质子交换膜燃料电池性能的三维稳态建模与仿真(ijeme-v1-n2-12)
质子交换膜燃料电池建模与matlab仿真

质子交换膜燃料电池建模与matlab仿真一、引言质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)是一种新型的高效、清洁的能源转换设备,具有环保、高效、低噪音等优点。
建立PEMFC的数学模型并进行仿真是研究其性能和优化设计的必要手段。
二、PEMFC模型建立1. PEMFC结构及工作原理PEMFC由阴极流道板、阴极电极催化层、质子交换膜、阳极电极催化层和阳极流道板组成。
氢气在阳极被分解成质子和电子,质子通过质子交换膜进入阴极催化层与氧气反应生成水,电子则通过外部电路输出功率。
整个过程需要考虑氢气输送、反应动力学和传热传质等因素。
2. PEMFC数学模型基于连续介质假设,可以建立PEMFC的宏观数学模型。
其中包括动量守恒方程、能量守恒方程和物质守恒方程等。
同时考虑到电化学反应过程,需要加入离子传输方程和电荷平衡方程。
3. PEMFC模型参数PEMFC模型参数包括气体输送参数、电化学反应动力学参数、传热传质参数等。
这些参数可以通过实验测量或者理论计算得到。
三、PEMFC模型仿真1. MATLAB仿真工具MATLAB是一种强大的数学计算软件,具有丰富的数学建模和仿真工具。
可以利用MATLAB进行PEMFC的数值求解和仿真。
2. PEMFC模型求解PEMFC模型可以采用有限元方法进行求解。
将PEMFC结构离散化为网格,然后利用数值方法对网格上的方程组进行求解。
同时需要考虑边界条件和初值条件等问题。
3. PEMFC性能分析利用已经求解得到的PEMFC模型,可以对其性能进行分析。
比如输出电压、输出功率、效率等指标。
同时也可以对不同参数下的性能进行比较和优化设计。
四、结论与展望建立PEMFC数学模型并进行MATLAB仿真是研究其性能和优化设计的必要手段。
随着新材料和新技术的引入,未来PEMFC将会更加高效、稳定和可靠,为人类提供更加清洁环保的能源转换方式。
质子交换膜燃料电池的三维数值模拟

LI Ho N ng, TAO e q a W n un
( h o fEneg n we gn eig,Xia iotn ie st Sc o lo r y a d Po rEn ie rn nJa o g Un v riy,xia 1 0 9,Chn ) n 7 0 4 ia
维普资讯
第4卷 2
第 1 期
西
安 交
通
大 学 学
报
Vo . 2 N 1 14 o
20 0 8年 1月
J OURNAL OF XIAN I J AOTONG UNI VERS TY I
Jn 2 0 a . 08
质 子 交换 膜 燃 料 电池 的 三维 数 值模 拟
to sa s b an d b o vn h t rVom e q a in,a d isa e a e v le wa h n in wa lo o ti e y s li g t e Bu l - l r e u to e n t v r g au s t e c mp r d wiht ep e s e i e n .Th i u ain r s lsa ei g e m e t t h x e i e — o a e t h r- p cf d o e i es m lt e u t r a r e n ht ee p r n o n wi m
得 电池 电压 的方 法模拟 电化 学动 力 学过程. 数值 结 果与 实验值 的对 比表 明 , 采用 的单 电池 计 算模 所 型在 大部 分 工况 下获得 的输 出电压 与 实验值 偏 差均 可控 制在 1 ~2 以 内. 算并 分析 了单 电 0 0 计 池 局部 电流 密度 分布 , 同时将 单 电池模 型 与典 型单 元模型 的计 算结 果进行 了对 比, 现 两者在 电流 发 密度 、 量 组分 的分布 上 均存在 明显 的差 异 , 原 因主要 在 于典 型单 元 边界 条 件 设置 所 致. 工作 质 其 该 将 有助 于对 质子 交换 膜燃料 电池 的流动 、 传质 与 电化 学过 程进 行进 一步 的数值 研 究. 关 键词 :质 子 交换 膜 燃料 电池 ; 维数 值 模拟 ; 电池 ; 三 单 典型 单元
质子交换膜燃料电池动态模型与控制研究的开题报告

质子交换膜燃料电池动态模型与控制研究的开题报告一、选题背景质子交换膜燃料电池(PEMFC)是一种新型的清洁能源电池,由于其高能效、低污染、轻便化、静音等优点,被广泛应用于敏感环境和无人机等领域。
然而,由于其工作过程受到多种因素的影响,如氢气质量、温度、压力、湿度等,因此需要在控制策略方面研究更全面的模型和算法。
二、研究目的本研究的主要目的是建立PEMFC的动态模型,并针对不同工况设计控制策略。
通过理论模型和实际应用相结合的方法,提高PEMFC的能效、降低污染、增强系统鲁棒性。
三、研究内容(1)PEMFC的动态模型研究:根据电化学特性建立PEMFC的动态模型,考虑氢气、氧气和水的输运过程,建立其物理方程并数值求解。
(2)PEMFC的控制策略设计:结合建立的动态模型,设计不同场景下的控制策略,包括喂氢压力和流量、温度、湿度等控制。
(3)仿真和实验验证:通过Matlab/Simulink进行仿真验证,并搭建实验平台进行实际验证,以验证所设计的控制策略的有效性和可行性,并根据实验数据对模型进行改进和优化。
四、研究意义本研究的成果可以为PEMFC的应用提供更为全面的控制策略,提高PEMFC的能效和可靠性,并为出口无人机等领域的应用提供有力支持。
五、研究方法采用理论推导和实验验证相结合的方法,通过建立动态模型、控制策略的设计以及实验验证、数据分析等方法,探究PEMFC的动态机理和控制策略。
六、预期成果预期成果包括:(1)建立PEMFC的动态模型。
(2)设计不同工况下的控制策略。
(3)验证控制策略在仿真和实验条件下的有效性和可行性。
(4)为PEMFC的应用提供可靠的控制策略和技术支持。
七、研究进度安排阶段 | 内容 | 完成时间------|--------------------------------------|-----------第一阶段|文献综述、动态模型建立 | 2022.2-2022.6第二阶段|控制策略设计、仿真分析 | 2022.7-2023.1第三阶段|实验平台搭建、实验验证 | 2023.2-2023.6第四阶段|数据分析、成果总结、论文撰写 | 2023.7-2023.12八、参考文献[1] Liu, Y.; Zhao, T.S.; Zhang, J.W. A review on water management in polymer electrolyte membrane fuel cells. Frontiers of Energy and Power Engineering in China 2011, 5, 1–12.[2] Jia, Y.; Yi, B.; Markondeya Raj, S.; Zhang, X.; Zou, J. Robust output feedback control for nonlinear systems with parameter uncertainties and unknown disturbances. IEEE Transactions on Circuits and Systems II: Express Briefs 2015, 62, 958-962.