连续型随机变量及其概率密度函数.
概率论-2-3连续型随机变量及其概率密度

x)
1 100
e
x
100
,
x0
0,
其它
(1)求元件寿命至少为200小时的概率;
(2)将3只这种元件连接成为一个系统. 设系统 工作的方式是至少2只元件失效时系统失效,又设3 只元件工作相互独立. 求系统的寿命至少为200小时 的概率.
解(1)元件寿命至少为200小时的概率为PX 200 f Nhomakorabea(x)dx
Y ~ B(3,1 e2)
2只及2只以上元件的寿命小于200小时的概率为
PY 2 3(1 e2)2(e2) (1 e2)3
2
PY 2 3(1 e2)2(e2) (1 e2)3
2 (1 e2)2(2e2 1) 0.950. 故系统的寿命至少为200小时的概率为
p 1 PY 2 1 0.950 0.050
1 ba
ab
即是说 X落在区间(a,b)内任意等长小区间 上的概率相等,在(a,b)内两个等长小区间上, f(x)之下的小长方形的面积相等,就是称为均匀分 布的原因.
均匀分布常见于下列情形
如在数值计算中,由于四舍五 入,小数点后某 一位小数引入的误差.
公交线路上两辆公共汽车前后通过某汽车停车 站的时间,即乘客的候车时间等.
本节练习
习题二:8,9,10
§2.3 连续型随机变量及其概率密度
连续型随机变量及其概率密度的定义 概率密度的性质 三种重要的连续型随机变量 小结
连续型随机变量X所有可能取值充满一个区间,
对这种类型的随机变量,不能象离散型随机变量那 样, 以指定它取每个值概率的方式, 去给出其概率 分布,而是通过给出所谓“概率密度函数”的方式.
f
(
x)
《概率论》第2章§4连续型随机变量及其密度函数

密度函数是描述连续型随机变量取值 规律的工具,通常用大写字母f(x)表示 ,f(x)在x处的函数值表示随机变量在x 点附近取值的“概率密度”。
性质与定理
非负性
密度函数f(x)在整个实数范围 内都是非负的,即f(x)≥0。
正态分布
又称高斯分布,是一种连续概率分布。正态分布 是自然界中最常见的分布之一,许多自然现象和 社会现象都服从或近似服从正态分布。其密度函 数呈钟形曲线,关于均值对称。
指数分布
常用于描述某些随机事件发生之间的时间间隔, 如无线电通信中的信号到达间隔等,其密度函数 呈指数形式衰减。
其他分布
除了上述三种分布外,还有许多其他类型的连续 型随机变量分布,如t分布、F分布、贝塔分布等 。这些分布在实际问题中也有广泛的应用。
03 概率计算与应用
概率计算公式及方法
概率密度函数
常用的概率分布
对于连续型随机变量,其概率通过概率 密度函数进行描述,该函数表示随机变 量在某个取值点附近的概率分布情况。
ቤተ መጻሕፍቲ ባይዱ
如正态分布、均匀分布、指数分布等,这些 分布具有特定的概率密度函数和累积分布函 数形式,可用于描述不同类型的随机现象。
累积分布函数
性质
多维随机变量具有一维随机变量的一些基本性质,如分布函数性质、独立性等。此外, 多维随机变量还具有一些特殊的性质,如多维随机变量的每一个分量都是一维随机变量。
联合密度函数概念及性质
要点一
概念
对于多维连续型随机变量(X1, X2, ..., Xn),如果存在非负可积 函数f(x1, x2, ..., xn),使得对Rn中的任意区域D,有P{(X1, X2, ..., Xn) ∈ D} = ∫∫...∫f(x1, x2, ..., xn)dx1dx2...dxn,则 称f(x1, x2, ..., xn)为(X1, X2, ..., Xn)的联合密度函数。
连续型随机变量的分布与例题讲解

(3) f(x) = F ¢ x) = (
1 (- ? p (1 + x 2 )
x< +
ì
- 3x
)
, x > 0, x £ 0,
例2
ï ke 设随机变量 X 的概率密度为 f (x) = ï í ï 0, ï î
试确定常数
k,并求其分布函数 F(x)和 P{X>0.1}. 解:由
+?
