铁路信号交流道岔控制电路原理说明
四线制道岔控制电路(启动电路跑图、表示电路跑图)

信号基础四线制道岔控制电路道岔控制电路由动作电动转辙机的启动电路和反映道岔实际位置的表示电路组成。
一、道岔启动电路:1、道岔启动电路应满足的技术条件:(1)道岔区段有车时,道岔不应转换。
此种锁闭的作用叫做区段锁闭。
(2)进路在锁闭状态时,进路上的道岔,都不应再转换。
此种锁闭的作用叫做进路锁闭。
(3)在道岔启动电路已经动作以后,如果车随后驶入道岔区段,则应保证转辙机能继续转换到底,不要受上列(1)的限制而停转。
(4)道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电动机的整流子与电刷接触不良,以致电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会在转换。
(5)为了便于维修试验,以及在尖轨与基本轨之间夹有障碍物,致使道岔转不到底时,能使道岔转回原位,必须保证道岔无论转到什麽位置,都可随时用手动操纵方法使它向回转。
(6)道岔转换完毕,应自动切断电动机的电路。
2、道岔控制方式:控制道岔转换的方式有三种:人工转换;进路式操纵;单独操纵。
(1)人工转换:当停电、故障、维修、清扫时,在现场用手摇把将道岔转换至所需位置。
(2)道岔进路操纵:以进路的方式使进路的要求接通电动转辙机将道岔转换到定位或反位。
选岔网络按照选路的要求,选出进路上各组道岔应转向的位置,即某道岔是定位操纵继电器DCJ吸起,就接通道岔启动电路使该道岔转向定位;是反位操纵继电器FCJ吸起,就接通道岔启动电路使该道岔转向反位。
全进路上的道岔按进路要求一次排出。
(3)为了维修、试验道岔和开放引导信号排列引导进路等,需要对道岔进行单独操纵。
单独操纵道岔的方法是:按下被操纵道岔按钮CA,若要使它转向定位,则同时按下道岔总定位按钮ZDA,接通道岔控制电路使该道岔转向定位;若要使它转向反位,则同时按下道岔总定位按钮ZFA,接通道岔控制电路使该道岔转向反位。
进路式操纵操纵与单独操纵之间的关系是:道岔的单独操纵优先于进路式操纵。
3、道岔启动电路的工作原理:道岔启动电路采用分级控制方式控制道岔转换,由第一启动继电器1DQJ检查联锁条件,符合要求后才能励磁吸起;然后由第二启动继电器2DQJ控制电机的旋转方向,以决定使电机转向定位转向反位;最后由直流电机转换道岔。
道岔启动电路及表示电路说明

道岔启动电路及表示电路说明1道岔表示电路的技术条件1 •只能用继电器的吸起状态与道岔的正确位置相对应,分别设置道岔定位表示继电器 DBJ和道岔反位继电器 FBJ。
2 •当室外联系线路发生混线或混入其他电源时,必须保证不致使DBJ或FBJ错误吸起。
3 •当道岔在转换或发生挤岔事故、停电或断线等故障时,必须保证DBJ或FBJ失磁落下,因此必须使用安全型继电器。
2、四线制道岔控制电路(一)道岔启动电路现行的道岔控制电路采用四线制控制电路,通过三级电路完成对道岔转换的控制,如图L:.!四线制道岔控制电路图第一级控制电路是IDQJ3_4 (道岔第一启动继电器)线圈励磁电路,检查联锁条件,确定能否接收控制命令。
人工操纵道岔[选路时DCJ(定位操纵继电器)↑或FCJ(反位操纵继电器)↑,单操时KF- ZDJ有电、AJ(按钮继电器)↑或KF-ZFJ有电、AJ ↑ ]时,IDQJ3_4线圈检查了没有办理人工锁闭[CA(道岔按钮)在定位],没有进行区段锁闭和进路锁闭[SJ (锁闭继电器)↑ ],又经2DQJ(道岔第二启动继电器)检查道岔需要转换后,励磁吸起。