[3] Aghdam, A.G.; Ghadimi, N.; Marzband, M.; Sabzpoushan, S.H.; Keynia, F. A novel control strategy for fuel cell-battery hybrid system in fuel cell electric vehicle application. Energy 2015, 89, 271-281.[4] Chan, S.H.; Khor, K.A.; Xia, Z.T. A complete polarization model of a PEM fuel cell and its sensitivity to various physical parameters. Journal of Power Sources 2002, 102, 304-315.[5] Dufo-López, R.; Contreras, J. Optimal control of a hybrid solar-wind power system for stand-alone applications. IEEE Transactions on Industrial Electronics 2008, 55, 2752-2758.。
质子交换膜燃料电池建模与matlab仿真pdf

质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)是一种将氢气和氧气通过电化学反应转化为电能和水的设备。
PEMFC 的建模和仿真对于了解其性能、优化设计和控制策略非常重要。
下面是一个简化的PEMFC 建模和MATLAB 仿真的过程:1. PEMFC 的工作原理PEMFC 的工作原理基于氢气和氧气的电化学反应。
氢气通过阳极(正极)被氧化成质子和电子,质子通过质子交换膜移动到阴极(负极),而电子则通过外部电路产生电流。
在阴极,氧气与质子和电子结合生成水。
2. PEMFC 的数学模型PEMFC 的数学模型通常包括电压平衡方程、反应动力学方程和传质方程等。
这些方程描述了PEMFC 内部发生的物理和化学过程。
3. MATLAB 仿真在MATLAB 中,可以使用Simulink 或MATLAB 脚本进行PEMFC 的仿真。
下面是一个简单的步骤:步骤1: 建立PEMFC 模型在Simulink 中,可以使用PEMFC 模块库中的模块来建立PEMFC 模型。
这些模块通常包括阳极、阴极、质子交换膜和电解质等。
步骤2: 设置参数根据PEMFC 的规格和条件,设置模型的参数,如温度、压力、氢气和氧气的流量等。
步骤3: 运行仿真将PEMFC 模型连接到输入和输出,并运行仿真。
可以观察PEMFC 的输出电压、电流、功率等性能指标。
步骤4: 分析结果根据仿真结果,分析PEMFC 的性能,如效率、稳定性和响应速度等。
步骤5: 优化设计根据仿真结果和分析,对PEMFC 的设计进行优化,如调整电极结构、改进传质方式等。
4. 注意事项•在进行PEMFC 建模和仿真时,需要充分了解PEMFC 的工作原理和性能指标。
•模型的选择和参数的设定应根据实际PEMFC 的规格和条件进行。
•仿真结果应与实验数据进行比较和验证,以确保模型的准确性和可靠性。
5. 示例代码和文献MATLAB 中有许多关于PEMFC 建模和仿真的示例代码和文献。
质子交换膜燃料电池内电荷传递的数值模拟

质子交换膜燃料电池内电荷传递的数值模拟
胡桂林;樊建人
【期刊名称】《能源工程》
【年(卷),期】2007(000)004
【摘要】为深入研究质子交换膜燃料电池内电荷传递的规律,发展了一个三维的单相流、非等温数学模型,模型考虑了电子在催化层和扩散层、质子在催化层和质子交换膜中的传递.通过计算得到了电池内电位和电流密度的空间分布,分析了不同电极结构参数下电流密度的分布和最终造成的性能差异.结果表明,欧姆电位的下降主要发生在膜相电位,而碳相电位的下降几乎可以忽略不计;电流密度在流道与集电极交界处出现"火焰形"累积效应;改变电池的结构对电池性能影响不大,应结合加工成本和电流密度分布综合考虑.
【总页数】6页(P9-14)
【作者】胡桂林;樊建人
【作者单位】浙江科技学院,轻工学院,浙江,杭州,310023;浙江大学,能源洁净利用国家重点实验室,浙江,杭州,310027
【正文语种】中文
【中图分类】TM911.4
【相关文献】
1.质子交换膜燃料电池膜内水迁移和水管理 [J], 马捷;张忠利;苏秋利;郝振良
2.PEM燃料电池中质子交换膜内水和质子的迁移特性 [J], 孙红;郭烈锦;刘洪潭;张
广升
3.质子交换膜燃料电池两相流动和传递现象的三维数值模拟 [J], 胡桂林;陈松;樊建人;岑可法
4.质子交换膜燃料电池内传递现象的数值模拟 [J], 胡桂林;刘永江;樊建人;岑可法
5.质子交换膜燃料电池内部水传递的动态特性分析 [J], 申伟见;李英
因版权原因,仅展示原文概要,查看原文内容请购买。
质子交换膜燃料电池的建模与仿真研究的开题报告

质子交换膜燃料电池的建模与仿真研究的开题报告一、选题的背景与意义随着能源危机的日益严峻,人们对可再生能源的需求逐渐增加。
燃料电池技术作为现代能源技术的重要组成部分之一,正在受到越来越多的关注。
它具有能量高效利用、无污染、噪音低、运行平稳等特点,是未来能源技术的发展方向。
质子交换膜燃料电池是目前应用最为广泛的一种燃料电池,其大规模商业化应用已经成为全球能源行业共同追求的方向。
建立燃料电池数学模型对燃料电池系统的建设和优化具有重要意义。
目前,国内外对质子交换膜燃料电池的建模与仿真研究已经取得了一定的进展,但燃料电池新材料的不断研究、燃料电池系统的不断改进以及建模方法的不断完善都对模型的建立与仿真提出了更高的要求。
因此,本课题拟进一步深入研究质子交换膜燃料电池的建模方法和仿真技术,为燃料电池系统的实际应用提供技术支撑。
二、研究内容和方法本课题的研究内容主要包括以下三个方面:1.质子交换膜燃料电池的基本原理及其建模方法的研究:对质子交换膜燃料电池的基本结构、工作原理、主要参数以及影响因素进行深入研究,建立质子交换膜燃料电池的数学模型。
2.质子交换膜燃料电池的仿真设计及参数优化:基于建立的数学模型,利用数值计算方法对燃料电池系统进行仿真,分析和比较不同参数对燃料电池系统性能的影响,并对关键参数进行优化设计。
3.实验验证与分析:利用实验数据对建立的质子交换膜燃料电池模型进行验证,分析模型的准确性和可行性。
本课题的研究方法主要包括文献研究、理论分析、数值计算、数据处理和实验验证等。
三、预期结果通过本课题的研究,预计可以得到以下结果:1.建立质子交换膜燃料电池的数学模型,深入了解燃料电池的工作原理和机理。
2.通过数值仿真分析燃料电池系统运行的性能、优化设计电池系统关键参数。
3.实验验证燃料电池建立的数学模型,分析和比较实验结果与建立的数学模型的差异。
四、拟定进度安排本课题的研究工作计划包括以下几个阶段:1.文献研究和理论分析,确定质子交换膜燃料电池的数学模型,以及电池系统的关键参数,时间为两个月。
质子交换膜燃料电池系统建模与仿真分析