ò
+
f (x)dx = 1 得
X ~ W (m, , ).
Weibull 分布的分布函数为
F ( x)
x
m
(t )
m 1
( t )m
e
dt 1 e
( x )m
(x )
——位置参数
——尺度参数
m ——形状参数
Weibull 分布概括了许多典型的分布。
本次课小结:
即是说该大学的实录线约为 512 分。 (三) 对数正态分布 定义:若随机变量 X 的概率密度函数为
1 (ln x )2 2 f ( x) 2 x e 2 0
4
基
本 内
容
备 注
其中, , 0 为常数,则称 X 服从参数为 和 的对数正态分布,记作
(四)Weibull 分布 定义:若随机变量 X 的概率密度函数为
( x ) m ( x )m1 e x f ( x) x 0
m
其中, m, , 0 为常数,则称 X 服从参数为 m, , 的 Weibull 分布,记作
故知,X~N( 450 ,1002 ) 又设该大学实录线为 a,由题设知:
连续型随机变量及其概率密度函数

证明:(1). 显然, f ( x) 0 ( x )
(2).
f ( x)dx
1e x dx
2
1 0 e xdx 1 exdx
2
20
一般只需验 证f(x)性质中 的这两条即
可.
11 1 22
概率统计
例2. 某电子计算机在毁坏前运行的总时间(单位:小
f (x)
概率统计
0
x1 x2
x
性质4
若 f ( x) 在点 x 处连续,则有:F( x) f ( x)
物理 意义:
F ( x x) F ( x)
f ( x) lim
x 0
x
P( x X x x)
lim
x0
x
故 X 的密度 f (x) 在 x 这一点的值,恰好是
X落在区间 ( x, x x] 上的概率与区间长度 x
时)是一个连续型随机变量,其密度函数为:
f
(
x)
e
x 100
0
求: (1). 的值.
当x 0 当x 0
(2).这台计算机在毁坏前能运行 50 到 150 小
时的概率. (3).运行时间少于100小时的概率.
概率统计
解: (1)
1
f ( x)dx
x
e 100dx
0
x
100e 100
f
(
x)
2
1 x2 ,
1 x 1
求 : F(x)
0, 其它
x
解: F ( x) P( X x) f (t)dt
当 x 1 时, F( x) 0
当1 x 1,
F(x)
连续型随机变量及其概率密度

问:怎样求一般正态分布的概率?
对一般的正态分布 :X ~ N ( , 2)
其分布函数 F( x)
1
e d t x
(t )2 2 2
2
作变量代换s
t
F(x)
1 2
x
s2
e 2ds
x
即 X ~ N ( , 2) 则 X ~ N ( 0 ,1)
P{a
X
b}
F (b)
222 0.3830
3) 0.6826 4) 0.4981
0.02
-10
-5
a
5
b
x
例1 有一批晶体管,已知每只的使用寿命 X 为 连续型随机变量,其概率密度函数为
f
(
x)
c x2
,
0,
x 1000 其它
( c 为常数)
(1) 求常数 c
(2) 已知一只收音机上装有3只这样的晶体管,
每只晶体管能否正常工作相互独立,求在
使用的最初1500小时只有一个损坏的概率.
