数学期望及其性质
数学期望的性质与条件期望

η
的条件期望, 的条件期望 记作
E{η ξ = xi },
有
同样可以定义给定的 η = y j 时关于 ξ 的条件期望为
E ξ η = y j = ∑ xi P{ξ = x i η = yi }
i
E { ξ = xi } = ∑ y j P{η = y j ξ = xi } η
{
}
对于二元连续型随机变量 (ξ ,η ), 定义
ξ 表示 名射手所需子弹数目, 则 ξ = ∑ ξ i , 表示9名射手所需子弹数目 名射手所需子弹数目, i =1 的分布如下: 并且 ξi 的分布如下:
9
2 3 1 P 0.8 0.16 0.04 Eξ i = 0.8 + 2 × 0.16 + 3 × 0.04 = 1.24
Eξ = E ( ∑ ξ i ) = ∑ Eξ i = 9 × 1.24 = 11.16
ξ 与 η 是否独立? 是否独立?
ξ /η
−1 1
0 .3 0.6 解 ξ⋅η − 1 0 1 0 .1 0 .2 0 .1 0.4 P 0.4 0.2 0.4 η 0.4 0.2 0.4 1 1.因为 p−1,0 = 0 ≠ P{ξ = −1} ⋅ P {η = 0} = 0.6 × 0.2 0
2. Eξ = −1 × 0.6 + 1 × 0.4 = −0.2, Eη = −1 × 0.4 + 0 × 0.2 + 1 × 0.4 = 0 E (ξ ⋅ η ) = −1 × 0.4 + 0 × 0.2 + 1 × 0.4 = 0
( 2) j
= ∑ x i p (i 1) ⋅ ∑ y j p (j2 ) = Eξ ⋅ Eη
i
常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。
3.3期望的性质与随机变量函数的期望

P X 1
因此出售一台设备净赢利Y 的分布律为
Y
100
1 e 4
4
100 300
1 1 e 4
- 1 4
p
E (Y ) = 100e
- 1
- 200 (1 - e
)
33.64 (元).
发行彩票的创收利润 某一彩票中心发行彩票10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个, 奖金各 5千元; 三等奖10个, 奖金各1千元; 四等奖100 个, 奖金各1百元; 五等奖1000个, 奖金各10元. 每张彩票的成本费为0.3元, 请计算彩票发行单 位的创收利润. 解: 设每张彩票中奖的金额为随机变量X, 则
二、 随机变量函数的数学期望
1. 问题的提出
数学期望 X g(X) 数学期望 E(X)
E( X ) =
E ( X ) xk pk
k
ò
+
-
xf (x )dx
E轾 g (X ) = 臌
g(x)是连续函数, g(X) 是 随机变量, 如: aX+b, X2等 等.
2. 随机变量函数数学期望的计算 如何计算随机变量函数的数学期望?
例 设随机变量 X 的概率分布为 1 2 3 X
1 求 E ( ) , E ( X 2 2). X 1 1 1 解: E ( ) 1 0.1 0.7 0.2 0.52 X 2 3
P
0.1
0.7
0.2
E ( X 2)
2
(1 2) 0.1 (2 2) 0.7 (3 2) 0.2 6.7
X 10000 p 1 105
第29讲 数学期望的性质

第29讲数学期望的性质2数学期望的性质:可推广到任意有限个随机变量线性组合的情况:0011()().n ni i i i i i E c c X c c E X ==+=+∑∑1. 设c 是常数, 则有();E c c =2. 设X 是一个随机变量, c 是常数, 则有()();E cX cE X =3. 设X, Y 是两个随机变量, 则有()()();E X Y E X E Y +=+()()();E aX bY c aE X bE Y c ++=++将上面三点合起来,则有3可推广到任意有限个相互独立的随机变量之积的情况:11()(),,1,2,,, n ni i i i i E X E X X i n ==∏=∏= 其中 相互独立.4. 设X , Y 是相互独立的两个随机变量, 则有()()();E XY E X E Y =4()().E X E Y =+1.()1,()()1.c P X c E c E X c c ====⨯=是常数,2. ()()()().X X E cX cx f x dx c xf x dx cE X +∞+∞-∞-∞===⎰⎰ 3. ()()(,) (,)(,)E X Y x y f x y dxdy xf x y dxdy yf x y dxdy+∞+∞-∞-∞+∞+∞+∞+∞-∞-∞-∞-∞+=+=+⎰⎰⎰⎰⎰⎰证明:((),(,)(,))X X f x X Y f x y ~~下面仅对连续型随机变量给予证明 设(利用随机变量函数的数学期望的两个定理来证)54. ()(,) ()() ()() ()().X Y X Y E XY xyf x y dxdyxyf x f y dxdyxf x dx yf y dyE X E Y +∞+∞-∞-∞+∞+∞-∞-∞+∞+∞-∞-∞====⎰⎰⎰⎰⎰⎰数学期望的性质:1. 