时代汽车
质子交换膜燃料电池系统建模与仿真分析
王凯强 上海燃料电池汽车动力系统有限公司 上海市 201804
摘 要:本文基于 Amesim 软件建立完整的燃料电池系统模型,包含电堆、空气系统、氢气系统和冷却系统模型, 研究系统操作条件变化对系统性能的影响,结果表明,该模型可对空气计量比、电堆空入压力、电堆氢入 压力、电堆水入温度等参数进行敏感性分析,并选出了最优系统运行操作条件及其对应的系统功率和效率 输出,支持系统开发和操作条件优化。
滤空气进入空压机进行升温升压,然后中冷 器对空压机出口高温气体进行冷却后进入电 堆进行电化学反应,反应后的剩余空气和生
成的水蒸气经过背压阀排入大气。 1)空压机模型 空压机模型计算过程中输入量为转速,
根据空压机流量 - 压比 - 转速 Map 插值计 算空压机流量,然后计算空压机出口温度和 功耗。
空压机出口温度:
AUTO PARTS | 汽车零部件
出口压力,Pcap,in 为空压机入口压力。
act αnF
ln(
i i0
)
其中,Vact 为活化极化,α 为转移系数,
n 为电子数,i0 为交换电流密度。
3)欧姆极化
Vohm=i(Rion+Rele+Rcont) 其中,Vohm 为欧姆极化,Rion 为离子电阻, Rele 为电子电阻,Rcont 为接触电阻。
3)浓差极化
Rconc=i(c1
关键词:燃料电池系统 建模仿真 Amesim 敏感性分析
Modeling and Simulation Analysis of Proton Exchange Membrane Fuel Cell System Wang Kaiqiang
质子交换膜燃料电池稳态模型及仿真

M o ei g a d Op i z to fPr t n Ex h n e M e b a e Fu lCel d ln n tmi a i n o o o c a g m r n e ls
Z HOU Je .C a g—y i AO Gu n i’
2 u l e s tt,hn h i io n nvri , h n hi 00 0 C ia .F e C lI tue S a ga at gU ies y S a ga 20 3 , hn ) ln i J o t
ABS TRACT: u lc l i n i o t n c n l g r o e tal i ev rey o p lc t n c u i g a xla y F e el sa mp ra t e h o o y f p t n i l w d a it fa p i a i si l d n u i r t o a y o n i p w r Sa in r o e r b i i g n t e iti u e e e a i n a p i a in ,a d c n r l p we . T i o e , t t a p w r f u l n s a d o h r d srb t d g n r t p lc t s n e ta o r o y o d o o hs p p rp e e t t a y — sae mo e rs mu a i n a d e a u to fp ro ma c fp o o x h n e me r n a e r s n s a se d tt d lf i l t n v l ai n o e f r n e o r t n e c a g mb a e o o
( .D p.o lcr a E gn eig S a g a Ja tn nv ri , h n h i 2 0 3 , hn ; 1 e t f e t c l n ie r ,h n h i i o g U ies y S a g a , 0 0 0 C i a E i n o t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I.J. Education and Management Engineering 2011, 2, 75-82Published Online August 2011 in MECS ()DOI: 10.5815/ijeme.2011.02.12Available online at /ijeme3D Steady Model and Simulation for a Proton Exchange MembraneFuel Cell PerformanceYongsheng Wei a, Hong Zhu ba School of Science, Beijing Jiaotong University, Beijing, 100044, Chinab Institute of Modern Catalysis, Department of Organic Chemistry, State key Laboratory of Chemical ResourceEngineering, Beijing University of Chemical Technology, Beijing, 100029, ChinaAbstractA three-dimensional, steady-state non-isotherm mathematical model for proton exchange membrane fuel cell is developed. The model takes into accounts simultaneously the mass, momentum, energy, species, charge conservation equation and combines electrochemistry reaction inside the cell. The simulation results show that it is easy to improve the fuel cell performance for higher porosity in the diffusion layer, because of the benefit of speeding the gas diffusion, reducing the concentration grads of gas, depressing the ridge board domino offect and falling current density grads.Index Terms: Proton Exchange Membrane Fuel Cell; Porosity; Water Transport; Model; Simulation© 2011 Published by MECS Publisher. Selection and/or peer review under responsibility of the International Conference on E-Business System and Education Technology1.IntroductionProton exchange membrane fuel cells (PEMFCs) are promising green