(3) P(X>1.76)= 1 – P(X≤1.76)= 1 – Φ(1.76)
=1 – 0.9608 =0.0392 (4) P(X< – 0.78)= Φ(- 0.78) =1-Φ(0.78)
=1 – 0.7823 =0.2177 (5) P(|X|<1.55)= 2Φ(1.55) – 1 (6) P(|X|>1.55)= 1 – P(|X|<1.55)
即: P( X a) 0, a为任一指定值
事实上 { X a} {a x X a}
x 0
0 P{ X a} P{a x X a} aax f ( x)d x
连续型随机变量的概率密度

连续型随机变量的概率密度一、概念介绍连续型随机变量是指取值范围为无限个数的随机变量,它的概率密度函数(Probability Density Function,PDF)可以用来描述该随机变量在某个取值范围内的概率分布情况。
二、概率密度函数的定义对于连续型随机变量X,其概率密度函数f(x)满足以下条件:1. f(x)≥0,即非负性;2. ∫f(x)dx=1,即归一性;3. 对于任意实数a和b(a<b),有P(a≤X≤b)=∫abf(x)dx。
三、常见的连续型分布及其概率密度函数1. 均匀分布均匀分布是指在一个区间内每一个点的概率相等的分布。
其概率密度函数为:f(x)=1/(b-a),a≤x≤b2. 正态分布正态分布是一种常见的连续型随机变量分布,也称为高斯分布。
其概率密度函数为:f(x)=1/(σ√(2π))e^(-(x-μ)^2/(2σ^2))其中,μ是均值,σ是标准差。
3. 指数分布指数分布通常用来描述事件发生的时间间隔。
其概率密度函数为:f(x)=λe^(-λx),x≥0其中,λ是事件发生率。
4. 伽马分布伽马分布是指一类连续型随机变量的分布,它经常用来描述风险事件的发生时间。
其概率密度函数为:f(x)=(1/Γ(α)β^α)x^(α-1)e^(-x/β),x≥0其中,α和β是参数,Γ(α)是伽马函数。
四、概率密度函数的性质1. 概率密度函数f(x)的图像在x轴上方;2. 在任意一个区间内,概率密度函数f(x)所表示的面积即为该区间内随机变量X取值的概率;3. 对于任意实数a和b(a<b),有P(a<X≤b)=∫abf(x)dx;4. 对于任意实数c,有P(X=c)=0。
五、连续型随机变量的期望和方差1. 期望对于连续型随机变量X,其期望E(X)定义为:E(X)=∫xf(x)dx2. 方差对于连续型随机变量X,其方差Var(X)定义为:Var(X)=E((X-E(X))^2)=∫(x-E(X))^2f(x)dx六、总结连续型随机变量的概率密度函数是描述其概率分布情况的重要工具,常见的连续型分布包括均匀分布、正态分布、指数分布和伽马分布等。
2.4连续型随机变量及其概率密度函数

-?
a b- a
连续型随机变量及概率密度函数
注
蝌 P{c < X ? c l} = c+l f ( x)dx = c+l 1 dx = l
c
c b- a b- a
随机变量 X 落在任一长度为 l 的子区间(c,c + l],(a ? c c + l ? b)
内的可能性是相同的.
均匀分布的分布函数为
2
解 (2)X的分布函数为
ì
0,
ï
ï
ò ï
x x dx = x2 ,
F
(
x
)
=
ï í
ï
蝌 ï
ï
3 x dx + 06
06
x 3
骣 琪 琪 桫2
-
x 2
12 x2
dx = - 3 + 2x - , 4
ï î
1,
x <0 0? x 3 3? x 4
x³ 4
连续型随机变量及概率密度函数
例 1 设随机变量 X 具有概率密度
f
(x)
=
ì ï í
1 5
,0
<
x
<
5,
ï î
0,
其他
ì 0,
ï
蝌 F ( x) =
x
ï f ( x)dx = í
x dt = x ,
-?