第二级控制电路是 2DQ J的转极电路,确定道岔的转换方向(向定位转还是向反位转)。
1DQJ↑后使2DQJ转极。
第三级控制电路是1DQJ1一 2线圈自闭电路。
接通并随时检查电动机动作电路是否正常。
1DQJ↑> 2DQJ转极接通道岔动作电路:1DQJ检查电动机正常工作而自闭,道岔转换到底后由电动转辙机的自动开闭器的动作接点切断动作电路,使动作电路复原。
(二)道岔表示电路电路中使用了两个安全型偏极继电器,作为道岔表示继电器,使用了独立的表示变压器,并在电路的末端设置整流元件,检查电路完整后向发送端送回直流电源,为了防止半波整流造成表示继电器抖动,在表示继电器两端并联了 4 μF电容器起滤波作用。
3、六线制直流双电动转辙机控制电路当轨道线路采用12号60 kg/m AT道岔时,一台转辙机已经适应不了转换力和牵引力的要求。
zd6型电动转辙机道岔控制电路工作原理

zd6型电动转辙机道岔控制电路工作原理
ZD6型电动转辙机道岔控制电路是一种常见的道岔控制装置,主要用
于铁路交通的信号控制系统中。
该电路具有快速、准确、可靠的特点,可有效控制电动转辙机的运作,以确保铁路交通的安全和顺畅。
ZD6型电动转辙机道岔控制电路由以下几个主要部分组成:电源部分、控制逻辑电路、触发器和输出部分。
首先,电源部分为整个电路提供必要的电能,一般需要使用交流电源
或直流电源。
然后,控制逻辑电路接收来自信号控制中心的信号,经
过处理后将控制信号传递给触发器进行触发。
触发器接收到控制信号后,将其转换成电脉冲信号,并将其传递到输出部分控制电动转辙机
的反转。
在使用过程中,当控制逻辑电路接收到信号控制中心发来的命令时,
将根据信号的指令进行处理,并将处理后的信息传递给触发器。
触发
器接受到控制信号后将产生一个电脉冲信号,并将其发送到输出部分。
输出部分通过电磁力作用控制电动转辙机道岔的反转,直到道岔位置
处于指定的状态为止。
当路径状态发生变化时,ZD6型电动转辙机道
岔控制电路会自动监测和调整电路的运作,以确保道岔在安全的范围
内运作。
总之,ZD6型电动转辙机道岔控制电路是一种高效、可靠的控制设备,可保证铁路交通的安全和顺畅。
通过精确的控制和监测机制,该电路
能够快速、准确地响应信号控制中心的指令,并控制电动转辙机的反转,使道岔在合适的位置运作,从而确保路段的运行安全和高效性。
《道岔控制电路》课件

触点控制
电路中的触点接通或断开,控制 道岔电机的转向和位置。
继电器操作
继电器接收电信号,并通过吸合 或切断触点,控制道岔电机的动 作。
电气布线
电气布线图描述了电气元件之间 的连接方式,确保道岔的电气信 号传递正确无误。
道岔控制电路的组成部分
道岔控制电路由多个关键组件组成,这些组件共同工作,确保道岔的准确控制。
道岔控制电路可能出现各种故障,需要及时排除,以确保铁路系统的正常运行。
检查电路连线
检查电路连线是否松动或断开,修复或更换损 坏的连接线。
检测触点状态
检查触点是否正常工作,清洁或更换受的触 点。维护继电器定期维护继电器,确保其正常工作,如有需要, 更换损坏的继电器。
测试电源供应
测试电源供应是否正常,检查电流和电压是否 达到要求。
1 信号发生器
产生用于控制道岔的正确信号,确保道岔电 路的正常工作。
2 触点和继电器
触点和继电器是道岔控制电路中的关键元件, 负责接通和切断电流,控制道岔的运行。
3 控制面板
控制面板上的按钮和开关用于手动控制道岔 的位置和状态。
4 电源供应
