随机变量的数学期望及其性质(doc 8页)
随机变量的数学期望解读

离散、连续型随机变量的数学期望 随机变量函数的数学期望 数学期望的性质 课堂练习
在前面的课程中,我们讨论了随机变量及其分 布,如果知道了随机变量X的概率分布,那么X的 全部概率特征也就知道了.
然而,在实际问题中,概率分布一般是较难 确定的. 而在一些实际应用中,人们并不需要知 道随机变量的一切概率性质,只要知道它的某些 数字特征就够了.
N
证明: E
n
k nk
C C M M N M
k C C n
C C k0
N
n
n N k 1
k 1 (n1)(k 1) M 1 ( N 1)(M 1)
M CNn
C n1 N量X的概率密度为f(x),如
果积分 xf (x)dx 绝对收敛,则称该积分的值
为随机变量X的数学期望或者均值,记为EX,即
即
E( X ) xk pk
k 1
若级数发散 xk pk ,则称X的数学期望不存在。
k 1
例1 谁的技术比较好? 甲、乙两个射手 , 他们射击的分布律分别为
甲射手
击中环数 8 9 10
概率
0.3 0.1 0.6
乙射手
击中环数 8 9 10
概率
0.2 0.5 0.3
试问哪个射手技术较好?
解 设甲、乙射手击中的环数分别为 X1, X2 . E( X1) 8 0.3 9 0.1 10 0.6 9.3(环), E( X2 ) 8 0.2 9 0.5 10 0.3 9.1(环),
E(X ) x f (x)dx
如果积分 x f (x)dx 发散,则称X的数学期
望不存在。
注: E(X)是一个实数而非变量, 并非所有的随机变 量都存在数学期望。
高中高三数学《随机变量和数学期望》教案、教学设计

(3)针对不同难度的练习题,进行分层教学,使学生在逐步克服难点的过程中,提高自己的数学素养。
3.教学策略和手段:
(1)运用信息技术,如多媒体、网络资源等,为学生提供丰富的学习材料,提高课堂教学效果。
2.教学过程:
(1)教师发放练习题,要求学生在规定时间内完成。
(2)学生独立完成练习题,教师巡回指导,解答学生疑问。
(3)教师选取部分学生作品进行展示,分析解题思路和技巧,并进行点评。
(五)总结归纳
1.教学内容:对本节课所学内容进行总结,巩固学生对随机变量和数学期望的理解。
2.教学过程:
(1)教师引导学生回顾本节课所学的主要内容,如随机变量的概念、分类、表示方法,数学期望的定义、性质和计算方法等。
4.小组合作完成一道综合应用题,要求学生在解决实际问题的过程中,运用随机变量和数学期望的知识。此题目旨在培养学生的合作意识和运用数学工具解决实际问题的能力。
5.针对课堂所学内容,教师编制一份测试卷,包括选择题、填空题、解答题等,全面检测学生对本章知识的掌握程度。
作业布置要求:
1.学生应在规定时间内独立完成作业,遇到问题可请教同学或老师,培养自主解决问题的能力。
(2)以小组合作的形式,让学生探讨随机变量的表示方法,如分布列、概率密度函数等,培养他们的合作意识和解决问题的能力。
(3)通过典型例题,引导学生掌握数学期望的定义和性质,学会运用数学期望进行计算。
2.对于难点内容的教学设想:
(1)针对分布列和概率密度函数的理解,设计直观的图表和动画,帮助学生形象地理解抽象概念。
4.引导学生关注社会热点问题,运用所学知识为社会发展贡献力量,培养他们的社会责任感和使命感。
《数学期望》课件