ï 05 5
ï î
1,
x£ 0 0< x <5
x³ 5
(2)随机变量 X 的取值不小于 2,即
蝌 ò P{ X ? 2} = +? f ( x)dx = 5 1 dx + ? 0dx 3
连续型随机变量与概率密度函数

连续型随机变量与概率密度函数随机变量是概率论中的重要概念之一,它描述了在一次试验中可能发生的不确定事件的数值结果。
随机变量分为离散型和连续型两种。
在本文中,我们将重点介绍连续型随机变量以及与之相关的概率密度函数。
连续型随机变量是指在一定区间内可能取任意实数值的随机变量,其结果可以是无限多的。
与离散型随机变量相比,连续型随机变量通常与测量、计量有关,例如时间、长度、重量等。
为了描述这种连续型随机变量的概率分布,我们引入了概率密度函数的概念。
概率密度函数是用来描述连续型随机变量的概率分布的函数。
它在某个取值点上的值并不代表概率,而是表示这个点附近的概率密度。
具体来说,对于概率密度函数f(x)而言,它满足以下两个条件:1. f(x) ≥ 0,即概率密度函数的取值非负;2. 在概率密度函数的取值范围内,其面积等于1,即∫f(x)dx = 1。
概率密度函数与概率的关系可以通过累积分布函数来进行描述。
累积分布函数F(x)定义为概率密度函数f(x)在某一取值点x及其左侧区间上的积分,即:F(x) = ∫[a,x]f(t)dt其中a表示概率密度函数f(x)的定义域起点。
连续型随机变量的期望值和方差也可以通过概率密度函数来计算。
对于一个随机变量X,其期望值E(X)定义为:E(X) = ∫xf(x)dx方差Var(X)定义为:Var(X) = ∫(x - E(X))^2f(x)dx通过概率密度函数的求积分运算,我们可以计算出连续型随机变量的期望值和方差,从而更好地理解和描述随机变量的特征。
在实际应用中,连续型随机变量与概率密度函数经常用于模型建立、数据分析和统计推断等领域。
例如,在物理学中,速度、温度、能量等变量通常是连续型随机变量,通过概率密度函数的分析,可以研究其分布规律以及相应的统计特性。
在金融学中,股票价格的变化、利率的波动等也可以视为连续型随机变量,利用概率密度函数可以预测未来风险并制定相应的投资策略。
总结起来,连续型随机变量与概率密度函数的概念和应用在概率论和统计学中至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲 连续型随机变量及其概率密度
连续随机变量; 密度函数及其性质; 均匀、指数与正态分布
(1) 定义的引出
设离散型随机变量X在[a, b]内取n个值:
x1=a, x2, x3, x4,… , xn=b.
P
X的概率 直方图:
s3 s2
小矩形高
概率 小矩形宽度
即小矩形的面积为
离
{X a} 是不可能事件
散
P{X a} 0.
型
要点重申
⑴ 分布函数F (x) 的函数值表示随机变量 X 在右闭无穷 区间 (-∞, x ] 上的取值概率, 即
F(x) P{X x}
⑵ 只要函数 F (x) 是随机变量 X 的分布函数, 那就必有
F () 0 , F () 1 0 F(x) 1
…… f ( x)dx
P{ X } f ( x)dx 1
由此推出连续 型随机变量
的定义
一、 连续随机变量及其分布密度
定义1(P40.定义) 对于随机变量 X 的分布函数 F(x), 若存在非负
可可积积函数 f (x),使得对任意实数 x,有
f (x)dx 1
⑷ “ 连续随机变量的点概为零” , 即连续型随机变量 X 在其任一可取点处的取值概率恒等于零; 但 “离散随机变 量的点概不尽为零”, 因为后者在其任一可取之点处的取 值概率肯定不为零.
要点重申
⑸ 连续随机变量 X 在任何区间上的取值概率与区间
的开闭与否无关, 它恒等于概率密度在该区间上的积分,
2. 连续型随机变量 随机变量所取的可能值可以 连续地充满某个区间,叫做连续型随机变量.