power sources for many applications. Simulation research on PEMFC is important for both internal transport phenomena exploration and structural design optimization [1-2].Water behavior is one of the key factors influence the fuel cell performance. So research on water management issues is very popular in the recent years. The hot topics of these studies were water transportation inside the proton exchange membrane and in the gas diffusion layer [3-8]. At the same time, a few researchers considered the water transport along the gas flow channels [9].A three-dimensional, steady-state non-isotherm mathematical model for proton exchange membrane fuel cell is developed in the paper. The model takes into accounts simultaneously the mass, momentum, energy, species, charge conservation equation and combines electrochemical reaction inside the cell.Corresponding author:E-mail address:a yongshengwei@;b zhuho128@763D Steady Model and Simulation for a Proton Exchange Membrane Fuel Cell Performance2.Mathematical ModelThe basic suppositions of the model: 1. the operation environment of the cell is steady state and non-isotherm. 2. The diffusion layer and the catalyst layer are pore media. 3 There is only laminar flow in the fuel cell flow field. The model is calculated by the FLUENT 6.3 software [10].2.1.Physical model and governing equationsThe physical model of proton exchange membrane fuel cell is developed, which include proton exchange membrane, catalyst layer of anode and cathode, gas diffusion layer of anode and cathode, gas channel of anode and cathode, current collector of anode and cathode. This is typical straight channel flow field and used broadly. The computational domain is shown in Fig.1. Governing equations and boundary conditions are the same as the literature of [3].Fig. 1. The physical model of proton exchange membrane fuel cell2.2.Model parameterThe basic parameters referred in the proton exchange membrane fuel cell 3D model are shown in Table 1.Table 1. Basic parameters of a PEMFC modelParameters ValueMembrane thickness 5×10-5 mCatalyst layer thickness 2.5×10-5 mGas diffusion layer height 2×10-4 mGas channel height 8×10-4 mCurrent Collector height 1.2×10-3 mGas channel length 5×10-2 mGas channel width 2×10-3 mCurrent Collector width 4×10-3 mCell Temperature 343KAnode inlet flux velocity 1×10-7 Kg/sMass fraction of H20.8Cathode inlet flux velocity 1×10-6 Kg/sMass fraction of O20.93.Results and Discussion3.1.The performanceFig. 2. Polarization curves of proton exchange membrane fuel cellFig.2 shows the polarization curves for different porosity at 0.2, 0.4, 0.6 and 0.8. The simulation results displays that the cell’s performance at higher porosity is better than at lower porosity when the cell at higher current density. It is opposite when the cell at lower current density. The cell with a porosity of 0.2 has almostthe same current density at the lower current density with the porosity of 0.8 when it is at 0.8V. The fuel cell’s polarization curves departs the linearity relation with the voltage attenuates rapidly with the lower porosity when the cell at lower voltage