干细胞的应用及研究方向

合集下载

神经干细胞的研究及应用

神经干细胞的研究及应用

神经干细胞的研究及应用神经干细胞是一种能够自我更新并分化成不同种类的神经元和胶质的未成熟细胞。

它们能够在神经系统中发挥重要作用,帮助我们了解人类大脑的运作方式,并成为有效的治疗方法。

随着神经科学的不断发展,越来越多的研究成果表明神经干细胞对于各种神经系统疾病的治疗具有重要意义。

在神经干细胞的发现和研究过程中,研究人员首先需要了解神经细胞的发生和演化过程。

神经元的发生是由神经上皮细胞分化而来的,而神经上皮细胞又是由原始胚层分化而来的。

研究人员通过研究不同时期的胚胎发育过程和不同的发育因素,逐渐揭示出神经干细胞的存在和作用。

随着神经干细胞的发现,科研人员开始探索它们的生物学特性和分化机制,以期能够进一步应用到临床治疗中。

神经系统疾病是世界范围内的重大公共卫生问题,如阿尔茨海默病、帕金森病、脑损伤和中风等,这些疾病会导致神经系统的功能退化和神经元死亡。

神经干细胞的应用为这些疾病的治疗提供了新的途径。

神经干细胞可以通过诱导分化成为各种功能性神经元和胶质细胞,以替代并补充受损或死亡的细胞。

相较于传统的治疗方式,神经干细胞治疗具有独特的优势:它们可以定向转化成特定类型的细胞,并且可以在体内持续分化和增殖,从而为患者提供长期的治疗效果。

除了治疗神经系统疾病外,神经干细胞还有着广泛的应用。

它们可以用于开发新的药物和进行药物安全性评估,也可以用于神经科学的基础研究和器官级体外研究。

此外,研究人员还在探索利用神经干细胞进行组织工程、生产人工神经电子设备、和制备具有特定生物学特性的细胞工具等领域。

尽管神经干细胞的应用前景十分广阔,但仍然需要克服许多技术和安全上的挑战。

例如,为了更好地掌握神经干细胞的分化特性,研究人员需要仔细设计诱导分化方法和完善分化过程中的肿瘤细胞监测技术;此外,为了避免移植的干细胞产生恶性肿瘤,研究人员还需要建立有效的安全控制和标准化的生产流程。

