求导常用公式
求导基本法则和公式

求导基本法则和公式导数是微积分中的重要概念,用来描述函数在其中一点的变化率。
求导是求函数的导数的过程,求导的基本法则和公式有很多,下面详细介绍一些常用的基本法则和公式。
1. 常数法则:对于任意常数c,其导数为0。
即 d(c)/dx = 0。
2. 幂函数法则:对于任意实数n,以及常数a大于0,其导数公式为d(ax^n)/dx = nax^(n-1)。
3. 和差法则:对于任意两个可导函数f(x)和g(x),其导数为两个函数的导数的和或差。
即d(f(x) ± g(x))/dx = f'(x) ± g'(x)。
4. 积法则:对于任意两个可导函数f(x)和g(x),其导数为第一个函数在x点的值与第二个函数在x点的导数的乘积再加上第一个函数在x点的导数与第二个函数在x点的值的乘积。
即 d(f(x)g(x))/dx = f'(x)g(x) + f(x)g'(x)。
5. 商法则:对于任意两个可导函数f(x)和g(x),其导数为第一个函数在x点的值与第二个函数在x点的导数的乘积再减去第一个函数在x点的导数与第二个函数在x点的值的乘积,然后除以第二个函数在x点的平方。
即 d(f(x)/g(x))/dx = [f'(x)g(x) - f(x)g'(x)] / [g(x)]^26.反函数法则:如果函数y=f(x)在其中一点x处可导,且其导数不为0,则其反函数x=g(y)在相应的点y处也可导,且其导数为1/f'(g(y))。
7. 求导乘积法:对于一组函数的乘积f(x) = f1(x)f2(x)...fn(x),其导数可以表示为 f'(x) = f1'(x)f2(x)...fn(x) +f1(x)f2'(x)...fn(x) + ... + f1(x)f2(x)...fn'(x)。
8.反函数求导法则:如果函数y=f(x)在其中一点x处可导,且其导数不为0,则其反函数x=g(y)在相应的点y处也可导,且其导数为1/f'(g(y))。
导数公式大全

导数公式大全1.一元函数的导数公式:。
一元函数的导数公式为:y'=f'(x),其中f'(x)为x的导数,表示对x求导数。
2.二元函数的导数公式:。
二元函数(即具有两个未知变量的函数)的导数公式为:∂f/∂x= limh→0 (f(x+h)-f(x))/h。
∂f/∂y= limh→0 (f(y+h)-f(y))/h。
其中∂f/∂x表示对x求偏导,∂f/∂y表示对y求偏导。
3.三元函数的导数公式:。
三元函数(即具有三个未知变量的函数)的导数公式为:∂f/∂x= limh→0 (f(x+h,y,z)-f(x,y,z))/h。
∂f/∂y= limh→0 (f(x,y+h,z)-f(x,y,z))/h。
∂f/∂z= limh→0 (f(x,y,z+h)-f(x,y,z))/h。
其中∂f/∂x表示对x求偏导,∂f/∂y表示对y求偏导,∂f/∂z表示对z 求偏导。
4.常用函数的导数公式:。
常用函数的导数公式有:(1)多项式函数的导数:n阶多项式f(x)=anxn+an-1xn-1+…+a1x+a0的导数为f'(x)=nanxn-1+n-1an-1xn-2+…+a1;。
(2)指数函数的导数:以a≠0,a≠1为底的指数函数f(x)=a^x的导数为f'(x)=ln|a|a^x;。
(3)对数函数的导数:以a≠0,a≠1为底的对数函数f(x)=ln|x|a 的导数为f'(x)=1/xa;。
(4)三角函数的导数:正弦函数sin(x)的导数为cos(x);余弦函数cos(x)的导数为-sin(x);正切函数tan(x)的导数为sec2(x);反正切函数cot(x)的导数为-csc2(x);反余弦函数arcsin(x)的导。
常用的基本求导公式