section (e.g. under 0.7V), which put up biggish concentration difference polarization especially when the cell at the porosity of 0.6V. The fuel cell has best performance at the porosity of 0.8 while the worst at 0.2. The reason is that the reactant concentration of the electrode surface begins to change when the fuel is consumed. For example the cell release current at the same time consumes oxygen when oxygen is provided to the cell’s cathode, which leads to the oxygen fall across resistance while being transferred. There are two troubles when the mass is been transferred. One is the space resistance, the second is flooding. The space resistance is mainly aroused by the mass transmission and reaction distinction between the flow channel and the ridge part of the flow flied board. The liquid state water bring that the millipore in the diffusion layer occurs to jam which influences the normal gas diffusion. The lower of the porosity, the worse jam will be occurred in the diffusion millipore, and with a more rapid voltage decrease.3.2.The current density distribution(a) 0.2(b) 0.4(c) 0.6(d) 0.8Fig. 3. The current density distributions at Y=0m slice face with the porosity of 0.2, 0.4, 0.6 and 0.8The current density distribution at the Y=0m section of XZ when the cell discharge potential of 0.6V is shown in the Fig.3. The diffusion layer porosity is 0.2, 0.4, 0.6 and 0.8, respectively. The highest current density region is the osculant district of the ridge part of bi-polar board and the diffusion layer, which could be seen the red zone from Fig.3. This is just the area which has the shortest gas transport path and electron transport path. The current density above the flow channel is very small. It is difficult for oxygen to diffuse into the catalyst layer below the ridge portion at lower porosity of 0.2. The current density value reduces along the direction to the center of the ridge portion, the distribution grads of the current density is bigger, falls from thetiptop of 7.542/cmA to 0.3972/cmA. It is contrary when at higher porosity e.g. 0.8. It is easier for oxygendiffusion, the distribution grads is less, falls down from the tiptop of 6.742/cmA to 1.592/cmA.3.3.Distribution of gas concentration(a) 0.2(b) 0.4(c) 0.6(d) 0.8Fig. 4. The gas species distributions at Y=0m slice face with the porosity of 0.2, 0.4, 0.6 and 0.8Fig.4 displays the hydrogen and oxygen gas mass concentration distribution at the Y=0m section of XZ when the cell discharge potential of 0.6V with the diffusion layer porosity is 0.2, 0.4, 0.6 and 0.8. It can be seen that the hydrogen gas in the gas channel of the anode distributing uniformity with the mass fraction value of 0.8105 when the porosity is 0.2. Differently, the oxygen gas distribution grads are larger than this, decline from 0.77 to 0.65. The hydrogen gas distribution in the diffusion layer of the anode falls down from 0.8105 to 0.50. On the contrary, oxygen gas distribution in the diffusion layer of the cathode drops sharply from 0.60 to 0. This situation will be relaxed when the porosity is 0.8, all the gas distribution grads is smaller