机器人学导论第5章1

合集下载

机器人学导论复习题及参考 答案

机器人学导论复习题及参考 答案

中南大学网络教育课程考试复习题及参考答案机器人学导论一、名词解释题:1.自由度:2.机器人工作载荷:3.柔性手:4.制动器失效抱闸:5.机器人运动学:6.机器人动力学:7.虚功原理:8.PWM驱动:9.电机无自转:10.直流伺服电机的调节特性:11.直流伺服电机的调速精度:12.PID控制:13.压电元件:14.图像锐化:15.隶属函数:16.BP网络:17.脱机编程:18.AUV:二、简答题:1.机器人学主要包含哪些研究内容?2.机器人常用的机身和臂部的配置型式有哪些?3.拉格朗日运动方程式的一般表示形式与各变量含义?4.机器人控制系统的基本单元有哪些?5.直流电机的额定值有哪些?6.常见的机器人外部传感器有哪些?7.简述脉冲回波式超声波传感器的工作原理。

8.机器人视觉的硬件系统由哪些部分组成?9.为什么要做图像的预处理?机器视觉常用的预处理步骤有哪些?10.请简述模糊控制器的组成及各组成部分的用途。

11.从描述操作命令的角度看,机器人编程语言可分为哪几类?12.仿人机器人的关键技术有哪些?三、论述题:1.试论述机器人技术的发展趋势。

2.试论述精度、重复精度与分辨率之间的关系。

3.试论述轮式行走机构和足式行走机构的特点和各自适用的场合。

4.试论述机器人静力学、动力学、运动学的关系。

5.机器人单关节伺服控制中,位置反馈增益和速度反馈增益是如何确定的?6.试论述工业机器人的应用准则。

四、计算题:(需写出计算步骤,无计算步骤不能得分):1.已知点u的坐标为[7,3,2]T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v;(2)绕y轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿z轴平移7个单位得到点t。

求u, v, w, t各点的齐次坐标。

xyzOuvwt2.如图所示为具有三个旋转关节的3R 机械手,求末端机械手在基坐标系{x 0,y 0}下的运动学方程。

机器人学导论第4版课后答案第五章

机器人学导论第4版课后答案第五章

机器人学导论第4版课后答案第五章在机械传动的系统中,摩擦是必不可少的。

利用这种摩擦进行制动器运动和驱动传动,可使机械传动系统中的齿轮保持不变。

此外,通过磨擦还可产生机械震动和压力。

如果使驱动元件和传动件在轴上接触而摩擦时产生了热量,则会引起零部件上的油质过氧化,同时因摩擦带来的热量也会被传递到空气中去,这就是所谓的油氧化反应。

油氧化反应发生时产生各种化学作用和物理效应,如:油脂氧化、氧自由基分解以及其他一些化学反应。

为了降低能源消耗,人们就利用电磁铁等辅助设备进行电机和直流电弧的电磁场传播及热能的传递。

同时使用电动机带动机械装置实现制动与转动(用滚动轴承代替齿轮驱动机械装置)、滑动变速等过程。

(1)润滑在机械传动系统中的作用润滑是机械传动系统得以正常运行和保证精度的重要保证,也是重要的节能措施。

在机械传动系统中,一般可分为两种类型:①摩擦式:利用轴承上的油脂润滑滚动轴承运转的方法;②滑动式:利用滑动轴承外圈与滚珠之间的摩擦力来驱动运转。

摩擦式与滑动轴承摩擦力大,但传动精度高。

滑动式以滑动轴承为轴心轴向进行传动,由于摩擦产生的热量可传递到空气中去。

滑动式利用液体润滑元件代替了滚动轴承;滑动式同时也由润滑元件代替了滑动轴承和滚珠轴承。

(2)根据润滑与传热的关系,将滑动变速法分为()。

A.摩擦-传热:利用润滑系统中摩擦材料不产生热量,仅在零件表面形成均匀温润的油膜以增加润滑强度。

B.电弧摩擦:利用电弧来能量传递。

C.电磁力摩擦:利用电磁力来改变电动机的转速使其不停转动(转)。

D.机械滑动变速法:利用机械滑动来改变电动机和负载之间的转速。

【答案】 B 【解析】根据润滑与传热关系,将滑动变速法分为摩擦-传热-滚动-制动-滑动变速法)。

故本题选 B.。

本题中轴承润滑与传热均起到传热传质等作用,因此不属于滑动变速法。

(3)下面我们来具体介绍一下摩擦原理中的摩擦现象是怎样发展来的:早在18世纪,英国天文学家便发现了太阳系的中心——日心在东偏南方向上移动得很快的现象,这被认为是太阳系诞生时一个重要的物理现象。