提供适量的电流和电压,确保道岔控制电路 始终处于正常工作状态。
道岔控制电路的发展趋势
随着技术的不断进步,道岔控制电路也在不断发展和改进,以应对未来铁路系统的需求。
数字化控制系统
数字化控制系统能够提高道岔控 制的精确度和可靠性,提供更多 功能和故障检测能力。
远程监控
远程监控技术使得道岔的状态和 故障可以实时监测和警报,提高 维护效率。
冗余系统
冗余系统可以提供备份和容错处 理,确保道岔控制电路在出现故 障时仍能正常工作。
道岔控制电路的工作原理
四线制道岔控制电路原理与焊接实验

四线制道岔控制电路原理与焊接实验引言四线制道岔控制电路是铁路信号系统中的重要组成部分,用于控制道岔的转向和位置。
道岔作为铁路线路上的转辙设备,能够实现列车的线路切换,确保列车的正常通行和安全运行。
本文旨在介绍四线制道岔控制电路的原理和焊接实验,通过深入探讨该主题,使读者能够全面、详细地了解四线制道岔控制电路的工作原理和实际应用。
一、四线制道岔控制电路的基本原理四线制道岔控制电路是一种采用直流电动机作为执行机构的电控系统,通过合理设计电路和控制信号的传递,实现道岔切换和位置控制。
其基本原理包括以下几个方面:1.1 道岔位置检测道岔位置监测是道岔控制电路的重要功能之一。
通过安装位置传感器,监测道岔的实际位置,并将信号反馈回控制电路。
常见的位置传感器有接近开关、编码器等,可以实现对道岔位置的准确检测。
1.2 控制信号传递控制信号的传递是四线制道岔控制电路的核心。
在道岔控制系统中,通常采用继电器作为控制信号的传递介质。
通过合理的继电器连接和控制信号的切换,可以实现对道岔电机的正转、反转和停止控制。
1.3 电源供电为了正常工作,四线制道岔控制电路需要稳定可靠的电源供电。
通常情况下,可以使用直流电源供电,通过合理的电源接入和保护措施,确保电路工作的稳定性和可靠性。
二、四线制道岔控制电路的焊接实验为了更好地理解四线制道岔控制电路的原理和实际应用,进行焊接实验是必不可少的环节。
焊接实验能够让学生亲自动手,将理论知识转化为实际操作能力,增强对电路原理的理解和掌握程度。
2.1 实验器材与材料准备在进行焊接实验之前,需要准备以下器材和材料: - 道岔控制电路焊接板 - 焊接工具(电烙铁、锡融剂、焊锡丝等) - 电源供应器2.2 实验步骤1.将道岔控制电路焊接板连接到电源供应器,确保电源供应器正常工作。
2.根据焊接板上的电路图和焊接指南,将电子元件逐一焊接到焊接板上。
注意焊接时的温度控制和焊接点的质量。
3.在焊接完成后,检查焊接点是否牢固,是否存在短路或接触不良的情况。
道岔控制电路的原理

1、道岔启动电路应保证实现以下技术条件yimeijx05⑴道岔区段有车时,道岔不应转换。
此种锁闭作用叫做区段锁闭。
⑵进路在锁闭状态时,进路上的道岔都不应转换。
此种锁闭作用叫做进路锁闭。
⑶在道岔启动电路已经动作以后,即使有车驶入该道岔区段也应保证道岔继续转换到底。
⑷道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电机故障,以至电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会再转换。
⑸为了便于维修试验,以及在道岔尖轨与基本轨之间夹有障碍物致使道岔转换不到底时应能使道岔转回原位。
2、道岔启动电路构成原理⑴1DQJ电路励磁电路①、道岔按钮CA-6接点道岔按钮CA-61与CA-62接点定位时闭合,在维修转辙机或清扫道岔时,把CA按钮拉出CA-61与CA-62断开对道岔实行单独锁闭。