连续型随机变量X所有可能取值充满一个区间, 对连续型随机变量,不能象离散型随机变量那样, 以指定它取每个值概率的方式, 去给出其概率分布, 而是通过给出所谓“概率密度函数”的方式来描述其 概率分布. 下面,我们将向大家介绍另一种类型的随机变量
第二章 随机变量及其分布
连续型随机变量及其分布
有关要点回顾 1.离散型随机变量 随机变量所取的可能值是有限 多个或无限可列个,叫做离散型随机变量. 离散型随机变量的分布律为
其中
1. pk 0, k 1,2,...,(非负性)
2. pk 1, (归一性) k 1
对于离散型随机变量,如果知道了它的分布列, 也就知道了该随机变量取值的概率规律. 在这个意义 上,我们说 离散型随机变量由它的分布列唯一确定.
连续型的分布函数必连续
F(x)
x
f
(t )dt
,
则称 X 为连续型随机变量,称 f (x)为 X 的概率密度函数, 简称为
概率密度或密度.
判定一个函数 f (x) 为
密度函数的基本特性: 某连续型随机变量的
(1) f (x) 0 ;
概率密度的充要条件
非负性 (2)
f
(t )dt
不过离散变量的分布函数仅是右连续的函数; 连续变量的分 布函数却是实轴上处处连续的函数 .
要点重申
⑶ 只有连续型随机变量 X 才存在概率密度 f (x), 它与 分布函数 F (x) 的相互关系是
F(x)
x
f (t)dt
,
f (x) dF (x)
dx
并且概率密度 f ( x ) 也满足所谓的归一性, 也就是
面积为1
o
x
密度函数的几何意义
密
度
函
数
曲
线
位
于
x
轴
上
方
P(a X b)= b f (t )dt a
即 y=f(x),y=a,y=b,x轴所围成的曲边梯形面积。
点概为零的重要启示
(1) P{ x1<X ≤x2} = P{ x1≤X ≤x2}
= P{ x1<X <x2} = P{ x1≤X <x2}
X取对应点的概率
s1
x1=a x2
x3
sn
…….
xn=b
X
n
P{a X b} si =折线下面积之和!
i 1
若X为连续型随机变量,由于X在[a, b]内连续
取无穷多个值,折线将变为一条光滑曲线 f ( x).
P
f (x)
而且:
b
S a f ( x)dx
f (x)
X
a
X 取值于(x , x+x]的概率=
F1(;其) 密F度(在此)区间=上1的-积0分
y 面积为1 y = f (x)
O x1 x2
x
规范由性定(3义)
概率 公式
(4)
可微性 (5)
独点
若PPP((axf(<1X(<Xx=X)x在b0))x=点2)P==x(al0ixF处m(.0Xx连P2xx<x1)1(2续-bxffF)0((,=t(tx))PdXd1)(tt则a;xXx0xF12fb((x)xt=))x)d2Ptf(lixa(fmt<()0xdXx1t)x<xf0;0b(t)x)xd1f t(f
不可能事件的概率为零,但概率为零的事件不一定是 不可能事件。
同样:
必然事件的概率为1,但概率为1的事件不一定是必然 事件。
注意
若X是连续型随机变量,
{ X=a }是不可能事件,则有 P{X a} 0.
连
续
若 P{X a} 0,
型
不能确定 {X a} 是不可能事件
若 X 为离散型随机变量,
= F(x2) -F(x1) =
x2 f ( x)dx
x1
连续型随机变量取值落在某一区间 的概率与区间的开闭无关
(2) 若 A 为不可能事件,则 P (A) = 0 ; 然而 P (A) = 0 时, A 却不尽为不可能事件 .
事件(X=c)并非不可能事件,它是会发生的,也就是 说零概率事件也是有可能发生的。如 X为被测灯泡的寿 命。若灯泡寿命都在1000小时以上,而 P (X=1000)=0, 但事件 (X = 1000) 是一定会 发生的,否则不会出现事件 (X >1000),所以
(t )dt
x)dx
b
a
f
=0
(t )d
t
,
概率
P(A)= 0 A = ; P(B)=1 B = .
几乎不可能事件
几乎必然事件
1 o f (x) 0
2 o f (x)dx 1
这两条性质是判定一个 函数 f(x)是否为某r .v X 的
概率密度的充要条件
f (x)