机器人学导论第4章1学习教案

机器人学导论第4章1学习教案

对于旋转关节, 表示驱动(qū dònɡ)力矩。这个驱动(qū dònɡ)力矩与沿关节轴i方向的耦合力矩Ni-1,i的 分量平 衡 其它的耦合力矩Ni-1,i的分量由关节结构承受,它们(tā men)是无功的约束力矩。
i
i
bT i1
Ni-1,i
(4.5)
第14页/共33页
第十五页,共3Biblioteka 页。我们把全部(quánbù)关节力和关节力矩合 在一起 定义n维 向量为
4.1 拉格朗日方程 (fāngchéng)
式中:L是拉格朗日函数,K是系统( xìtǒng)动能 ,P是 系统( xìtǒng)势能。
LKP
Fi
t
L xi
L xi
Ti
t
L
i
L
i
第3页/共33页
第四页,共34页。
式中:F是所有(suǒyǒu)线运动外力之和,T是所有(suǒyǒu)转动外力矩之和,x 是系统变量。 例4.1 分别用拉格朗日方程及牛顿方程推 倒如图 所示的 单自由 度系统( xìtǒng) 的力和 加速度 关系。
图4-5 销钉(xiāodīng)插孔
第20页/共33页
第二十一页,共34页。
(3)拧螺钉:如图4-6所示。这时柔顺 坐标系 固定在 螺钉上 ,原点Oc在螺 钉的轴 线上,Z c轴与 螺钉轴 重合。 该柔顺 坐标系 与基坐 标系及 抓手坐 标系均 无固定 的关系 ,而和 被操作 的物体 具有(jùyǒu)固 定的关 系。在 该例中 ,绕Zc 轴的转 动及沿 Yc 方向的移动需要进行位置控制,而其余 自由 度均需 进行力 的控制 。
F
fn,n1
N
n
,n
1
(4.3)

(人工智能)人工智能机器人学导论

(人工智能)人工智能机器人学导论

(人工智能)人工智能机器人学导论人工智能机器人学导论1简介:1作者简介2机器人控制器和程序设计3简介:3机器人制作入门篇6简介:6作者简介6机器人智能控制工程8简介:8人工智能机器人学导论作者:Ricky文章来源:本站原创更新时间:2006年05月03日打印此文浏览数:2370 SlidesforSecondEdition(Beta)Chapter1:WhatareRobots?.pptslidesandthepdfversion(goodaquicklook) Chapter2:Telesystems.thepdfversionChapter3:BiologicalFoundationsoftheReactiveParadigm.pptslidesandpdfversion Chapter5:TheReactiveParadigmChapter6:SelectingandCombiningBehaviorsChapter7:CommonSensorsandSensingTechniquesChapter8:DesigningaBehavior-BasedImplementationChapter9:Multi-AgentsChapter10:NavigationandtheHybridParadigmChapter11:TopologicalPathPlanningChapter12:MetricPathPlanningChapter13:LocalizationandMappingChapter14:AffectiveRobotsChapter15:Human-RobotInteractionChapter16:WhatCanRobotDoandWhatWillTheyBeAbletoDo?简介:本书系统地介绍了人工智能机器人于感知、导航、路径规划、不确定导航等领域的主要内容。

全书共分俩大部分。

机器人学导论717622504

机器人学导论717622504

机器人学导论学院:工程机械学院专业:机械工程*名:**学号:**********任课教师:***成绩:目录一、问题重述 (4)1.1、问题重述 (4)1.2 目标任务 (4)二、问题分析 (5)三、模型的假设 (6)四、符号说明 (6)五、模型建立与求解 (7)5.1运动学模型建立与求解 (7)5.1.1机器人运动方程的建立 (7)5.1.2 利用逆运动学方法求解 (10)5.2、问题1—1的模型 (11)5.2.1搜索算法流程图 (12)5.2.2、模型求解 (15)5.3、问题1—2、3的模型 (18)5.3.1、问题1的②、③ (18)5.3.2、问题2的② (20)5.3.3、问题2的③ (22)5.4、问题3 (25)七、模型的评价 (25)7.1.模型的优点 (25)7.2.模型的缺点 (25)参考文献 (26)摘要本文探讨了六自由度机械臂从一点到另一点沿任意轨迹移动路径、一点到另一点沿着给定轨迹移动路径、以及无碰撞路径规划问题,并讨论了设计参数对机械臂灵活性和使用范围的影响,同时给出了建议。