总之,神经干细胞的研究和应用为解决神经系统疾病等重大医学难题开辟了新思路,并为人类带来了更多希望。

植物干细胞的研究及应用

植物干细胞的研究及应用

植物干细胞的研究及应用植物干细胞是指具有自我更新和分化能力的未分化细胞,是植物组织再生和发育的基础。

近年来,随着对植物干细胞的深入研究,其在农业、环保、药品等领域的应用越来越广泛。

一、植物干细胞的研究1. 植物干细胞的来源植物干细胞可以来源于顶端分生组织、体细胞再生等途径。

其中,顶端分生组织就是植物干细胞最常见的来源,如植物的根尖和茎尖。

这些组织中的细胞不仅具有高度分化和分裂活力,同时也能不断地分化成各种器官和组织。

因此,这些细胞可以作为研究和应用的重要材料。

2. 植物干细胞的特点植物干细胞具有以下三个方面的特点:(1)自我更新能力。

植物干细胞具有自我更新的能力,可以不断地分裂,产生新的干细胞和其他细胞。

(2)多向分化能力。

与动物干细胞只能分化成某一细胞类型不同,植物干细胞可以分化成多种细胞类型,从而诱导出各种有效的组织和器官。

(3)细胞壁的特殊结构。

植物干细胞的细胞壁富含纤维素和其他有机物,可以保护细胞和支撑细胞的形态及功能。

二、植物干细胞的应用1. 农业生产植物干细胞在农业生产中有着极为广泛的应用。

例如,通过对植物干细胞的研究,可以培育出更高产、更耐病、更适应恶劣环境的植物品种。

同时,利用植物干细胞技术,也可以进行植物组织培养和快速繁殖,从而大幅提升农业的生产效率。

2. 药品研发植物干细胞技术在药品研发中也有着重要的应用。

例如,在传统药材中提取植物干细胞、干细胞培养和转化等技术的应用,可以提高药材的含量和成分,使其具有更好的疗效和药效。

此外,还可以将植物干细胞进行基因编辑,研发出更有效的药品。

3. 环保领域植物干细胞在环保领域的应用也非常广泛,例如,在城市空气污染、重金属污染等方面,可以利用植物干细胞进行植物修复,逐渐恢复植物群落的生态平衡。

此外,在植物遗传改造和抗生物质体系等方面,也有着极为广泛的应用前景。

总体来说,植物干细胞的研究和应用对于推动经济发展和保障人类健康都有着不可忽视的意义。

干细胞的基础研究与临床应用

干细胞的基础研究与临床应用

干细胞的基础研究与临床应用细胞是构成生命体的基本单位,而干细胞则是一种具有自我更新和多向分化潜能的细胞。

干细胞研究在过去几十年中取得了巨大的进展,不仅对生命科学的发展做出了重要贡献,也为医学领域的进步提供了无限的可能性。

本文将探讨干细胞的基础研究和临床应用,并展望其未来发展的前景。

干细胞的基础研究是了解其特性和功能的关键。

干细胞可分为胚胎干细胞和成体干细胞两种类型。

胚胎干细胞来源于早期胚胎,具有广泛的分化潜能,可以分化为各种体细胞类型。

成体干细胞则存在于成体组织中,包括骨髓、脂肪组织和神经系统等。

这些成体干细胞具有较低的分化潜能,主要参与组织修复和再生。

基于这些特性,研究人员在干细胞的来源、分化机制和调控因素等方面进行了大量的实验室研究。

在基础研究的基础上,干细胞的临床应用逐渐成为现实。

干细胞移植是目前广泛应用的一种治疗方法。

例如,造血干细胞移植已经成为治疗血液系统疾病的重要手段。

通过从骨髓或外周血中采集干细胞,经过体外分离和处理后,再移植到患者体内,以替代受损或异常的造血系统。

此外,干细胞还被用于治疗神经系统疾病、心血管疾病和肝病等多种疾病。

目前,干细胞的临床应用仍处于初级阶段,但已经展示了广阔的前景。

然而,干细胞的应用也面临着许多挑战和争议。

例如,胚胎干细胞的研究和使用一直备受争议,因为它涉及到胚胎的毁灭。

这引发了伦理和道德方面的讨论。

因此,科研机构和政府需要建立一套严格的伦理规范和监管制度,以确保干细胞的研究和应用符合伦理和法律的要求。

此外,干细胞的临床应用也面临技术难题和安全风险。

干细胞的扩增和分化是一项复杂的技术。

有效的培养和控制干细胞的分化方向对于临床应用至关重要。

此外,干细胞的长期安全性和效果需要更多的研究和验证。

只有通过科学的研究和实验,我们才能确保干细胞的应用是可行和安全的。

未来,干细胞的研究和应用将进一步深化。