than that at 0.2. Another result is that the hydrogen gas distribution grads are smaller than the oxygen gas distribution grads. There is some relationship with the molecule volume. Therefore, the higher the diffusion layer porosity is, the smaller the gas concentration grads of the diffusion will be. It is benefit for gas transport with high porosity, reducing the oxygen gas concentration grads and ridge part effect, especially when the oxygen gas diffusesfrom flow channel down to the ridge portion of the bi-polar board. The cell performance could be increased accordingly.3.4.Water distribution(a) 0.2(b) 0.4(c) 0.6(d) 0.8Fig. 5. The water mass fraction distribution in fuel cell with the porosity of 0.2, 0.4, 0.6 and 0.8The water mass fraction distribution of the fuel cell with the cell discharge potential of 0.6V is shown in Fig.5. The oxygen gas is humidified before entering flow channel in the cathode of the cell, thus water of the gas channel and the gas diffusion layer root in building from reaction and transferring through the proton exchange membrane from anode side to cathode side. The water mass fraction of the gas diffusion layer is always 0.95 when the porosity of the diffusion layer is 0.2. There are two grads when the porosity is 0.4. One is along the XZ slice face, the water mass fraction from the center of the diffusion layer to the boundary in the inlet slice face are 0.1065, 0.15, 0.35, 0.65, 0.75. The second grad along the YZ slice face, e.g. the water mass fraction distribution from the inlet to outlet of the slice face at X=2×10-3 m are 0.75, 0.85, 0.90 and 0.95. There are also two grads when the porosity is 0.6 or 0.8. The water mass fraction distribution is from 0.1068 to 0.3 at the inlet slice face, and from 0.3 to 0.6 along the gas channel direction in the slice face at X=2×10-3 m, respectively. In conclusion, the water mass fraction distribution minish from the gas diffusion layer to the gas channel in any XZ slice face, and increases along the gas channel direction. The higher the porosity is, the smaller the water mass fraction distribution grads will be, which explains that higher porosity is propitious to water transfer in the diffusion layer.The different in the anode is that the water mass fraction distribution grads in the diffusion layer along the gas channel direction are not as great as that in the cathode. The main distinctness is that water mass fraction increases in the gas channel along the channel direction in the cathode side, while depressed in the anode side, although the depress extent is small. This is mostly because the net flux of water in the proton exchange membrane falls down from cathode to anode side, which means that the water concentration increasing in the diffusion layer of the anode side and then diffuse to the gas channel. Yet the gas concentration falls down near the outlet, which leads to the water building from reaction decrease. The water of the gas channel transfer to the diffusion layer in order to avoid the membrane drying at the anode side.4.Conclusions(1) The liquid water bring that the millipore in the diffusion layer occurs to jam which influences the normalgas diffusion. The lower of the porosity, the worse jam will be occurred of the diffusion millipore, and with more rapidness of the voltage.