常用的基本求导公式在微积分中,求导是一种求函数导数的运算,它是微积分的基础知识。
常用的基本求导公式是指在求导时所要运用的一些基本规则和公式。
下面是一些常用的基本求导公式:1.常数规则:如果f(x)=c,其中c是一个常数,那么f'(x)=0。
2. 幂规则:如果f(x) = x^n,其中n是实数,那么f'(x) = nx^(n-1)。
这条规则表示,对于任意整数n,常数倍的幂函数都是自己的导数。
3.指数规则:如果f(x)=e^x,那么f'(x)=e^x。
这条规则表示,自然指数函数的导数等于自身。
4. 对数规则:如果f(x) = ln(x),那么f'(x) = 1/x。
这条规则表示,自然对数函数的导数是其自变量的倒数。
5.三角函数的导数规则:(a) 如果f(x) = sin(x),那么f'(x) = cos(x)。
这条规则表示,正弦函数的导数是余弦函数。
(b) 如果f(x) = cos(x),那么f'(x) = -sin(x)。
这条规则表示,余弦函数的导数是负的正弦函数。
(c) 如果f(x) = tan(x),那么f'(x) = sec^2(x)。
这条规则表示,正切函数的导数是它的平方的倒数。
6.反函数的求导规则:如果y=f(x)是可逆的,并且f'(x)≠0,那么f^(-1)'(y)=1/f'(x)。
这条规则表示,如果f(x)的导数不为零,那么其反函数的导数等于原函数导数的倒数。
7.和、差、积的求导规则:(a)f(x)+g(x)的导数等于f'(x)+g'(x)。
(b)f(x)-g(x)的导数等于f'(x)-g'(x)。
(c)f(x)g(x)的导数等于f'(x)g(x)+f(x)g'(x)。
8.商的求导规则:如果f(x)=g(x)/h(x),那么f'(x)=(g'(x)h(x)-g(x)h'(x))/[h(x)]^2、这条规则表示,一个函数的商的导数等于分子导数与分母的导数之差除以分母的平方。
求导公式大全

求导公式大全一、基本常用函数的求导公式1. 常数函数求导公式若f(x)=C,其中C为常数,则f'(x)=0。
2. 幂函数求导公式若f(x)=x^n,其中n为常数,则f'(x)=n·x^(n-1)。
3. 指数函数求导公式若f(x)=a^x,其中a>0且a≠1,则f'(x)=lna·a^x。
4. 对数函数求导公式若f(x)=lnx,则f'(x)=1/x。
5. 三角函数求导公式(1) 若f(x)=sinx,则f'(x)=cosx。
(2) 若f(x)=cosx,则f'(x)=-sinx。
(3) 若f(x)=tanx,则f'(x)=sec^2x。
6. 反三角函数求导公式(1) 若f(x)=arcsinx,则f'(x)=1/√(1-x^2)。
(2) 若f(x)=arccosx,则f'(x)=-1/√(1-x^2)。
(3) 若f(x)=arctanx,则f'(x)=1/(1+x^2)。
二、常见复合函数的求导公式1. 复合函数的链式法则若y=f[g(x)]为复合函数,其中f(u)和g(x)分别可导,则f[g(x)]' = f'(g(x))·g'(x)。
2. 反函数的求导公式若y=f(x)在区间I上可导,且f'(x)≠0,则其反函数x=f^(-1)(y)在对应区间f(I)上可导,并且有(f^(-1))'(y)=1/f'(x)。
三、常用求导公式推导1. 乘法法则若y=f(x)·g(x),则y'=f'(x)·g(x)+f(x)·g'(x)。
2. 除法法则若y=f(x)/g(x),则y'=(f'(x)·g(x)-f(x)·g'(x))/[g(x)]^2。
3. 加法法则若y=f(x)+g(x),则y'=f'(x)+g'(x)。
一般常用求导公式

一般常用求导公式在数学中,求导是一项非常重要的运算,它用于计算函数在某一点的导数。
为了方便计算,数学家们总结出了一系列常用的求导公式,能够帮助我们更快速地求出函数的导数。
本文将介绍一般常用的求导公式,并给出相应的解释和使用示例。
一、基本导数法则1. 常数函数导数公式若y = C(C为常数),则y' = 0。
解释:常数函数的导数恒为0,因为其图像是一条水平线,斜率为0。
例如:如果y = 5,那么y' = 0。
2. 幂函数导数公式若y = x^n(n为常数),则y' = nx^(n-1)。
解释:幂函数的导数可以通过将指数降低1并作为新的指数乘以原指数,得到幂函数的导数。
例如:如果y = x^3,那么y' = 3x^2。
3. 指数函数导数公式若y = a^x(a>0且a≠1),则y' = a^x * ln(a)。
解释:指数函数的导数等于函数的值乘以底数的自然对数。
例如:如果y = 2^x,那么y' = 2^x * ln(2)。
4. 对数函数导数公式若y = lo gₐ(x)(a>0且a≠1),则y' = 1 / (x * ln(a))。
解释:对数函数的导数等于1除以自变量乘以底数的自然对数。
例如:如果y = log₂(x),那么y' = 1 / (x * ln(2))。
5. 指数对数函数导数公式若y = a^(bx + c)(a>0且a≠1,b和c为常数),则y' = (b * ln(a)) * a^(bx + c)。
解释:指数对数函数的导数等于指数项的系数乘以底数的自然对数,再乘以函数本身。
例如:如果y = 3^(2x + 1),那么y' = (2 * ln(3)) * 3^(2x + 1)。
二、常用三角函数导数公式1. 正弦函数导数公式若y = sin(x),则y' = cos(x)。
2. 余弦函数导数公式若y = cos(x),则y' = -sin(x)。
高等数学18个求导公式