设c是常数, 则有();E c c=2. 设X是一个随机变量, c是常数, 则有()();E cX cE X=3. 设X, Y是两个随机变量, 则有()()();+=+E X Y E X E Y 将上面三点合起来,则有()()();++=++E aX bY c aE X bE Y c4. 设X, Y是相互独立的两个随机变量, 则有=E XY E X E Y()()().672~(,)().X N E X μσμ= 设 ,证明: 例1:, , (0.)X Z Z E Z μσ-==令 则服从标准正态分布且证明:()()()()()0.E X E Z E E Z E Z μσμσμσμσμ=+=+=+=+= 故 2(,) .N μσμ服从 的随机变量的期望为即,X Z μσ=+此时8~(,),01,1,().X B n p p n E X <<≥ 设 求 例2:,, (). X n A P A p =由题意知随机变量可看成是重贝努里试验中事件发生的次 解: 数此时 引入随机变量1,;1,2,,.0,,k A k X k n A k ⎧==⎨⎩ 在第次试验发生在第次试验不发生()()12 ,,,,01,(),, n k X X X p E X p k -=∀ 于是相互独立服从同一分布参数为 121.nn k k X X X X X ==+++=∑ 且 11()()(),n n k k k k E X E X E X np =====∑∑故 ,.() B n p np 服从 的随机变量的期望为即注: 以n , p 为参数的二项分布的随机变量,可分解为n 个相互独立且都服从以p 为参数的(0-1)分布的随机变量之和.9(),1,2,,,,1,2,,.,,,,().n n n X n E X 配对问题一个小班有个同学 编号为号 中秋节前每人准备一件礼物 相应编号为将所有礼物集中放在一起 然后每个同学随机取一件 若取到自己的礼物 就认为配对成功.以表示个同学配对成功的个数求 例3: 1, ;1,2,,.0,,i i X i n i ⎧==⎨⎩ 第号同学配对成功引入随机变量 第号同学未配对成功解:121,01,. n i X X X X X n=+++- 易知: 且服从分布参数为1111()()() 1.n n n i i i i i E X E X E X n=======∑∑∑故 X 注: 不服从二项分布!10,,.X 本题是将分解成数个随机变量之和 然后利用随机变量和的数学期望等于随机变量数学期望之和来求数学期望 这种处理方法具有一定的普遍意义1110010010011()()() 4.5.i i i i E Y E X E X ===∏=∏=从而 0~9,100,,1,2,,100.100,,,().i X i i Y E Y = 计算机程序随机产生中的数字 独立进行次记为第次产生的数字将这个数进行乘积运算得到一数记为求 例4:12100,,,,,,{}1/10,0,1,,9.i X X X P X k k === 由题意知独立同分布其分布律均为 解:901() 4.5,10i k E X k ==⋅=∑故 100121001,i i Y X X X X ===∏ 又。
数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
期望和期望的性质

期望和期望的性质1. 若E[X]和E[Y]均有限,在(X,Y)连续的情况下:E[X+Y]=E[X]+E[Y]E[X1+X2+...X n]=E[X1]+E[X2]+...+E[X n](上式不要求X,Y独⽴)2. 若X,Y具有⼆元分布列p(x,y),那么:E[g(X,Y)]=∑∑g(x,y)p(x,y)若X,Y具有联合分布密度,那么:E[g(X,Y)]=∫∫g(x,y)f(x,y)dxdy3. 若X,Y独⽴,那么:E[X1X2...X n]=E[X1]E[X2]...E[X n]4. 样本均值的期望等于其分布的均值。
5. 若X,Y独⽴,那么:E[g(X)h(Y)]=E[g(X)]E[h(Y)]6. 协⽅差Cov(X,Y)=E[(X-E[X])(Y-E[Y])]=E[XY]-E[X]E[Y]7. 若X1,...X n两两独⽴,那么Var(∑X i)=∑Var(X i)即,独⽴随机变量和的⽅差等于他们⽅差的和。
8. 两个随机变量X,Y的相关系数ρ=Cov(X,Y)/sqrt(Var(X)·Var(Y))相关系数是两个随机变量间线性依赖程度的⼀种度量。
-1≤ρ≤1ρ接近0,表⽰两者缺乏线性依赖性。
ρ=0,X,Y不相关。
ρ取正值,X增加时Y趋于增加;ρ取负值,X增加时Y趋于下降。
9. 浙江⼤学,概率论与数理统计,数学期望,产品产量、销售量与利润期望的问题:销售量Y是个随机变量,产品产量x是⼀个待求的⾮随机变量。
如果把这两者画在数轴上,Y的位置是随机游动的。
根据Y与x的相对位置,利润有不同的表达式(Y在x左侧,产品有积压;Y在x右侧,产品⽆积压)。
这样将期望表达式的积分区间分为[0,x]和[y,+∞]。
数学期望及其性质