在计算过程中需要注意积分的上下 限以及概率密度函数的取值范围。
连续型随机变量的数学期望的性质
01
02
03
非负性
E(X) ≥ 0,即数学期望的 值总是非负的。
可加性
如果X和Y是两个独立的随 机变量,那么E(X+Y) = E(X) + E(Y)。
线性性质
如果a和b是常数,那么 E(aX+b) = aE(X)+b。
方差是数学期望的度量,表示随机变量取值 与数学期望的偏离程度。
04
CATALOGUE
连续型随机变量的数学期望
连续型随机变量的定义
连续型随机变量
如果一个随机变量X的所有可能 取值是实数轴上的一个区间变量。
概率密度函数
描述连续型随机变量X在各个点 上取值的概率分布情况,其数学
《数学期望》PPT课件
CATALOGUE
目 录
• 引言 • 数学期望的基本性质 • 离散型随机变量的数学期望 • 连续型随机变量的数学期望 • 数学期望的应用 • 总结与展望
01
CATALOGUE
引言
数学期望的定义
数学期望是概率论和统计学中的 一个重要概念,它表示随机变量
取值的平均数或加权平均数。
数学期望的定义基于概率论的基 本原理,通过将每个可能的结果 与其对应的概率相乘,然后将这
些乘积相加得到。
数学期望具有一些重要的性质, 如线性性质、期望值不变性质等 ,这些性质在概率论和统计学中
有着广泛的应用。
数学期望的起源和历史
数学期望的起源可以追溯到17世纪,当时的一些数学家开始研究概率论和统计学中 的一些基本概念。
通过计算投资组合的数学期望, 我们可以了解投资组合的预期收 益,从而制定更加合理的投资策
3.3期望的性质与随机变量函数的期望

P X 1
因此出售一台设备净赢利Y 的分布律为
Y
100
1 e 4
4
100 300
1 1 e 4
- 1 4
p
E (Y ) = 100e
- 1
- 200 (1 - e
)
33.64 (元).
发行彩票的创收利润 某一彩票中心发行彩票10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个, 奖金各 5千元; 三等奖10个, 奖金各1千元; 四等奖100 个, 奖金各1百元; 五等奖1000个, 奖金各10元. 每张彩票的成本费为0.3元, 请计算彩票发行单 位的创收利润. 解: 设每张彩票中奖的金额为随机变量X, 则
二、 随机变量函数的数学期望
1. 问题的提出
数学期望 X g(X) 数学期望 E(X)
E( X ) =
E ( X ) xk pk
k
ò
+
-
xf (x )dx
E轾 g (X ) = 臌
g(x)是连续函数, g(X) 是 随机变量, 如: aX+b, X2等 等.
2. 随机变量函数数学期望的计算 如何计算随机变量函数的数学期望?
例 设随机变量 X 的概率分布为 1 2 3 X
1 求 E ( ) , E ( X 2 2). X 1 1 1 解: E ( ) 1 0.1 0.7 0.2 0.52 X 2 3
P
0.1
0.7
0.2
E ( X 2)
2
(1 2) 0.1 (2 2) 0.7 (3 2) 0.2 6.7
X 10000 p 1 105
数学期望及其性质

第i 0, 第i站没人下车 解:设 X i = , i = 1,2, L ,10 , 1, 第i站有人下车 10 易见 X = X 1 + L + X 10 , EX = ∑ EX i ,
P{Xi = 0} = (9 /10)
,P{Xi = 1} = 1− (9/10)20,i = 1L,10, , EX i = 1 − ( 9 / 10 ) 20 , i = 1此时,Xi i = 1,2,L,10 , L ,10 , 不是相互独立的 EX = 10[1 − (9 / 10) 20 ] = 8.784(次) 。 返回主目录
第十三章 随机变量的数字特征
§1 数学期望 例8 对产品进行抽样,只要发现废品就认为这批产品 不合格,并结束抽样。若抽样到第n件仍未发现废 品则认为这批产品合格。 假设产品数量很大,抽查到废品的概率是p,试 求平均需抽查的件数。 解: 设X为停止检查时,抽样的件数,则X的可能 取值为1,2,…,n,且
E(
∑ a X ) = ∑ a EX
i i i i =1 i =1
n
n
i
IV)
若x , y独立,则 EXY=EXEY
返回主目录
第十三章 随机变量的数字特征
§1 数学期望 例6 一民航送客载有 20 位旅客自机场开出,旅客有 10 个车站可以下车,如到达一个车站没有旅客下车就不 停车。以 X 表示停车的次数。 求 EX(设每个旅客在各个车站下车是等可能的,并 设各旅客是否下车相互独立) 。
i =1
∞
记为 EX,即 EX= ∑ x k pk 。
k =1
∞
数学期望也称为均值。
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
数学期望性质除法