②、锁闭继电器SJ-8前接点。
在6502电器集中里,SJ吸起反映道岔区段空闲和进路在解锁状态。
当道岔区段有车时或进路在锁闭状态时,SJ落下,SJ81-82断开切断道岔启动电路,对道岔实行进路锁闭和区段锁闭使道岔不能转换。
③、道岔按钮继电器CAJ前接点和条件电源“KF-ZFJ”或“KF-ZDJ”。
CAJ-Q是道岔按钮按下DAJ吸起后闭合,是道岔按钮按下闭合接点的复示继电器。
条件电源“KF-ZFJ”在道岔总反位继电器吸起后才有电。
条件电源“KF-ZDJ”在道岔总定位继电器吸起后才有电。
④、道岔定位操纵继电器和DCJ接点道岔反位操纵继电器FCJ接点。
当排列进路时,需要进路上的道岔向定位转动则DCJ吸起,当进路上的道岔需要向反位转动时,FCJ吸起。
⑤道岔第二启动继电器第四组接点(2DQJ141)反映道岔处在什么位置。
•141-142闭合,道岔处在定位。
141-143闭合道岔处在反位。
⑥向定位单独操纵道岔的操作方法为:•同时按下道岔的单操按钮和总定位按钮,这时CAJ吸起接通电路。
ZDJ吸起使“KF-ZDJ”有电。
1DQJ的励磁电路为:KZ-CA-SJ-Q-1DQJ3.4线圈-2DQJ141_143-CAJ-KF-ZDJ。
四线制道岔控制电路(启动电路跑图、表示电路跑图)
信号基础四线制道岔控制电路道岔控制电路由动作电动转辙机的启动电路和反映道岔实际位置的表示电路组成。
一、道岔启动电路:1、道岔启动电路应满足的技术条件:(1)道岔区段有车时,道岔不应转换。
此种锁闭的作用叫做区段锁闭。
(2)进路在锁闭状态时,进路上的道岔,都不应再转换。
此种锁闭的作用叫做进路锁闭。
(3)在道岔启动电路已经动作以后,如果车随后驶入道岔区段,则应保证转辙机能继续转换到底,不要受上列(1)的限制而停转。
(4)道岔启动电路动作后,如果由于转辙机的自动开闭器接点接触不良或电动机的整流子与电刷接触不良,以致电动机电路不通时,应使启动电路自动停止工作复原,保证道岔不会在转换。
(5)为了便于维修试验,以及在尖轨与基本轨之间夹有障碍物,致使道岔转不到底时,能使道岔转回原位,必须保证道岔无论转到什麽位置,都可随时用手动操纵方法使它向回转。
(6)道岔转换完毕,应自动切断电动机的电路。
2、道岔控制方式:控制道岔转换的方式有三种:人工转换;进路式操纵;单独操纵。
(1)人工转换:当停电、故障、维修、清扫时,在现场用手摇把将道岔转换至所需位置。
(2)道岔进路操纵:以进路的方式使进路的要求接通电动转辙机将道岔转换到定位或反位。
选岔网络按照选路的要求,选出进路上各组道岔应转向的位置,即某道岔是定位操纵继电器DCJ吸起,就接通道岔启动电路使该道岔转向定位;是反位操纵继电器FCJ吸起,就接通道岔启动电路使该道岔转向反位。
全进路上的道岔按进路要求一次排出。
(3)为了维修、试验道岔和开放引导信号排列引导进路等,需要对道岔进行单独操纵。
单独操纵道岔的方法是:按下被操纵道岔按钮CA,若要使它转向定位,则同时按下道岔总定位按钮ZDA,接通道岔控制电路使该道岔转向定位;若要使它转向反位,则同时按下道岔总定位按钮ZFA,接通道岔控制电路使该道岔转向反位。
进路式操纵操纵与单独操纵之间的关系是:道岔的单独操纵优先于进路式操纵。
3、道岔启动电路的工作原理:道岔启动电路采用分级控制方式控制道岔转换,由第一启动继电器1DQJ检查联锁条件,符合要求后才能励磁吸起;然后由第二启动继电器2DQJ控制电机的旋转方向,以决定使电机转向定位转向反位;最后由直流电机转换道岔。