问题一:(1)首先确定初始坐标均为零时机械臂姿态,建立多级坐标系,利用空间解析几何的变换基本原理及相对坐标系的齐次坐标变换的矩阵解析方法,来建立机器人的运动系统的多级变换方程。

通过逆运动学解法和构建规划,来求优化指令(2)假定机械臂初始姿态为Φ0,曲线离散化,每个离散点作为末端位置,通过得到的相邻两点的姿态,利用(1)中算法计算所有相邻两点间的增量指令,将满足精度要求的指令序列记录下来。

(3)通过将障碍物理想化为球体,将躲避问题就转化成保证机械手臂上的点与障碍球球心距离始终大于r的问题。

进而通过迭代法和指令检验法,剔除不符合要求的指令,从而实现避障的目的问题二:将问题二中的实例应用到问题一中的相对应的算法中。

问题三:灵活性与适用范围相互制约,只能根据权重求得较优连杆长度。

关键词:多级坐标变换逆运动学解法遗传搜索算法优化一、问题重述1.1、问题重述某型号机器人(图示和简化图略)一共有6个自由度,分别由六个旋转轴(关节)实现,使机器人的末端可以灵活地在三维空间中运动。

机器人学导论第五章

机器人学导论第五章

ω
写出例5.3中的雅克比矩阵 由例5.3的结果 式(5-55)可写出坐标系{3} 的雅克比表达式
3
l1s2 J θ l1c2 l2
0 l2
(5-66)
式(5-57)可写出坐标系{0}的雅克比表达式
3
- l1s1 l2 s12 J θ l1c1 l2c12
雅克比矩阵的定义为
建立连杆坐标系,图5-11为施加在连杆i 上的静力和静力矩(重力除外)。将这 些力相加并令其和为0,有
图5-11单连杆的静力和静力矩的平衡关系
将绕坐标系{i}原点的力矩相加,有 如果我们从施加于手部的力和力矩的描述开始,从 末端连杆到基座进行计算就可以计算出作用于每一 个连杆上的力和力矩。将以上两式重新整理,以便 从高序号连杆向低序号连杆进行迭代求解。结果如 下
例5.3 图5-8所示是具有两个转动关节的操作 臂.计算出操作臂末端的速度,将它表达成操作 臂末端的函数。给出两种形式的解答,一种是 用坐标系{3}表示,一种是用坐标系{0}表示。
图5-8两连杆操作臂
图5-9两连杆操作臂的坐标系布局
首先将坐标系固连在连杆上,计算连杆变换如 下
c1 s 1 0 T 1 0 0 s1 0 0 c1 0 0 0 1 0 0 0 1
机器人学导论
第五章 静力和速度
——新疆大学机械工程学院
第五章 速度和静力
概述 在本章中,我们将机器人操作臂的讨论扩展到静 态位置问题以外。我们研究刚体线速度和角速 度的表示方法并且运用这些概念去分析操作臂 的运动。我们将讨论作用在刚体上的力,然后 应用这些概念去研究操作臂静力学应用的问题。 关于速度和静力的研究将得出一个称为操作臂雅 克比的实矩阵。

机器人学导论第5章1

机器人学导论第5章1

( t
0) 0)
i 0
c0 c1
从而给出抛物线段的方程为:
( t ) c 2
c0 c1
i 0
c 2
(t) i (t )
1c 2 c 2t
2t 2
( t ) c 2
显然,对于直线段,速度将保持为常值,它可以根据
驱动器的物理性能来加以选择。将零出速度、线性段
(t)
c0
c1t
1 2
c 2t2
位置为 i 和 f ,抛物线与直线 部分的过渡段在时间tb和tf-tb处是 对称的,因此可得:
(t ) ( t )
c1 c2
c 2t
显然,这个抛物线运动段的加速度是一常数,并在公共点A
和B上产生连续的速度。将边界条件代入抛物线段的方程,
得到:
(t
(ti) c1 0 (tf ) c1 2c2(5)3c3(52) 0
c0 30 c1 0 c2 5 .4 c 3 0 . 72
由此得到位置,速度和加速度的多项式方程如下:
t305.4t2 0.72t3 t10.8t 2.16t2 t10.84.32t
(1 ) 34 . 68 ( 2 ) 45 . 84 ( 3 ) 59 . 16 ( 4 ) 70 . 32
为实现一条直线轨迹,必须计算起点和终点位姿 之间的变换,并将该变换划分许多小段可通过下面的方程进行 计算:
T f TiR
Ti 1T f Ti 1Ti R
R Ti 1T f
至少有以下三种不同方法可用来将该总变换化为 许多的小段变换。
(1) 希望在起点和终点之间有平滑的线性变换,因 此需要大量很小的分段,从而产生了大量的微分运动。 利用上一章导出的微分运动方程,可将末端手坐标系 在每个新段的位姿与微分运动、雅可比矩阵及关节速 度通过下列方程联系在一起。