在基础研究方面,科学家将继续探索干细胞的来源、分化机制和调控因素,以更好地理解其功能和特性。

最新干细胞的基础研究与临床应用PPT课件

最新干细胞的基础研究与临床应用PPT课件
(1)在体外标准培养条件下贴壁生长; (2)CD105+、CD73+ 、CD90+,CD34-、CD45-、CD11a-、CD19-、HLA-DR- ; (3)在体外可诱导分化为成骨细胞、脂肪细胞和软骨细胞。
4、用于移植治疗的可能机制:
A、可分化为功能细胞,促进缺损组织更新; B、可分泌多种细胞因子和营养因子,通过旁分泌作用改善受体微环境; C、能通过细胞与细胞的直接接触及分泌可溶性因子的方式抑制免疫反
干细胞应用前景:
★现有的基础研究和临床应用结果证明,干细胞在治疗中确实 发挥了作用,应用前景非常乐观。
★国内外知名干细胞研究机构有:
国外
国内
加州再生医学研究所
科技部国家干细胞工程技术研究中心
哈佛干细胞研究所
细胞产品国家工程研究中心
京都大学iPS细胞研究与应用中心 人类胚胎干细胞国家工程研究中心
澳大利亚干细胞中心
神经干细胞(neural stem cells, NSCs):
1、定义:NSCs是来源于中枢神经系统的多能干细胞,具有自我更新和多向 分化潜能,可以分化成中枢神经系统的各类细胞,包括神经元、星形胶 质细胞和少突胶质细胞(1992)。
2、鉴定标志物:表达Nestin(Neuroepithdial stem protein)。
截至2010年4月,全球被批准进行利用MSCs治疗的临床试验已有80项。 且MSCs已被FDA批准用于治疗GvHD。
脐带来源MSCs的优势:
1、来源更容易,废物利用,不涉及伦理道德问题; 2、采集方便,易于保存和运输; 3、供者无痛苦,对母婴均无损害; 4、脐带中MSCs较骨髓中含量更为丰富; 5、细胞更原始,分化潜能更大,扩增效应更强; 6、组织相容性抗原表达低或不表达,更适宜于异体间的

干细胞在器官移植中的研究进展

干细胞在器官移植中的研究进展

干细胞在器官移植中的研究进展随着生物技术的不断发展,干细胞治疗已经成为医学界的一项重要研究领域,尤其是在器官移植方面,干细胞也被逐渐应用于临床实践中。

本篇文章将从以下三个方面来讨论干细胞在器官移植中的研究进展。

一、干细胞在器官移植中的应用随着人口老龄化的越来越显著,器官供给短缺问题日益严重,器官移植成为解决器官需求的重要方式。

干细胞作为一种具有多能性的细胞,可以被应用于器官移植的各个阶段,例如干细胞的扩增培养、干细胞分化以及干细胞前体移植等。

一种关键的研究领域是器官再生,它需要能够恢复失去的组织结构和功能的细胞。

通过将干细胞注入到受损的肝、肺、心脏等器官,可以修复这些器官的损失,并使其恢复正常功能,同时减少捐赠器官对供体的依赖。

这种方法已在实验室中得到了一些成功,并吸引了众多学者的关注,但在临床实践中,仍需要继续研发和改善。

另一个关键的应用领域是器官移植前的器官维持。

器官转运和保存过程中,细胞和组织的缺氧等不利因素对器官的质量造成了很大影响。

这一问题对于肝、肺、心脏等对缺血敏感的器官尤其明显。

通过将干细胞应用于器官冷静保存的过程中,可以保护组织和细胞的完整性和功能,从而提高器官质量和移植成功率。

二、目前的研究进展干细胞在器官移植中的应用还处于研究阶段。

目前的研究重心主要集中于两个方面。

一是研究合适的移植载体,以便将干细胞移植到器官中,并促进干细胞与宿主组织的整合。

目前的载体主要包括生物基质、支架和控释薄膜。

这些载体能够为移植的细胞和生长因子提供支持,并促进组织修复和再生。

二是研究更准确、更稳定、更有效地将干细胞移植到受体体内的技术。

研究人员需要寻找更加准确的方法来将干细胞注入到器官移植的部位,以确保细胞在宿主组织中能够定位到正确的位置。

同时,需要研究与组织工程有关的其他技术,如光造影技术和3D打印技术等。

三、展望和挑战随着干细胞在器官移植中的应用越来越广泛,也将面临许多挑战。

干细胞的应用涉及到许多技术问题,例如细胞扩增和分化、干细胞的注入和移植,以及移植后对组织的监测和评价等。

研究生系列教材《干细胞生物学》pdf(两篇)