道岔控制电路、表示电路
04 道岔控制电路与表示电路 的比较
电路组成比较
总结词
道岔控制电路和表示电路在电路组成上存在差异。
详细描述
道岔控制电路通常由继电器、接触器和线圈等元件组成,用于控制道岔的转换。 而表示电路则由灯泡、电阻和触点等元件组成,用于表示道岔的位置和状态。
工作原理比较
总结词
道岔控制电路和表示电路的工作原理 有所不同。
检查电源设备是否正常工作,测量电源电压 是否正常。
执行机构故障
检查执行机构是否正常工作,电机是否转动, 以及机械部分是否有卡阻。
联锁设备故障
检查联锁设备是否正常工作,继电器、接触 器等是否有故障。
传输设备故障
检查传输设备是否正常工作,电缆、端子、 配线等是否有松动或断线。
03 道岔表示电路
表示电路的组成
06 总结与展望
总结
1
道岔控制电路和表示电路是铁路信号系统中的重 要组成部分,它们分别负责控制道岔的转换和表 示道岔的当前状态。
2
在过去的几十年里,随着技术的发展和铁路运输 需求的增加,道岔控制电路和表示电路也在不断 改进和优化。
3
目前,大多数铁路信号系统都采用了计算机控制 和智能化技术,使得道岔控制电路和表示电路更 加可靠、高效和安全。
效和可持续发展。
THANKS FOR WATCHING
感谢您的观看
预防措施
定期对控制电路进行维护和检查,确保各元件工 作正常。
应用案例二:道岔表示电路故障排除
问题描述
01
表示电路故障导致道岔状态显示不正ቤተ መጻሕፍቲ ባይዱ。
解决方案
02
检查表示电路的电缆、接点、变压器等元件是否正常,修复损
坏的元件或更换故障接点。
铁路信号交流道岔控制电路原理说明
切断保护电路说明
交流道岔控制电路原理说明
2011.12
目录
一. 电路构成 二. 原理介绍 三. 工程设计
一 电路构成
分类
交流道岔控制电路按动作时序,由 启动电路、动作电路和表示电路构成。启 动电路指电路接受联锁指令后的继电电路, 动作电路指动作转辙机的电路,而表示电 路指把道岔位置反映到信号楼里来的电路。
交流道岔控制电路按道岔牵引点数量分 为单机控制电路和多机控制电路。
当道岔其中任意一个牵引点的转辙机不能启动时, 其BHJ不能正常吸起,则ZBHJ因励磁电路的KF电无 法送出而不能吸起,这时QDJ在缓放时间结束后落 下,切断了此组道岔尖轨或心轨所有牵引点的 1DQJ电路,此组道岔尖轨或心轨所有转辙机停止 转动。这时就需按下故障按钮(故障按钮采用非自 复式按钮,并且加铅封),使QDJ重新吸起,由室 内外人员共同配合使道岔转动。
DBQ动作时序波形图
定位表示电路
转辙机
定位表示电路简化图
反位表示电路图
转辙机
反位表示电路简化图
表示电路构成
道岔转换完成后,BHJ落下,1DQJ落下, 1DQJF落 下,三相电源被切断,通过1DQJ的后接点构成表示 电路。
表示电路由表示变压器、继电器、电阻、整流二极 管和转辙机的各组表示接点组成。
换器牵引的道岔牵引点就不需要室内电路组合。 电液转辙机5线制道岔控制电路中密贴检查器要最
铁路信号交流道岔控制电路原理说明
道岔控制电路的组成
电源设备
提供控制电路所需的直流电源。
信号采集设备
采集列车接近信号和道岔状态信号。
控制器
根据采集的信号判断道岔的转换方向,并输出控制指令。
执行机构
接收控制指令,驱动道岔转动。
道岔控制电路的工作原理
信号采集
信号采集设备检测列车接近信号和道岔状态 信号,并将信号传输给控制器。
判断决策
交流道岔控制电路的发展趋势对铁路信号系统的影响
提高信号系统的稳定性
