P{ X = a i } N i =1 i =1
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
例4
设离散型随机变量 X 的分布律为: X 0 1 2 P 0.1 0.2 0.7
则 EXห้องสมุดไป่ตู้= 0*0.1+1*0.2+2*0.7 =1.6
若离散型随机变量 X 的分布律为: X 0 1 2 P 0.7 0.2 0.1 EX = 0*0.7+1*0.2+2*0.1 =0.4
n =1 ∞
时,才能保证级数 ∑ x n pn 的和与其级数 ∑ x n pn
n =1 n =1


的求和顺序无关.
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
例2
甲、乙两人射击,他们的射击水平由下表给出: X:甲击中的环数;
Y:乙击中的环数;
X P
Y P
8 0.1
8 0 .2
9 0.3
9 0 .5
到站时间 8:10,9:10 概率 1/6 8:30,9:30 8:50,9:50 3/6 2/6
返回主目录
第十三章 随机变量的数字特征

随机变量的数学期望

随机变量的数学期望

思考 谁的技术比较好?
甲、 乙两个射手, 他们射击的分布律分别 为
甲射手
击中环数 概率 击中环数 概率 8 9 10
0 . 3 0 .1 0 . 6
8 9 10
乙射手
0 .2 0 .5 0 .3
试问哪个射手技术较好?
解 设甲、乙射手击中的环 数分别为 X 1 , X 2 .
E ( X 1 ) 8 0.3 9 0.1 10 0.6 9.3(环), E ( X 2 ) 8 0.2 9 0.5 10 0.3 9.1(环),
因此,在对随机变量的研究中,确定某些数 字特征是重要的 .
在这些数字特征中,最常用的是
数学期望、方差、协方差和相关系数
一、数学期望的概念 定义1 设X是离散型随机变量,它的分布率是: P{X=xk}=pk , k=1,2,… 若级数
xk pk k 1


绝对收敛,则称级数
xk pk k 1
例8 设风速V在(0, a )上服从均匀分布,即具有概率
密度
1 0va f (v ) a 0 其它
2
又设飞机机翼受到的正压力W是V的函数 : W kV ( k 0, 常数), 求W的数学期望.
解:由上面的公式
1 1 2 E (W ) kv f (v )dv kv dv ka a 3 0

为随机变量X的数学期望或者均值,记为EX,即
如果积分 望不存在。



x f ( x)dx 发散,则称X的数学期
关于定义的几点说明 (1) E(X)是一个实数,而非变量,它是一种加
权平均,与一般的平均值不同 , 它从本质上体现 了随机变量 X 取可能值的真正的平均值, 也称 均值. (2) 级数的绝对收敛性保证了级数的和不 随级数各项次序的改变而改变 , 之所以这样要 求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变. (3) 随机变量的数学期望与一般变量的算 术平均值不同.

数学期望性质与应用举例

数学期望性质与应用举例

5.数学期望的基本性质利用数学期望的定义可以证明,数学期望具有如下基本性质:设ξ, η为随机变量,且E(ξ),E(η)都存在,a,b,c为常数,则性质1.E(c)=c;性质2.E(aξ)=aE(ξ);性质3.E(a+ξ)=E(ξ)+a;性质4.E(aξ+b)=aE(ξ)+b;性质5. E(ξ+η)=E(ξ)+E(η).例3.5.7设随机变量X的概率分布为:P(X =k)=0.2 k =1,2,3,4,5.求E(X),E(3X+2).解. ∵P(X=k)=0.2 k=1,2,3,4,5∴由离散型随机变量的数学期望的定义可知E(X)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2=3,E(3X+2)=3E(X)+2=11.例3.5.8. 设随机变量X的密度函数为:求E(X),E(2X-1).解.由连续型随机变量的数学期望的定义可知=-1/6+1/6=0.∴E(2X-1)=2E(X)-1=-1.我们已经学习了离散型随机变量和连续型随机变量的数学期望,在随机变量的数字特征中,除数学期望外,另一重要的数字特征就是方差.4.1.2 数学期望的性质(1)设是常数,则有。

证把常数看作一个随机变量,它只能取得唯一的值,取得这个值的概率显然等于1。

所以,。

(2)设是随机变量,是常数,则有。

证若是连续型随机变量,且其密度函数为。

当是离散型随机变量的情形时,将上述证明中的积分号改为求和号即得。

(3)设都是随机变量,则有。

此性质的证明可以直接利用定理4.1.2,我们留作课后练习。

这一性质可以推广到有限个随机变量之和的情况,即。

(4)设是相互独立的随机变量,则。

证仅就与都是连续型随机变量的情形来证明。

设的概率密度分别为和,的联合概率密度为,则因为与相互独立,所以有。

由此得此性质可以推广到有限个相互独立的随机变量之积的情况。

例4.1.2 倒扣多少分?李老师喜欢在考试中出选择题,但他知道有些学生即使不懂哪个是正确答案也会乱撞一通,随便选一个答案,以图侥幸。

数学期望

数学期望

《概率论与数理统计》第四章随机变量的数字特征数学期望:1.随机变量数学期望的定义—连续型E(ξ)=⎰-∞+∞xp(x)dx E(g(ξ))=⎰-∞+∞g(x)p(x)dx 2.二维随机变量(X,Y)的数学期望:连续型E(X)=⎰-∞+∞xf X (x)dx=⎰-∞+∞⎰-∞+∞xf(x,y)dxdy E(Y)=⎰-∞+∞yf Y (y)dy=⎰-∞+∞⎰-∞+∞yf(x,y)dxdy 3.二维随机变量X 的函数Y=g(X)的数学期望:E[g(X,Y)]=⎰-∞+∞⎰-∞+∞g(x,y)f(x,y)dxdy 4.数学期望的性质E(c)=c ,E(a ξ)=a ξ,E(ξ±η)=E ξ±E η若ξ与η相互独立,则E(ξη)=E ξE η方差:1.随机变量方差的定义−−-D(X)=E[X-E(X)]2=EX 2–(EX)2D(X)=⎰-∞+∞[x-E(X)]2f(x)dx 2.方差性质:D(c)=0,D(a ξ)=a 2ξ,D(a ξ+b)=a 2D ξ,D(ξ±η)=D ξ+D η±2cov(ξ,η)若ξ与η相互独立,则D(ξ±η)=D ξ+D η协方差:1.ξ与η的协方差cov(ξ,η)=E[(ξ-E ξ)(η-E η)](或为σξη)2.协方差的性质:cov(ξ,ξ)=D ξcov(ξ,η)=cov(η,ξ),cov(ξ,c)=0cov(a ξ,b η)=ab cov(ξ,η),cov(ξ,η±ζ)=cov(ξ,η)±cov(ξ,ζ)3.协方差矩阵:设n 维随机变量X 1,X 2,…,X n ,记c ij =cov(X i ,X j ),则称阶矩阵C=(c ij )n ⨯n 为X 1,X 2,…,X n 的协方差矩阵例1:设ξ的密度函数p(x)=2x ∈[1,3]其它求:E ξ[解]∵1=⎰-∞+∞p(x)dx ∴c=3/2;E ξ=⎰-∞+∞xp(x)dx=⎰13x 32x 2dx=32lnx=32ln3.例2设x 1,x 2是随机变量ξ的两个任意取值,证明:E[(ξ-x 1+x 22)2]≥D ξ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档