研究生系列教材《干细胞生物学》pdf(两篇)

引言概述:正文内容:一、干细胞概述1.1干细胞的定义及特征1.2干细胞的分类及来源1.3干细胞在人体中的分布及功能1.4干细胞的研究方法与技术1.5干细胞研究的挑战与前景二、干细胞的生理功能2.1干细胞在组织发育中的作用2.2干细胞在组织修复与再生中的作用2.3干细胞与免疫调节2.4干细胞与老化及癌症的关系2.5干细胞与生殖生物学的关联三、干细胞的应用3.1干细胞在临床医学中的应用3.2干细胞在组织工程中的应用3.3干细胞在药物筛选与毒性测试中的应用3.4干细胞在基础研究中的应用3.5干细胞在农业与生物工程中的应用四、干细胞研究的伦理与安全性4.1干细胞研究的伦理问题4.2干细胞研究的法律与规范管理4.3干细胞研究中的安全性控制4.4干细胞转化为临床应用的障碍与解决方案4.5干细胞研究中国际合作的重要性及挑战五、干细胞生物学的最新进展5.1干细胞在疾病治疗中的最新应用5.2干细胞追踪及转基因技术的发展5.3干细胞的再编程与转化5.4干细胞与基因编辑技术的结合5.5干细胞治疗的未来前景与挑战总结:本文对研究生系列教材《干细胞生物学》pdf(二)进行了详细的内容分析与评述。

通过对该教材的五大主题进行阐述,从干细胞的概述、生理功能、应用、伦理与安全性以及最新进展等方面,给读者提供了全面、详细的干细胞生物学知识。

同时,也展示了干细胞生物学这一领域的重要性和研究前景。

干细胞研究仍然面临着伦理、法律、安全性等方面的挑战,需要国际合作与科学监管的支持,以确保其应用于临床医学和生物工程的安全性与可行性。

未来,随着干细胞研究的不断深入,相信其在医学、生物工程及其他领域的应用将会取得更加重要的突破。

引言:《干细胞生物学》是一本为研究生量身打造的教材,旨在系统介绍干细胞的基本概念、生物学特性以及在医学领域的应用。

干细胞作为一类具有自我更新和多向分化潜能的细胞,其研究不仅可以深化对生命本质的理解,还有望为多种疾病的治疗提供新思路和方法。

人类干细胞研究的新进展与治疗应用

人类干细胞研究的新进展与治疗应用

人类干细胞研究的新进展与治疗应用自从2006年以来,人类干细胞研究已经经历了快速发展的阶段,技术不断创新,且越来越多的研究结果为干细胞治疗应用打开了更广阔的前景。