通过技术创新和集成化设计,交流道岔控制电路将更加稳定可靠, 从而提高整个铁路信号系统的稳定性。
提升运输效率
智能化的交流道岔控制电路能够实现自动转换和远程控制,提高铁 路运输效率,减少人工干预和故障率。
促进信号系统的数字化转型
交流道岔控制电路的发展趋势将推动铁路信号系统的数字化转型, 实现数字化、网络化和智能化的发展。
控制器根据采集的信号判断列车进路和道岔 的转换方向,输出控制指令。
执行动作
执行机构接收控制指令,驱动道岔转动至所 需位置。
反馈检查
控制器通过信号采集设备检查道岔的实际位 置,确保转换正确。
02
交流道岔控制电路的原 理
交流道岔控制电路的组成
电源部分
提供控制电路所需的直流电源,通常为24V直流电。
控制部分
交流道岔控制电路的发展前景
集成化
未来交流道岔控制电路将更加集成化,实现 电路板级集成,减少外部连线,提高系统的 可靠性和稳定性。
智能化
随着人工智能技术的发展,交流道岔控制电路将更 加智能化,能够实现自适应控制和自主学习。
绿色环保
未来交流道岔控制电路将更加注重环保和节 能,采用低功耗设计和绿色材料,降低能源 消耗和环境污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转辙机
转辙机
道岔转换完成后,BHJ落下,1DQJ落下, 1DQJF 落下,三相电源被切断,通过1DQJ的后接点构成 表示电路。 表示电路由表示变压器、继电器、电阻、整流二极 管和转辙机的各组表示接点组成。 表示电路经过了电机的3个线圈,检查了线圈的完 整性。
假设变压器二次侧4正3负,当正弦交流电源正半波时, DBJ励磁 吸起,与DBJ线圈并联的另一条支路,因整流二极管反向截止, 故电流基本为零;当正弦交流电源负半波时,在DBJ和整流堆这 两条支路中,由于这时整流堆呈正向导通状态,其改支路的阻抗 要比DBJ支路阻抗小得多,电流绝大部分经整流堆支路中流过, 由于DBJ线圈的感抗足够大,且具有一定的电流迟缓作用,因而 DBJ能保持在吸起状态。 经半波整流后,用微积分计算出的BD1型表示变压器二次侧电压 的平均值(输出直流分量)为0.45U,即0.45*110=49.5V。 I=49.5/(1000+1000)=24.75mA。DBJ上的电压为 1000*24.75=24.75V。因现场实际还有线圈电阻和电缆电阻, 故实际的电流值会小于这个值,DBJ上的电压也会小于这个值。
交流道岔控制电路原理说明
北京全路通信信号研究设计院有限公司 2011.12
一.
电路构成
二.
原理介绍
工程设计
三.
一 电路构成
分类
启动电路中1DQJ的3—4线圈部分,由直流道岔控制 电路演变而来。 1DQJ的1—2线圈不同于直流道岔控 制电路直接串接在转辙机电机的动作电路中,而是与 其他继电逻辑条件一起构成1DQJ的自闭电路。 动作电路是经由AC380供电的三相五线制电路。三相 电源通过断相保护器接入电路。 表示电路与直流道岔控制电路有较大区别,是表示继 电器与二极管电阻并联构成的半波整流电路。 多机控制电路是在单机控制电路的基础上组合而来, 考虑了错峰启动等因素。
多机牵引一组道岔时,为使电源屏供电电流错开电 机启动峰值,转辙机应按顺序错峰启动。 利用1DQJ的缓吸特性,从第二牵引点开始,将上 一个牵引点1DQJ的前接点串入本牵引点1DQJ的 3—4线圈启动电路中,以完成多机顺序传递启动。 错峰启动的时间与1DQJ的缓吸时间相关,经测算 为100ms左右。