随机变量的数字特征
§1 数学期望
§1 数学期望
例 1:某班有 N 个人,其中有 ni 个人为 ai 分, i = 1,2,L k ,
∑n
i =1
k
i
= N , 求平均成绩。
解:
k ni 1 k 平均成绩为: ∑ ai ni = ∑ ai N i =1 N i =1 ni 若用 X 表示成绩,则 P{X = ai } ≈ N k k ni ai ⋅ ≈ a i ⋅ P{ X = a i } N i =1 i =1
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
例4
设离散型随机变量 X 的分布律为: X 0 1 2 P 0.1 0.2 0.7
则 EXห้องสมุดไป่ตู้= 0*0.1+1*0.2+2*0.7 =1.6
若离散型随机变量 X 的分布律为: X 0 1 2 P 0.7 0.2 0.1 EX = 0*0.7+1*0.2+2*0.1 =0.4
n =1 ∞
时,才能保证级数 ∑ x n pn 的和与其级数 ∑ x n pn
n =1 n =1
∞
∞
的求和顺序无关.
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
例2
甲、乙两人射击,他们的射击水平由下表给出: X:甲击中的环数;
Y:乙击中的环数;
X P
Y P
8 0.1
8 0 .2
9 0.3
9 0 .5
到站时间 8:10,9:10 概率 1/6 8:30,9:30 8:50,9:50 3/6 2/6
返回主目录
第十三章 随机变量的数字特征
4.4 数学期望的性质和应用

一、数学期望的性质1.设C 是常数,则E (C )=C ;4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X );3.E (X +Y )=E (X )+E (Y );注意:由E (XY )=E (X )E (Y )不一定能推出X 、Y 独立推广(诸X i 相互独立)推广11[]()n n i i i i E X E X ===∑∑11[]()n n i i i i E X E X ===∏∏例1 性质 4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定独立X Y p ij-1 0 1-1118181818181818180p • j 383828p i•383828()()0;E X E Y ==()0;E XY =()()()E XY E X E Y =1(1,1)8P X Y =-=-=23(1)(1)8P X P Y ⎛⎫≠=-=-= ⎪⎝⎭5.若X ≥0,且EX 存在,则EX ≥0.推论:若X ≤Y ,则EX ≤EY .证明:设X 为连续型随机变量,密度函数为f (x ),则由X ≥0得:所以证明:∵Y −X ≥ 0,E (Y −X )≥0又∵E (Y −X )=E (Y )−E (X ) E (X ) ≤E (Y ).()0,0f x x =<0()()0EX xf x dx xf x dx +∞+∞-∞==≥⎰⎰例1.(二项分布B(n,p)) 设单次实验成功的概率是p ,问n 次独立重复试验中,成功次数X 的期望?解: 引入1,0,i i X i ⎧⎪=⎨⎪⎩第次试验成功,第次试验不成功。
则X =X 1+X 2+⋯+X n 是n 次试验中的成功次数。
因此,这里,X ~B(n,p).1()n i i EX E X ==∑1(1)ni i P X ===∑np=本题是将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.为普查某种疾病,n 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验n 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设:每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例2.二、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.设:第i 组需化验的次数为X i ,则其分布律为Xi1 k +1 P(1−p )k 1− (1−p )k ()1(1)(1)[1(1)]k k i E X p k p =⨯-++⨯--(1)(1)kk k p =+--解:为简单计,不妨设n 是k 的倍数,共分成j =n /k 组.(2)分组化验.每k 个人为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,此时k 个人的血需化验k+1次.每个人血液化验呈阳性的概率为p .若则E (X ) < n ,即方案2优于方案1方案2:需要化验的总次数为如:n =1000, p =0.001, k =10()(1)(1)k i E X k k p =+--1()()j i i E X E X ==∑12j X X X X =+++[(1)(1)]k n k k p k =+--1[1((1))]k n p k =---1(1)0,k p k-->101()1000[1(0.999)]1101000.10E X =--≈<<例3.