以下文章旨在介绍人类干细胞研究的新进展和治疗应用。

干细胞种类和发现过程干细胞是指能够分化成多种功能细胞且具有自我更新能力的细胞。

干细胞种类包括胚胎干细胞、诱导性多能性干细胞、骨髓干细胞等。

其中,胚胎干细胞是最早被发现的一种干细胞,来自已受精的胚胎,具有最为广泛的分化潜能,可以分化成所有种类的细胞。

而人类体内的骨髓干细胞,也是广泛应用于治疗的一类干细胞。

干细胞研究的新进展随着科技的不断创新,人类干细胞研究也在不断推进。

近年来,各种新技术正在开发和优化,以最大程度地利用干细胞的潜能。

基因编辑技术聚合酶链反应和基因编辑技术是新的干细胞研究的前沿研究领域。

基因编辑技术可以帮助科学家在干细胞中删减或添加基因,以促进细胞分化和生长。

这种技术的应用范围尚在探索中,但有望在治疗一些遗传性疾病方面取得突破。

人工合成种植技术近年来许多研究也在针对人类干细胞培养的技术上进行了改进。

一些研究者正试图开发出人工合成手段来创造适宜干细胞生长环境的方法,如支架和多孔微环境。

这种基于开发干细胞生长坏境的研究,提高了对体外培养干细胞的质量和数量控制能力,并为干细胞治疗应用提供了更广泛的可能性。

新型药物开发干细胞研究在药物开发方面的应用正在迅猛发展,许多研究有望利用干细胞来开发新的治疗药物,针对一些慢性病的治疗也有着广阔的应用前景。

例如,利用干细胞可以针对某些遗传性消化道疾病进行治疗。

治疗应用前景和挑战干细胞在医学中的应用前景广阔,目前已经应用于治疗多种无法治愈的疾病,如心血管疾病、神经退行性疾病和肿瘤。

近几年,一些非正式的疗法例如自体细胞移植已经在临床中得到了验证。

然而,未来还需要解决诸多挑战,例如干细胞使用的安全问题、培养及其生长产量的限制以及严格的法规和道德问题。

此外,干细胞在不同种族、性别、年龄之间的效果还需要更多的临床研究来确定。

诱导多能干细胞的研究及应用

诱导多能干细胞的研究及应用

诱导多能干细胞的研究及应用近年来,多能干细胞的研究备受关注,因为多能干细胞具有能够分化成多种不同细胞类型的特性,从而可以应用于许多领域。

在这里,我们将介绍诱导多能干细胞的研究及其应用,以及目前存在的一些挑战。

一、什么是多能干细胞?多能干细胞是具有能够分化成多种不同细胞类型的特性。

人体内的多能干细胞主要分为两种,即胚胎干细胞和成体干细胞。

胚胎干细胞来自人体早期胚胎的内细胞团,而成体干细胞则来自成年人的各种成体组织,例如骨髓和脂肪组织。

多能干细胞具有广泛的应用前景,在生物医学领域中,它可以广泛用于药物研发、疾病治疗和组织再生等方面。

但是,胚胎干细胞受到伦理和法律的限制,成体干细胞来源有限,这促进了诱导多能干细胞的研究。

二、什么是诱导多能干细胞?诱导多能干细胞(induced pluripotent stem cells,iPSC)是通过转录因子的重编程将已分化的细胞重编程为类似于胚胎干细胞的干细胞。

这种技术是日本学者山中伸弥在2006年首次提出的。

在这项技术中,通过将四个基因引入成体细胞,可以将这些细胞从它们已经分化的状态转变为一个多能干细胞状态。

这些基因是Oct4、Sox2、KLF4和c-Myc。

iPSC具有胚胎干细胞类似的多态性特性,即可以分化为体内三个胚层的所有不同类型的细胞,包括神经元、心肌细胞、肝细胞和胰岛细胞。

iPSC技术提供了一种创造干细胞的方法,而不涉及伦理问题,也能够大量生产多能干细胞,因此可以应用于许多面向健康的应用领域。

三、诱导多能干细胞在疾病治疗中的应用iPSC可应用于疾病治疗。

将患有某种疾病的患者的细胞转化为诱导多能干细胞,再将这些干细胞进一步分化为受影响的细胞,可以用来研究该疾病的病理机制及相关药物的开发。

使用iPSC可以更好地确定新治疗方法的可用性,也可以避免风险和副作用,因为它们能够在体外进行实验。

四、诱导多能干细胞在药物研发中的应用iPSC还可应用于药物研发。

将诱导多能干细胞转化为特定细胞类型,然后在体外应用药物,可以测试该药物的安全性和有效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

干细胞的应用及研究方向摘要干细胞是一类具有自我更新和多向分化潜能的细胞群体。

近年来干细胞的应用几乎涉及到所有生命科学和生物医学领域。

本文概述了干细胞的生物学特性,并综述了干细胞的可塑性、分离培养及其在基础研究及临床上的应用的研究进展。

最后,展望了今后研究的方向。

干细胞(stem cells)是一类具有自我更新、高度增殖和多向分化潜能的细胞群体,即这些细胞可以通过细胞分裂维持自身细胞群的大小,同时又可以进一步分化成为各种不同的组织细胞,从而医学界称之为“万用细胞”。