以定位操纵为例,联锁发出定位操纵指令后,DCJ 吸起、YCJ吸起,1DQJ的3—4线圈通过DCJ的前接 点、2DQJ的反位接点和YCJ的前接点得电,随后缓 吸(见上图中红色粗线)。1DQJ吸起后,2DQJ的 3—4线圈通过DCJ的前接点、1DQJ的前接点得电, 随后转极到定位接点闭合(见上图中绿色粗线)。 2DQJ定位接点闭合后,1DQJ的3—4线圈电路被切 断,为下一次道岔动作做好准备。BHJ在1DQJ的缓 放时间内吸起, 1DQJ的1—2线圈通过BHJ的前接 点构成自闭电路(见上图中黄色粗线)。1DQJ的 缓放时间长度与3—4线圈充磁的时间成正比。 反位操纵的电路动作过程与定位操纵基本相同,只 是检查的继电器接点不同。 BHJ的动作原理见后面章节。
置时做好准备。道岔转换完成后,第4排接点组随 即断开,第3排接点组随即接通。
反位操纵的电路动作过程与定位操纵基本相同,只 是接入的控制线和检查的转辙机启动接点不同。
对比上面两张图,可以看出通过B相和C相的换相改 变交流三相电动机的旋转方向,从而操纵道岔向定 位或反位转换。 在动作电路中,因2DQJ的第一组和第二组极性极 点(即111和121接点组)需切断电流较大的电机 电路,所以这两组接点,都要采用带熄弧装置的加 强接点。
以定位到反位的操作为例,对于转辙机定位时单号 接点组闭合和转辙机定位时双号接点组闭合,动作 杆的运动方向是相反的。因而当转辙机定位时双号 接点组闭合时,只有通过380V三相交流电换相, 动作杆才能带动道岔尖轨向反位移动。见后两页图 示。
1. 转辙机的技术指标,启动电压大于270V。 2. 54欧姆的损耗,2A*54欧姆=108V。超过54欧姆时,通过加芯可解 决。 3. 380-108=272V启动电压。 4. 导线线径计算公式: 铜线:S=IL/54.4*U 铝线:S=IL/34.4*U 式中:I——导线中通过的最大电流(A) L——导线的长度(M) U——允许的电压降(V) S——导线的截面积(mm2) 由此可计算出直径1 mm2的室外电缆单芯的最大长度: L=S*54.4*U/I=π(1/2)2 *54.4*108 / 2=2300m
为降低电源屏的输出功率,双动道岔需要满足 第一动道岔动作完成后,第二动道岔再动作。 为此在切断及保护组合中,设置DKJ、DWJ两 个继电器。 双动道岔控制电路中,ZBHJ线圈3—4上跨接 200uf/50v二极管和51Ω电阻组成的RC电路。 当所有转辙机转换到位后,每一牵引点的BHJ 依次落下。此时,因RC阻容放电,ZBHJ会缓 放落下。避免了在第一牵引点的1DQJ缓放期 间,DKJ经于1DQJ的前接点和1ZBHJ的后接点 重新吸起。
三. 工程设计
道岔控制电路相关图纸工程设计时,是按照转辙机 其中的两排单号接点组闭合,两排双号接点组断开 为道岔定位进行设计的。若道岔在定位时,转辙机 两排双号接点组闭合,两排单号接点组断开,则需 要做如下调整配线: 1)室外电缆盒至转辙机之间的电缆和电缆盒中的 二极管:X2与X3交叉,X4与X5交叉。 2 )电缆盒中的二极管颠倒极性。 3)室内三相电源的B相和C相交叉。
当道岔其中任意一个牵引点的转辙机不能启动时, 其BHJ不能正常吸起,则ZBHJ因励磁电路的KF电 无法送出而不能吸起,这时QDJ在缓放时间结束 后落下,切断了此组道岔尖轨或心轨所有牵引点 的1DQJ电路,此组道岔尖轨或心轨所有转辙机停 止转动。这时就需按下故障按钮(故障按钮采用非 自复式按钮,并且加铅封),使QDJ重新吸起,由 室内外人员共同配合使道岔转动。
二.