(2) The highest current density region is the osculant district of the ridge part of bi-polar plate and thediffusion layer. This happens to be the area which has the relatively shortest of gas transport path and electron transport path. The current density above the flow channel is very small. It is difficult for oxygen to diffusion into the catalyst layer below the ridge portion when at lower porosity.(3) The higher the porosity of the diffusion layer is, the smaller the gas concentration grads of the diffusionwill be. It is benefit for gas transport with high porosity, reducing the oxygen gas concentration grads and ridge part effect, especially when the oxygen gas diffuses from flow channel down to the ridge portion of the bi-polar board. The cell performance could be increased accordingly.(4) The water mass fraction distribution monishes from the gas diffusion layer to the gas channel in any XZslice face, and increases along the gas channel direction. The higher the porosity is, the smaller the water mass fraction distribution grads will be, which explains that higher porosity is propitious to water transfer in the diffusion layer.AcknowledgementsThe authors gratefully acknowledge the financial support from China Scholarship Council Postgraduate Scholarship Program (No.2008709021), International S&T Cooperation Program of China (No.2006DFA61240 and No.2009DFA63120), The National Science Foundation of China (No.50674006, No. 20876013, and Key Program No. 20636060).References[1]Baolian Yi, Fuel cell-Principle, Technology, Application, Chemical Industry Press, Beijing, 2003[2]WEI Yong-sheng, Zhu Hong, Wang Li, Study and prospect of mathematical Model and numericalsimulation for proton exchange membrane fuel Cell,The 3rd Asian Pacific Conference on Theoretical & Computational Chemistry,2007,9:169[3]Wang C Y, Fundamental Models for Fuel Cell Engineering [J]. Chem Rev, 2004, 104(10):4727-4766[4]Siegel N P, Ellis M W, Nelson D J, et al. A two-dimensional computational model of a PEMFC withliquid water transport [J]. J Power Sources, 2004, 128(2): 173-184.[5]Zawodzinski Ta, Derouin C, Radzinski S, et al. Water-uptake by and transport through Nafion 117Membranes, Journal of the electrochemical society, 140(1993): 1041-1047[6]Adam Z. Weber, John Newman, Transport in Polymer-Electrolyte Membranes II. Mathematical Model,Journal of the Electrochemical Society, 151(2004): A311-A325[7]Ying Wang, Minggao Ouyang, Three-dimensional heat and mass transfer analysis in an air-breathingproton exchange membrane fuel cell, Journal of Power Sources 164 (2007) 721–729[8]Meng H, Wang C Y. Model of Two-Phase Flow and Flooding Dynamics in Polymer Electrolyte FuelCells [J]. J. Electrochem. Soc. 2005, 152 (9):A1733-A1741.[9]Peng Quan, Ming-Chia Lai, Numerical study of water management in the air flow channel of a PEM fuelcell cathode, Journal of Power Sources 164(2007) 222-237[10]FLUENT 6.3 User's Guide, 2006。