1981年英国的Evans和Kaufman用延缓着床的胚泡首次成功地分离了小鼠胚胎干细胞,从而在全球掀起了有关干细胞的研究热潮。

1997年2月英国苏格兰罗斯林研究所威尔穆特博士等成功克隆出“多利”绵羊,1998年11月,美国Thomson[1]和Gearhart[2]分别用不同的方法获得人胚胎干细胞及胚胎生殖细胞,此后,干细胞的研究便进入了一个全新的时代。

1999年,有关干细胞的研究被Science评为1999年度十大科学进展之首。

2000年12月干细胞研究再次被《科学》杂志评为该年度世界十大科学成就之一。

本文就近几年来干细胞的研究进展综述如下。

1干细胞的生物学特性根据干细胞的发育阶段,可将其分为胚胎干细胞和成体干细胞(Adult Stem Cell,AS)。

胚胎干细胞即具有分化为机体任何一种组织器官潜能的细胞,包括胚胎干细胞、胚胎生殖细胞(Embryonic Germ Cell,EG)。

成体干细胞即具有自我更新能力,但通常只能分化为相应组织器官组成的“专业”细胞,它是存在于成熟个体各种组织器官中的干细胞,包括神经干细胞、血液干细胞,骨髓间充质干细胞、表皮干细胞、肝干细胞等。

1.1胚胎干细胞的生物学特性胚胎干细胞最早是直接从小鼠早期胚胎分离建系的,它们具有其自身的生物学特性。

与其他细胞系相比较, 胚胎干细胞的特点在于:(1)具有不断增殖分化的能力,所以,在体外培养条件下可以建立稳定的干细胞系,并保持高度未分化状态和发育潜能性。

1999年Soiter等[3]利用这个特性将ES/EBs及其分化细胞作为有关药物的针对筛选系统,进行药物毒性检测实验。

(2)具有高度的发育潜能和分化潜能。

体内外可分化出外、中、内三个胚层的分化细胞,可以诱导分化为成体细胞内各种类型的组织细胞。

胚胎干细胞含有正常二倍染色体,具有种系传递功能,能广泛参与宿主胚胎各组织器官的生长发育,并形成包括生殖系在内的合体后代生殖细胞。

1995年Pacacio等[4]利用骨髓基质细胞或其培养液,将胚胎干细胞在体外诱导分化为造血干细胞。

1997年Baker等[5]在缺乏新霉素(geneticin,g418)的条件下,将Rosaβ-geo基因转染胚胎干细胞后能在体外诱导分化为软骨细胞。

同年Deni等报告将胚胎干细胞通过悬滴培养可分化出脂肪细胞。

(3)能进行体外培养扩增,还可以对其进行遗传操作选择, 如导入异源基因、报告基因或标志基因,诱导某个基因突变等。

扩增、遗传操作及冻存均不丧失其多能性。

冻存的细胞可在需要时随时解冻,继续培养不失其原有特性。

1.2成体干细胞的生物学特征干细胞在分化为特化细胞之前常产生一种或几种祖细胞,然后由祖细胞分化产生特化细胞。

与胚胎干细胞相比较,成体干细胞有以下几个特点:(1)成体干细胞体积小,细胞器稀少,RNA含量较低,在增殖过程中处于相对静止状态,在组织结构中位置相对固定。

(2)成体干细胞数量很少,其基本功能是参与组织更新,创伤修复及维持机体内环境稳定。

研究结果表明,即使在含量丰富的骨髓中,每10,000~15,000个骨髓细胞中只有一个造血干细胞[6],人和动物皮肤中的干细胞含量仅为7%~8%[7]。

Reynolds等[8]实验证明成体哺乳动物脑内的神经干细胞数量极少,仅占室下带区中相对静止细胞数的0.1%~1%。

(3)成体干细胞常处于一个有干细胞细胞基质,对干细胞的增殖和分化起调控作用的各种信号分子的特定微环境或称生物位(nich)中,干细胞是自我复制还是分化为功能细胞取决于所在的微环境和自身的功能状态。