据统计65岁的人在10年内正常死亡的概率为0.98,因事故死亡概率为0.02.保险公司开办老人事故死亡保险,参加者需交纳保险费100元.若10年内因事故死亡公司赔偿a元,应如何定a,才能使公司可期望获益;若有1000人投保,公司期望总获益多少?表示保险公司从第i个投保者身上所得的收益,i=1,2, (1000)解:设Xi则其分布律为:X i100 100−aP0.98 0.02)=100×0.98+(100−a)×0.02= 100−0.02a>0易求得E(XiE (X i )=100−0.02a >0即:当100<a<5000时,公司可期望获益若1000人投保,期望总收益为1000100011()()10000020i ii i E X E X a ====-∑∑例4.市场上对某种产品每年需求量为X 吨,X ~U [2000,4000],每出售一吨可赚3万元;售不出去,则每吨需仓库保管费1万元,问应该生产这种商品多少吨,才能使平均利润最大?解:设每年生产y 吨,其利润为Y .则易知,2000<y <4000,且有易知,需求量X 的密度函数为1,20004000()20000,X x f x ⎧<<⎪=⎨⎪⎩其它3,()3()1,y y X Y g X X y X y X ≤⎧==⎨--⋅>⎩3,4,y y X X y y X≤⎧=⎨->⎩3,()4,y y X Y g X X y y X ≤⎧==⎨->⎩3,()4,y y x g x x y y x ≤⎧=⎨->⎩()()()X E Y g x f x dx +∞-∞=⎰400020001()2000g xdx =⎰261(214000810)2000y y =-+-⨯4000200011()()20002000y y g x dx g x dx =+⎰⎰4000200011(4)320002000y y x y dx y dx =-+⎰⎰即:当y=3500时,E (Y )最大,最大值为8250万元.解得:y=3500()1(414000)2000dE Y y dy =-+0=令261()(214000810)2000E Y y y =-+-⨯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E( X )
k 1
n 1
kq k 1 p + nqn 1
返回主目录
第十三章 随机变量的数字特征
例 8(续)
E( X )
1 + q + q 2 + + q n1
1 q n 1 (1 p ) n 1 q p
返回主目录
X
k 1 i 1
10 100
ki .
返回主目录
第十三章 随机变量的数字特征
例 7(续)
i 1,2,,100, 所以
E( X )
§1 数学期望
而X ki 服从 p e k 的( 0 — 1)分布, E ( X ki ) e k .
k 1 i 1 -
到站时间 8:10,9:10 概率 1/6 8:30,9:30 8:50,9:50 3/6 2/6
返回主目录
第十三章 随机变量的数字特征
3、数学期望的性质
§1 数学期望
I)
Ec=c,c 是常数,若a X b , 则 a EX b ,
II)
EcX=cEX, c 是常数,
III)
E(aX+bY)=aEX+bEY
k 1 n 1 k 1
§1 数学期望
n 1
kq k 1 (1 q) + nqn 1
kq k 1
k 1
n 1
kq k + nqn 1
(1 + 2q + 3q 2 + + (n 1)q n 2 ) ( q + 2q 2 + + (n 2)q n 2 + (n 1)q n 1 ) + nqn 1
所用次数的增加而指数下降,即
P{第k次生产出的产品是正品}= e k , k 1,2,, 0. 假设每次生产100件产品,试求这台机器前10次生 产中平均生产的正品总数。 解: 设X是前10次生产的产品中的正品数,并设
1, 第k次生产的第i件产品是正品; X ki 否则. 0, k 1,2,,10, i 1,2,,100, 则 X
10 0.6
10 0.3
试问哪一个人的射击水 平较高?
返回主目录
第十三章 随机变量的数字特征
例2(续)
§1 数学期望
解: 甲、乙的平均环数可写 为
EX 8 ´ 0.1 + 9 ´ 0.3 + 10 ´ 0.6 9.5 EY 8 ´ 0.2 + 9 ´ 0.5 + 10 ´ 0.3 9.1 因此,从平均环数上看 ,甲的射击水平要比乙 的好.
(1) 旅客 8:00 到站,求他侯车时间的数学期望。 (2) 旅客 8:20 到站,求他侯车时间的数学期望。
解:设旅客的候车时间为 X(以分记)
(1) X 的分布律: X 10 30 50 P 1/6 3/6 2/6 EX=10*(1/6)+30*(3/6)+50*(2/6)=33.33(分)
返回主目录
n 1
时,才能保证级数 x n pn 的和与其级数 x n pn
n 1 n 1
的求和顺序无关.