机器人学导论

机器人学导论

机器人的动力学模型
牛顿-欧拉方程
拉格朗日方程
凯恩方法
雅可比矩阵
机器人的运动规划与控制
运动学:研究机器人末端执行器的位置和姿态信息 动力学:研究机器人末端执行器的力和力矩信息 运动规划:根据任务要求,规划机器人的运动轨迹 控制:通过控制器对机器人进行实时控制,实现运动规划
机器人的感知与感
05
知融合
01
添加章节标题
02
机器人学概述
机器人的定义与分类
机器人的定义: 机器人是一种能 够自动执行任务 的机器系统,具 有感知、决策、
执行等能力
机器人的分类: 根据应用领域、 结构形式、智能 化程度等不同, 机器人可分为多 种类型,如工业 机器人、服务机 器人、特种机器
人等
机器人学的研究领域
机器人设计:研究机器人的结构、 运动学和动力学
机器人的感知技术
添加项标题
视觉感知技术:通 过摄像头获取环境 信息,识别物体、 场景等,实现机器 人视觉导航、物体 识别等功能。
添加项标题
听觉感知技术:通 过麦克风获取声音 信息,识别语音、 音乐等,实现机器 人语音交互、音乐 识别等功能。
添加项标题
触觉感知技术:通过 触觉传感器获取接触 信息,识别物体的形 状、大小、硬度等, 实现机器人触觉导航、 物体抓取等功能。
执行器作用:根据控制信号执行相应的动作,如移动、转动等
机器人的感知系统
传感器类型:视觉、听觉、触觉等 传感器工作原理:图像处理、语音识别、触觉反馈等 传感器在机器人中的应用:导航、目标识别、物体抓取等 感知系统对机器人性能的影响:精度、稳定性、安全性等
机器人的运动学与
04
动力学
机器人的运动学方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们可以进一步画出关节的位置,速度和加速度曲线
可以看出,本例中需要的初始加速度为10.8度/秒2 运动末端的角加速度为-10.8度/秒2。
例题: 在例5.1的基础上继续运动,要求在其后的3秒内关节 角到达 105。画出该运动的位置,速度和加速度曲线。
思路点拨:可将第一运动段末端的关节位置和速度 作为下一运动段的初始条件。
位置、速度连续,但是加速度不连续。
例5.1:已知一个关节在5秒之内从初始角30度运动 到终端角75度,使用三次多项式计算在第1,2,3, 4秒时关节的角度。(我们假设在开始和终止的瞬 间关节的速度是0)
解:由题意可得到
(ti) c0 30o (t f ) c0 c1(5) c2 (52 ) c3(53) 75o (ti ) c1 0 (t f ) c1 2c2 (5) 3c3(52 ) 0
§第5章 轨迹规划(4学时)
学习目的: 1 理解轨迹规划原理 2 学会用轨迹规划处理实际问题
学习内容: 1 轨迹规划原理 2 关节空间的轨迹规划 3 直角坐标空间的轨迹规划 4 连续轨迹纪录
定义:
§5.1 路径与轨迹
如果规定一个机器人从A点经过B点运动到C点而不 强调时间的概念,那么这一过程中的位形序列就构 成了一条路径。如果我们强调到达其中任意一点的 时间,那么这就是一条轨迹。我们可以看出轨迹和 路径的区别就在于轨迹依赖速度和加速度。
的角度以及角速度,那么就可以求得 ci,进而求
得关节的运动方程。
尽管每一个关节都是分别计算的,但是在实际 控制中,所有关节自始至终都是同步运动;
如果机器人初始和末端速度不为零,可以通过 给定数据得到未知数值;
如果要求机器末端人依次通过两个以上的点, 则每一段求解出的边界速度和位置均可作为下一段 的初始条件,其余相同;
(3) 在B点前后各加过渡点D,E,使得B点落在DE上。