高等数学18个求导公式高等数学的求导,是高等数学的重要的基本技能。
求导的基本定义是求出一个函数的变化率,也就是求函数的导数。
下面给出18个求导公式:1.常数项求导公式:若y = c,其中c为常数,则y′ = 0;2.幂函数求导公式:若y = x^n,其中n为正整数,则y′ = nx^{n-1};3.多次幂函数求导公式:若y = x^n + a^n,其中n为正整数,则y′ = nx^{n-1} + na^{n-1};4.指数函数求导公式:若y = a^x,其中a为正数,则y′ = a^xln a;5.对数函数求导公式:若y = lnx,则y′ = \frac{1}{x};6.三角函数求导公式:若y = sin x,则y′ = cos x;若y = cos x,则y′ = -sin x;若y = tan x,则y′ = \frac{1}{cos^2 x};7.反三角函数求导公式:若y = arcsin x,则y′ =\frac{1}{\sqrt{1-x^2}};若y = arccos x,则y′ = \frac{-1}{\sqrt{1-x^2}};若y = arctan x,则y′ = \frac{1}{1+x^2};8.指数函数的导数:若y = e^x,则y′ = e^x;9.乘法公式求导公式:若y = f(x)g(x),则y′ = f'(x)g(x) +f(x)g'(x);10.链式法则求导公式:若y = f(g(x)),则y′ = f'(g(x))g'(x);11.求和求导公式:若y = \sum_{i=1}^{n} f(x_i),则y′ =\sum_{i=1}^{n} f'(x_i);12.积分求导公式:若y = \int f(x)dx,则y′ = f(x);13.极限求导公式:若y = \lim_{x \to a} f(x),则y′ =\lim_{x \to a} f'(x);14.复合函数求导公式:若y = f(g(x)),则y′ = f'(g(x))g'(x);15.乘方公式求导公式:若y = (f(x))^n,其中n为正整数,则y′ = n(f(x))^{n-1}f'(x);16.幂函数的导数:若y = x^n,则y′ = nx^{n-1};17.对数函数的导数:若y = lnx,则y′ = \frac{1}{x};18.三角函数的导数:若y = sinx,则y′ = cosx;若y = cosx,则y′ = -sinx;若y = tanx,则y′ = \frac{1}{cos^2 x}。
基本导数公式16个汇总

基本导数公式16个汇总基本导数公式16个整理16个基本导数公式(y:原函数;y:导函数):1、y=c,y=0(c为常数)。
2、y=x^μ,y=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y=a^x lna;y=e^x,y=e^x。
4、y=logax,y=1/(xlna)(a0且a≠1);y=lnx,y=1/x。
5、y=sinx,y=cosx。
6、y=cosx,y=-sinx。
7、y=tanx,y=(secx)^2=1/(cosx)^2。
8、y=cotx,y=-(cscx)^2=-1/(sinx)^2。
9、y=arcsinx,y=1/√(1-x^2)。
10、y=arccosx,y=-1/√(1-x^2)。
11、y=arctanx,y=1/(1+x^2)。
12、y=arccotx,y=-1/(1+x^2)。
13、y=shx,y=ch x。
14、y=chx,y=sh x。
15、y=thx,y=1/(chx)^2。
16、y=arshx,y=1/√(1+x^2)。
导数的几何意义是什么导数的数学意义是:函数y=f(x)在x0点的导数f(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
导数的物理意义是:导数可以表示运动物体的瞬时速度和加速度(就直线运动而言,位移关于时间的一阶导数是瞬时速度,二阶导数是加速度),可以表示曲线在一点的斜率,还可以表示经济学中的边际和弹性。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
导数运算法则减法法则:(f(x)-g(x))=f(x)-g(x)加法法则:(f(x)+g(x))=f(x)+g(x)乘法法则:(f(x)g(x))=f(x)g(x)+f(x)g(x)除法法则:(g(x)/f(x))=(g(x)f(x)-f(x)g(x))/(f(x))^2常用导数公式1、y=c(c为常数) y=02、y=x^n y=nx^(n-1)3、y=a^x y=a^xlnay=e^x y=e^x4、y=logax y=logae/x y=lnx y=1/x5、y=sinx y=cosx6.y=cosx y=-sinx7、y=tanx y=1/cos^2x8、y=cotx y=-1/sin^2x。
常用基本初等函数求导公式积分公式