(4)成体干细胞没有确定的来源。

有科学家推测,成体干细胞是胚胎发育过程中保存下来的未分化的细胞[6],这揭示成体干细胞与胚胎干细胞可能会有更多的相似性与同源性。

2干细胞的可塑性干细胞的可塑性主要是指成体干细胞的可塑性。

人们把成体干细胞具有分化为其他类型组织细胞的能力的这种现象称为干细胞的可塑性[9],横向分化[10]或转决定[11]。

1995年,Pereira等[12]证明,小鼠骨髓细胞在体外培养后具有向骨、软骨和肺基质转化的能力。

1999年,Bjornson等[13]将胚胎和成年小鼠神经干细胞,以及在体外克隆的神经干细胞移植给亚致死剂量照射的小鼠,结果证明神经干细胞可转化为造血细胞。

同年Jackson等[14]用Hoechst333422-lowSP纯化的小鼠造血干细胞进一步证明它可迁移到肌肉损伤部位,在参与肌肉再生的同时也参与血管的再生。

2002年Vescovi 等[15]报道神经干细胞除有向神经元、星形细胞与少突胶质细胞分化能力以外,还可分化为造血细胞谱系。

肝干细胞也是干细胞可塑性的主要可靠证据之一。

2000年Alison等[16]和Lagasse等[17]分别报道HSC可在体内分化成肝细胞。

2001年Shen等[18]在骨髓移植的试验中发现,肝脏干细胞能表达供体造血细胞的遗传标志。

这一系列的证据表明干细胞存在可塑性。

然而,近几年来,部分研究学者对干细胞的可塑性提出了不同的看法:(1)细胞自发融合导致“可塑性”。

英国科学家2002年,Ying等[19]的研究结果表明, 胚胎干细胞在体外与神经或HSC共同培养时,能自发地发生神经或HSC与胚胎干细胞之间的融合,诱导NSC或HSC“横向分化”为胚胎样干细胞,然后展现出胚胎干细胞的表型特征与相应功能。

同年美国科学家Terada等[20]用充分的证据证明,骨髓细胞的多向分化是因为与胚胎干细胞融合所致,而不是骨髓细胞直接横向分化的结果。

这两者的研究结果都表明,是由于发生了细胞融合,使所谓的成年组织干细胞具有了“可塑性”潜能。

(2)成体干细胞的横向分化是成体组织中余存的胚胎原始干细胞所致。

2002年jiang等[21]的研究结果证实,在成体组织中余存着一种数量稀少的胚胎样原始干细胞,表达胚胎干细胞的标志如Oct-4、Rex-1及SSEA-1,体外培养条件也类似于胚胎干细胞,所谓的成体组织干细胞的“可塑性”很可能是这些细胞所为。

(3)2002年,在Science和Nature上连续刊发的几篇文章指出,成体干细胞可塑性可能是实验设计不严谨,判断错误所致,认为所谓的成体干细胞可塑性缺乏科学依据。

3干细胞的分离培养由于干细胞的数目很少,因此需要在体外对干细胞进行非分化性增殖。

干细胞的分离培养的理论基础是其生物学特征,包括形态和结构特征及其生物学表型。

干细胞的分离培养实验主要是建立在老鼠的实验上,早在二十世纪七八十年代就已从小鼠中分离出胚胎干细胞并在体外进行培养成功。

近年来,国内在这方面的研究也取得了一定的进展,主要是在神经干细胞等成体干细胞的研究上。

2002年陈雷等[22]应用无血清培养技术从胎鼠脊髓分离到的神经系统的干细胞具有不断分裂增殖的能力, 可被神经干细胞特异性抗体所标记,并在血清条件下分裂为神经系统多种细胞。