❖ 1)
轨对于迹点规位划作的业分机类器人,需要描述它的起始状态和
目标状态。如果用 表示工具坐标系的起始值,
表示目标值,就是表T0示 这两个值的相对关系。 Tf
这种运动称为点到点运动(PTP)
❖ 2) 对于弧焊、研磨、抛光等曲面作业,不仅要规定 起始点和终止点,还要规定中间整个运动过程。对 于一段连续运动过程,理论上无法精确实现,实际 上是选取一定数量(满足轨迹插补精度)的点作为中间 点,从而近似实现沿给定的路径运动。
2 直角坐标空间描述 将轨迹分成若干段,使机器人的运动经过这些中间 点,在每一点都求解机器人的关节变量,直到到达 终点,如下图所示:
直角空间描述
特点:路径可控且可预知,直观、容易看到机器人 末端轨迹;但计算量大,容易出现奇异点,如下图 所示:
关节值突变
轨迹穿过 机器人自 身
§5.3 轨迹规划的基本原理
解:
t
C0
C1t
C2t

2
C t3 3
t C1 2C2t 3C3t 2
(t) 2C2 6C3t
其中
ti 0 tf 3 可以求得
i 75 f 105
i 0 f 0
(t) 75 10t 2 2.222 t3 (t) 20t 6.666 t 2 (t) 20 13.332 t
这种运动称为连续路径运动或轮廓运动(CP)
❖ 3) 障碍约束轨迹规划
§5.4 关节空间的轨迹规划
一、 三次多项式的轨迹规划 我们假设机器人某一关节的运动方程是三次的
t
c0
c1t
c2t
2
c t3 3
这里初始和末端条件是:
(ti ) i (t f ) f (ti ) 0 (t f ) 0
c0 30 c1 0 c2 5.4 c3 0.72
由此得到位置,速度和加速度的多项式方程如下:
t 30 5.4t 2 0.72t3 t 10.8t 2.16t 2 t 10.8 4.32t
(1) 34.68 (2) 45.84 (3) 59.16 (4) 70.32
3. 多点的情况
(1)从A向B先加速,再匀速,接近B时再减速, 从B到C再重复。为避免这一过程中不必要的停止 动作,可将B点两边的动作进行平滑过渡。机器 人先抵达B点,然后沿着平滑过渡的路径重新加 速,最终抵达并停止在C点。
(2)考虑到由于采用了平滑过渡曲线,机器人经 过的可能不是原来的B点,可事先设定一个不同的 B’’点,使曲线正好经过B点。
一 关节空间的轨迹规划 1. 计算起点和终点的关节变量,各关节都以最大角 速度运动 特点:轨迹不规则,末端走过的距离不均匀,且各 关节不是同时到达。
A
B
2. 在1的基础上对关节速率做归一化处理,使各关节 同时到达终点。
特点:各关节同时到达终点,轨迹各部分比较均 衡,但所得路径仍然是不规则的。
A
B
二 直角坐标空间轨迹规划
5.2 关节空间描述与直角空间描述
1 关节空间描述 如果给定机器人运动的起点和终点,就可以利用逆 运动学方程计算出每个关节的矢量角度值;然后机 器人控制器驱动关节电机运动使机器人到达相应的 位置。这种以关节角度的函数来描述机器人轨迹的 方法称为关节空间法。 特点:在机器人运动的过程中,中间状态是不可知 的,但计算量较小,不会出现奇异点 。
进而可以画出以下曲线
max
4( f i )
(t f ti )2
为保证 机器人 的加速 度不超 过其自 身能力, 应考虑 加速度 的限制。

t
c0
c1t
c2t
2
c t3求一阶导数得到: 3
t c1 2c2t 3c3t 2
将初始和末端条件代入得到:
ti C0 i
t f C0 C1t f C2t f 2 C3t f 3 f
ti C1 0
t f C1 2C2t f 3C3t f 2 0
从上例可以看出,若我们已知开始和终止时刻
1. 首先画出路径,接着将路径n等分(为了获得较好 的沿循精度,n越大越好) ,分别计算到达各点所需 的关节变量。 特点:关节角非均匀变化,末端沿已知路径行走。
2. 在1的基础上,考虑各关节的加速减速时间,为 防止在加速期间轨迹落后于设想的轨迹,在划分分 界点时,如果是直线轨迹,就按照方程划分。曲线 轨迹就相对复杂一些。
相关文档
最新文档