原理介绍
单机控制电路
序号 1 2 3 4 5 6 7 8 9 10
代号 DCJ FCJ 1DQJ 2DQJ 1DQJF BHJ DBJ FBJ DBQ BB
名称 定位操纵继电器 反位操纵继电器 第一道岔启动继电器 第二道岔启动继电器 第一道岔启动复示继电器 保护继电器 定位表示继电器 反位表示继电器 断相保护器 表示变压器
二.
原理介绍
多机控制电路
序号 1 2 3 4
代号 QDJ ZBHJ DKJ DWJ
名称 切断继电器 总保护继电器 道岔动作开始继电器 道岔动作其中任一台转辙机 不启动时,应切断该道岔的控制电路。为此设 置了切断保护电路。切断保护电路由ZBHJ和 QDJ组成。 道岔开始转换时,各个牵引点的BHJ相继吸起, 所有的牵引点的BHJ吸起后,ZBHJ吸起,从第 一个开始动作的牵引点的BHJ吸起到ZBHJ吸起 的这段时间里,QDJ通过线圈上跨接的RC阻 容放电保持吸起,ZBHJ吸起后QDJ通过ZBHJ 的前接点继续吸起。经测算RC放电时间在 1.7s左右。
串联输出的感应交流电压经全波整流并滤波后供出16~22V的直流电 压,供给BHJ(JWXC-1700型继电器)使其保持吸起。当三相电源任 意一相断电时,其余两相相位差180。,互相抵消,互感器Ⅱ次侧电 流矢量为0,继电器落下。此电路能保证道岔无论是启动前断相还是 启动后断相,都可以使BHJ可靠地落下,1DQJ落下,切断三相交流电 源。对电动机起到了有效的保护作用。
当控制电源有任一相发生断相,就应及时切断其余两相电源,以保护 电机不被烧毁。为此设置了断相保护器电路。 电路的工作原理:根据电磁感应原理,电流互感器的Ⅰ次侧分别与电 路的三个线圈组串联,互感器工作在饱和状态;电流互感器的Ⅱ次侧 除基波外,还有高次谐波分量,由于三相电位差为120。,所以基波
分量U1= UA1 +UB1+ UC1=0。三相电源正常供出时, Ⅱ次侧三线圈
为了确保双动道岔启动时第一动先动作,在第二动1DQJ的励 磁电路中的DCJ和FCJ的前接点没有直接接入KF电源,而是接 入第一动的2DQJ的接点。这样第一动的DKJ吸起前,第一动 的2DQJ 接点切断了第二动的1DQJ的励磁电路。 在第一动道岔启动电路中,接入了第二动道岔的DKJ和DWJ的 后接点。同理,在第二动道岔启动电路中,接入了第一动道 岔的DKJ和DWJ的后接点。当第一动开始动作时,尖轨第一机 的1DQJ吸起,同时相应的DKJ吸起,切断第二动的起动电路, 使第二动不能转换。 当第一动全部电机都开始转换时,1ZBHJ(尖轨)和2ZBHJ (心轨)都吸起,DWJ继电器吸起,切断DKJ电路。当第一动 全部电机到位后,1ZBHJ(尖轨)和2ZBHJ(心轨)都落下, 则DWJ落下,第一动转换完成。当第一动DKJ和DWJ都落下后, 第二动启动电路构成,此时,第二动开始转换。
室内电路根据转辙机类型进行配置。 电液转辙机可以带2个SH(锁闭转换器),由锁闭转 换器牵引的道岔牵引点就不需要室内电路组合。 电液转辙机5线制道岔控制电路中密贴检查器要最 后一个SH后。
有下拉装置的道岔,道岔控制电路需要和下拉电路 结合。
1DQJ吸起
2DQJ转极
BHJ吸起
1DQJF吸起
BHJ落下
1DQJF落下
1DQJ落下
DCJ落下
1DQJ得电
1DQJF得电
定位操纵:1DQJ吸起后, 1DQJF随后吸起。A、B、 C三相电分别通过红色、绿色、黄色三条粗线(X1、 X2、X5)接通电路。第2排接点组随即断开,第1
排接点组随即接通,为道岔中途停止转换返回原位