2004年冯玉萍等[23]用胰酶消化加机械吹打分离大鼠大脑皮质及皮质下组织,之后用悬浮培养法、有限稀释法获得来源于同一细胞的亚细胞系克隆; 2005年肖美玲等[24]用同样的方法分离新生昆明种小鼠(出生24 h 内) 的大脑组织,利用无血清培养基悬浮培养细胞,获得具有自我增殖能力的细胞克隆,两者经用免疫细胞化学法鉴定为神经干细胞。

虽然老鼠的干细胞体外培养实验已经取得了可喜的进展,但人的干细胞的体外培养直到1995年,Thomson等从恒河猴的囊胚中分离,建立了第一个灵长类动物的胚胎干细胞株后,才获得成功并得到迅速的发展。

1998年,Thomson[1]和Gearhart[2]分别用胚胎干细胞和胚胎生殖细胞建立了人的胚胎干细胞系,在体细胞与生殖细胞间架起了桥梁,为研究胚胎干细胞的发育,在体外培养人体细胞和组织,利用ES细胞治疗疾病提供了广阔的发展前景。

在报道分离了人的胚胎干细胞这一重大成果后不久,美国Advance Cell Technology (ACT, Worcester, M)的研究者宣称,他们通过使人的皮肤细胞和牛的卵细胞杂交,培育出了人的胚胎干细胞。

所用的方法与克隆实验中采用的方法相似,基本上是对人的细胞重新编程并使其回到它最初的原始状态。

该发现可能导致许多新方法的产生,如通过移植和细胞治疗来医治疾病。

2002年李巍等[25]采用无血清培养技术, 成功地分离培养了人胚胎大脑皮层神经干细胞,且能被诱导分化成神经元和神经胶质细胞。

经传12代后仍具干细胞特性。

2004年王共先等[26]以器官捐献者的正常前列腺为研究对象,利用免疫磁珠细胞成功从前列腺基底细胞中分离前列腺干细胞。

同年汪泱等[27]和罗树伟等[28]均成功分离培养了人胚脑神经干细胞,并进行进一步的检测和研究。

4干细胞的应用胚胎干细胞是细胞的源头,具有多能或全能性,并能够无限分化,能够制造机体需要的全部细胞,因此在医学和生物学上具有巨大潜力,应用前景广阔。

但它存在着移植免疫排斥的限制和伦理学方面的困扰, 而成体干细胞只能在体外有限扩增,多系分化效力低,通过体外的扩增培养虽能够提高转化效率, 然而体外转化是否会引起干细胞遗传特性的改变尚不清楚。

但这类干细胞存在于宿主体内,可直接从患者自身获得,故无移植免疫排斥的限制也无伦理学方面的困扰,因此胚胎干细胞和成体干细胞的研究对生命科学领域而言,都具有极重要的意义。

4.1为发育生物学研究提供良好的体外模型系统哺乳动物胚胎体积较小,而且在子宫内进行发育,因此很难在动物体内连续动态地研究其早期胚胎发育、细胞组织分化及基因表达调控,而来源于胚胎的胚胎干细胞具有发育全能性、可操作性及无限扩增的特性,因此胚胎干细胞提供了在细胞和分子水平上研究个体发育过程中极早期事件的良好材料和方法。

随着分子生物学的发展,通过比较胚胎干细胞不同发育阶段的干细胞和分化细胞的基因转录和表达,可确定胚胎发育及细胞分化的分子机制、发现新基因。

结合基因打靶技术,可发现不同基因在生命活动中的功能等。

4.2在医学上的应用理论上讲,干细胞可以用于临床细胞移植治疗各种疾病和构建人工组织或器官,其最适合的疾病主要是组织坏死性疾病如缺血引起的心肌坏死、肿瘤,退行性病变如帕金森综合征,自体免疫性疾病如胰岛素依赖型糖尿病等。

相关文档
最新文档