常用基本初等函数求导公式积分公式常用的基本初等函数求导公式有:1.常数函数求导公式:对于常数函数f(x)=C,其中C是一个常数,其导函数为f'(x)=0。
2.幂函数求导公式:对于幂函数f(x) = x^n,其中n是任意实数,其导函数为f'(x) =nx^(n-1)。
3.指数函数求导公式:对于指数函数f(x) = a^x,其中a是一个大于0且不等于1的常数,其导函数为f'(x) = ln(a) * a^x。
4.对数函数求导公式:对于自然对数函数f(x) = ln(x),其导函数为f'(x) = 1/x。
5.三角函数求导公式:a) 正弦函数求导公式:f(x) = sin(x)的导函数为f'(x) = cos(x)。
b) 余弦函数求导公式:f(x) = cos(x)的导函数为f'(x) = -sin(x)。
c) 正切函数求导公式:f(x) = tan(x)的导函数为f'(x) =sec^2(x)。
6.反三角函数求导公式:a) 反正弦函数求导公式:f(x) = arcsin(x)的导函数为f'(x) =1/√(1 - x^2)。
b) 反余弦函数求导公式:f(x) = arccos(x)的导函数为f'(x) = -1/√(1 - x^2)。
c) 反正切函数求导公式:f(x) = arctan(x)的导函数为f'(x) =1/(1 + x^2)。
常用的基本初等函数积分公式有:1.幂函数积分公式:对于幂函数f(x) = x^n,其中n不等于-1,其不定积分为∫x^n dx= (1/(n+1)) x^(n+1) + C,其中C为积分常数。
2.反函数积分公式:对于反函数f(x) = F^(-1)(x),其中F(x)为连续可导函数,其不定积分为∫f(x) dx = x * F(x) - ∫F(x) dF(x) + C,其中C为积分常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求导常用公式
以下是一些常见的求导公式:
1. 常数求导法则:$f(x) = C, f'(x) = 0$ (C为常数)
2. 幂函数求导法则:$f(x) = x^n, f'(x) = n \cdot x^{n-1}$ (n为常数)
3. 指数函数求导法则:$f(x) = a^x, f'(x) = a^x \cdot \ln(a)$ (a 为常数)
4. 对数函数求导法则:$f(x) = \ln(x), f'(x) = \frac{1}{x}$
5. 三角函数求导法则:$\sin(x), f'(x) = \cos(x)$;
$\cos(x), f'(x) = -\sin(x)$;
$\tan(x), f'(x) = \sec^2(x)$;
$\csc(x), f'(x) = -\csc(x) \cot(x)$;
$\sec(x), f'(x) = \sec(x) \tan(x)$;
$\cot(x), f'(x) = -\csc^2(x)$
6. 反三角函数求导法则:$\arcsin(x), f'(x) = \frac{1}{\sqrt{1-
x^2}}$;
$\arccos(x), f'(x) = -\frac{1}{\sqrt{1-x^2}}$;
$\arctan(x), f'(x) = \frac{1}{1+x^2}$;
$\text{arccsc}(x), f'(x) = -\frac{1}{|x|\sqrt{x^2-1}}$; $\text{arcsec}(x), f'(x) = \frac{1}{|x|\sqrt{x^2-1}}$; $\text{arccot}(x), f'(x) = -\frac{1}{1+x^2}$
7. 链式法则:如果$y = f(u)$而$u = g(x)$,则$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
8. 乘法法则:若$y = u \cdot v$,则$\frac{dy}{dx} = u \cdot
\frac{dv}{dx} + v \cdot \frac{du}{dx}$
9. 除法法则:若$y = \frac{u}{v}$,则$\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$
10. 反函数求导法则:若$y = f(x)$的反函数为$x = g(y)$,则$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$
这些是常见的求导公式,但要注意其他更复杂的函数还有其他的求导规则。