数学期望性质除法离散型如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。
离散型随机变量的一切可能的取值与对应的概率乘积之和称为该离散型随机变量的数学期望(若该求和绝对收敛),记为它是简单算术平均的一种推广,类似加权平均。
公式离散型随机变量X的取值为,为X对应取值的概率,可理解为数据出现的频率,则:定理设Y是随机变量X的函数:(是连续函数)它的分布律为若绝对收敛,则有:连续型设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。
若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。
数学期望完全由随机变量X的概率分布所确定。
若X服从某一分布,也称是这一分布的数学期望。
定理若随机变量Y符合函数,且绝对收敛,则有:该定理的意义在于:我们求时不需要算出Y的分布律或者概率密度,只要利用X的分布律或概率密度即可。
上述定理还可以推广到两个或以上随机变量的函数情况。
设Z是随机变量X、Y的函数(g是连续函数),Z是一个一维随机变量,二维随机变量(X,Y)的概率密度为,则有:设C为一个常数,X和Y是两个随机变量。
以下是数学期望的重要性质:1、2、3、4、当X和Y相互独立时,性质3和性质4可以推到到任意有限个相互独立的随机变量之和或之积的情况。
证明:这里只对连续性随机变量的情况加以证明,对离散型的证明只要将证明中的积分改为和式即可。
1、永远都只能取C,常数C的平均数还是它本身。
2、设二维随机变量的概率密度函数为3、若X和Y相互独立,其边缘概率密度函数为。
随机变量的数学期望

P{ X = xiY = y j } = pij ,i , j = 1,2,
则 E( Z ) = E[ g ( X , Y )] = ∑ ∑ g ( x i , y j ) pij .
j i
型随机变量, (2) 若(X,Y)是连续型随机变量,联合概率密度为 , ) 连续型随机变量 f(x,y),则 ( , )
1 k 1 1 k k E 因此, 因此, ( X ) = q + (1 + ) (1 q ) = 1 q + , k k k
N个人需化验的次数的数学期望为 个人需化验的次数的数学期望为 例如, 例如,
0.9910 0.1 = 0.804 , 1 k 就能减少验血次数. 当 q > 时, 就能减少验血次数.
E( X) = ∫ xf ( x)dx
∞
+∞
13
例5
设随机变量X的概率密度函数为 设随机变量 的概率密度函数为
3 x 2 , 0 < x < 1 f ( x) = 其它 0 , 的数学期望. 求X的数学期望. 的数学期望
解
E( X ) = ∫
+∞ ∞
1 0
xf ( x ) dx
2
=∫
3 x 3 x dx = . 4
+∞
+∞
=∫
+∞ 0
x e dx = 2 .
2
18
x
设随机变量( , ) 例8 设随机变量(X,Y)的联合概率密度为
1 3 3 2 , < y < x, x > 1 y f ( x, y) = 2 x y x 0, else 1 ). 求 E(Y ), E( XY
解 E(Y ) =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机变量的数学期望及其性质(doc
8页)
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
第三章随机变量的数字特征
前一章介绍了随机变量的分布,它是对随机变量的一种完整的描述。
然而实际上,求出分布率并不是一件容易的事。
在很多情况下,人们并不需要去全面地考察随机变量的变化情况,而只要知道随机变量的一些综合指标就够了.随机变量的数字特征就是用数字表示随机变量的分布特点。
将介绍最常用的两种数字特征:数学期望与方差.
§1. 随机变量的数学期望及其性质
一.数学期望:
1.离散型随机变量的数学期望定义:
【例3】
2。
连续型随机变量的数学期望:定义:
【例4】
3.随机变量函数的数学期望:
X ,
二.:::。