返回主目录
第十三章 随机变量的数字特征
例2
§1 数学期望
甲、乙两人射击,他们的射击水平由下表给出: X:甲击中的环数;
Y:乙击中的环数;
X P
Y P
8 0.1
8 0.2
9 0.3
9 0.5
0, 第i站没人下车 解:设 X i , i 1,2, ,10 , 1, 第i站有人下车
易见 X X 1 + + X 10 , EX EX i ,
P{X i 0} (9 / 10)
20
i 1
10
20 P { X 1 } 1 ( 9 / 10 ) , i ,i 1,,10 ,
第十三章 随机变量的数字特征
(2)旅客8:20分到达 X的分布率为
§1 数学期望
X 10 30 50 70 90 P 3/6 2/6 (1/6)*(1/6) (3/6)*(1/6) (2/6)*(1/6)
EX=10*(3/6)+30*(2/6)+50*(1/36) +70*(3/36) +90*(2/36) =27.22(分)
返回主目录
第十三章 随机变量的数字特征
例4
§1 数学期望
设离散型随机变量 X 的分布律为: X 0 1 2 P 0.1 0.2 0.7
则 EX = 0*0.1+1*0.2+2*0.7 =1.6
若离散型随机变量 X 的分布律为: X 0 1 2 P 0.7 0.2 0.1 EX = 0*0.7+1*0.2+2*0.1 =0.4
§1 数学期望
则称级数 xk pk 的和为随机变量 X 的数学期望。
i 1
记为 EX,即 EX= xk pk 。
k 1
ቤተ መጻሕፍቲ ባይዱ
数学期望也称为均值。
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
(2)、连续型
f ( x) , 设连续型随机变量 X 的概率密度为
若积分 xf ( x)dx 绝对收敛,则称积分 xf ( x)dx
第十三章
随机变量的数字特征
§1 数学期望
§1 数学期望
ni 个人为 ai 分, i 1,2, k , 例 1:某班有 N 个人,其中有
n
i 1
k
i
N , 求平均成绩。
解:
ni 平均成绩为: ai ni a i N i 1 i 1 ni 若用 X 表示成绩,则 P{X ai } N 1 N
10 100
E ( X ki )
k 1
10
100e k 100
k 1
10
e k
100e (1 e 10 ) 1 e
返回主目录
第十三章 随机变量的数字特征
§1 数学期望 例8 对产品进行抽样,只要发现废品就认为这批产品 不合格,并结束抽样。若抽样到第n件仍未发现废 品则认为这批产品合格。 假设产品数量很大,抽查到废品的概率是p,试 求平均需抽查的件数。 解: 设X为停止检查时,抽样的件数,则X的可能 取值为1,2,…,n,且
此时, i 1,2, ,10 EX i 1 (9 / 10) 20 ,i 1, , ,10X i 不是相互独立的 EX 10[1 (9 / 10) 20 ] 8.784(次 )。 返回主目录
第十三章 随机变量的数字特征
例7 §1 数学期望 用某台机器生产某种产品,已知正品率随着该机器
E(
a X ) a EX
i i i i 1 i 1
n
n
i
IV)
若x , y独立,则 EXY=EXEY
返回主目录
第十三章 随机变量的数字特征
§1 数学期望 例6 一民航送客载有 20 位旅客自机场开出,旅客有 10 个车站可以下车,如到达一个车站没有旅客下车就不 停车。以 X 表示停车的次数。 求 EX(设每个旅客在各个车站下车是等可能的,并 设各旅客是否下车相互独立) 。
的值为 X 的数学期望。记为 EX= xf ( x)dx ,
数学期望也称为均值。
返回主目录
第十三章 随机变量的数字特征
说 明
§1 数学期望
(1) X 的数学期望刻划了 X 变化的平均值.
( 2)由于随机变量 X 的数学期望表示的是随 机变量 X
变化的平均值,因此, 只有当级数 x n pn 绝对收敛
k k
ni ai N i 1
k
a P{X a }
i i i 1
k
返回主目录
第十三章 随机变量的数字特征
1、数学期望定义
(1) 离散型
设离散型随机变量 X 的分布律为: P{ X x k } p k ,k 1,2, , 若级数 xk pk 绝对收敛,
i 1
返回主目录
则
此例说明了数学期望更完整地刻化了x的均值状态。
第十三章 随机变量的数字特征
例5 按规定,火车站每天 8:00~9:00, 9:00~10:00 都恰 有一辆客车到站,但到站的时刻是随机的,且两 者到站的时间相互独立,其规律为: 到站时间 8:10,9:10 8:30,9:30 8:50,9:50 概率 1/6 3/6 2/6