§3旋转曲面的面积

合集下载

旋转曲面的面积

旋转曲面的面积

等于各个小区间上的局部量之和,
(2)局部量可用 f (i )xi 近似表示 它们之间只相差一个 xi 的高阶无穷小
不均匀量U就可以用定积分来求得
这是建立所求量的积分式的基本方法
1 求微元
写出典型小区间 [ x, x dx] [a, b]
上的局部量 U 的近似值
dU f ( x)dx 这就是局部量的微元
一 定积分的元素法(或微元法)
通过对不均匀量(如曲边梯形的面积,变速直线 运动的路程)的分析,采用“分割、近似代替、求和、 取极限”四个基本步骤确定了它们的值,并由此抽象 出定积分的概念,我们发现,定积分是确定众多的不 均匀几何量和物理量的有效工具。那么,究竟哪些量 可以通过定积分来求值呢?
为了说明微元法,我们先来回顾一下曲边梯形 面积转化为定积分的计算过程。
t 3a cos2
t( sin t)dt
2
12

2 a2[sin4 t sin6 t]dt
3 a2.
0
8
20 设弧长为 L. 由对称性,有


L 4 2 ( x)2 ( y)2dt 4 2 3a cos t sin tdt 6a.
0
0
30 设旋转体的表面积为S, 体积为V .
step3: 计算 A
b
f ( x)dx
a
这种方法称为定积分的元素法或微元法。
一般的,如果某一实际问题中所求量Q符合条件:
1。Q是与某一变量x的变化区间[a,有关的量;
2。Q对于[a,b]区间具有可加性;
微 元
3。局部量Qi f (i )xi .

那么,将Q用积分来表达的步骤如下:

计算旋转曲面面积的公式及几种证法

计算旋转曲面面积的公式及几种证法
3.期刊论文 徐龙封 关于曲线积分和曲面积分教学中几个难点的突破 -安徽工业大学学报(社会科学版)2003,20(3)
加强曲线、曲面积分概念讲解,标准化曲线、曲面积分的计算程序,沟通有关积分之间关系,以消除学生对斯托克斯等公式的深奥感,有效地突破了曲 线、曲面积分教学中的几个难点.
4.期刊论文 赵清波.李文潮.赵东涛.张辉 曲线积分与曲面积分的一题多解 -数理医药学杂志2008,21(3)
8.期刊论文 纪荣芳.娄本平 对称性在曲线积分及曲面积分计算中的应用 -泰山学院学报2004,26(3)
给出了利用对称性简化曲线积分和曲面积分计算的一些定理和方法,并对定理的结论予以证明.
9.期刊论文 彭一鸣.马新科.宁荣健 第一型曲面积分转为第一型曲线积分的算法 -高等数学研究2010,13(2)
2.期刊论文 刘富贵.鲁凯生.Liu Fugui.Lu Kaisheng 利用对称性计算第二类曲线积分与曲面积分的方法 -武汉理
工大学学报(交通科学与工程版)2006,30(6)
由于第二类曲线积分与曲面积分涉及到方向性问题,因此利用对称性来计算较为困难.文中给出了利用对称性计算第二类曲线积分与曲面积分的方法 ,并证明了方法的可行性,并通过实例表明,此方法有时能起到简化计算的作用.
=l。ira石乏{[,(参)+,(最)】√l+,”(参)△xi+
∑口f A x。}
砌烛喜聪)F丽
=2n e,(x)√l+,“∽dx=2兀ef(x)ds.
1.2用微元法证明计算旋转曲面面积公式 证:在[a.b】上的任意小区间【x,x+dx]的
小截锥面积近似于小旋转曲面的面积. 从而得面积元素dA=2矽(石)ds所以旋
6.期刊论文 李育强.石瑞民 曲线积分在曲面积分中的应用 -大学数学2003,19(3)

华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)

华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)

第10章 定积分的应用10.1 复习笔记一、平面图形的面积由连续曲线()(0)y f x =≥,以及直线,()x a x b a b ==<和x 轴所围曲边梯形的面积为()b baaA f x dx ydx ==⎰⎰如果()f x 在[,]a b 上不都是非负的,则所围图形的面积为()b baaA f x dx y dx ==⎰⎰一般地,由上、下两条连续曲线2()y f x =与1()y f x =以及两条直线,()x a x b a b ==<所围的平面图形(图l0-1),它的面积计算公式为21[()()]baA f x f x dx =⎰-图10-1二、由平行截面面积求体积 1.立体体积的一般计算公式 设为三维空间中的一立体,它夹在垂直于x 轴的两平面x =a 与x =b 之间(a <b ),称为位于[a,b]上的立体,若在任意一点x∈[a,b]处作垂直于x轴的平面,它截得的截面面积是关于x的函数,记为A(x),并称之为的截面面积函数(见图10-2),设A(x)是连续函数.图10-2 图10-3对[a,b]作分割过各个分点作垂直于x轴的平面x=xi,i=1,2,…,n,它们把分割成n个薄片,i=1,2,…,n任取那么每一薄片的体积(见图10-3)于是由定积分的定义和连续函数的可积性,当时,上式右边的极限存在,即为函数A (x)在[a,b]上的定积分,于是立体的体积定义为2.旋转体的体积a b上的连续函数,Ω是由平面图形设f是[,]≤≤≤≤0|||f(x)|,ay x b绕x轴旋转一周所得的旋转体,那么易知截面面积函数为2()[()],[,]A x f x x a b π=∈得到旋转体Ω的体积公式为2=[()]baV f x dxπ⎰三、平面曲线的弧长与曲率 1.平面曲线的弧长 (1)定义①如果存在有限极限ss T T =→0||||lim即任给0ε>,恒存在0δ>,使得对C 的任意分割T ,只要||||T δ<,就有|s |T s ε-<则称曲线C 是可求长的,并把极限s 定义为曲线C 的弧长.②设曲线AB 是一条没有自交点的闭的平面曲线.在AB 上任取点P ,将AB 分成两段非闭曲线,如果AP 和PB 都是可求长的,则称AB 是可求长的,并把AP 的弧长和PB 的弧长的和定义为AB 的弧长.③设曲线C 由参数方程(),(),[,]x x t y y t t αβ==∈给出.如果(t)x 与()y t 在[,]αβ上连续可微,且'()x t 与'()y t 不同时为零,即''()()0x t y t +≠,],[βα∈t ,则称C 为一条光滑曲线.(2)定理设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程(),(),[,]x x t y y t t αβ==∈ (10-1)给出.若()x t 与()y t 在[,]αβ上连续可微,则C 是可求长的,且弧长为'2'2[()][()]s x t y t dt βα=+⎰ (10-2)(3)性质设AB 是一条没有自交点的非闭的可求长的平面曲线.如果D 是AB 上一点,则和AD 和DB 也是可求长的,并且AB 的弧长等于AD 的弧长与DB 的弧长的和.2.曲率 (1)定义如图10-4,设()t α表示曲线在点((),())P x t y t 处切线的倾角,==()()t t t ααα∆+∆-表示动点由P 沿曲线移至))(),((t t y x t x Q ∆+∆+时切线倾角的增量,若PQ 之长为s ∆,则称||K sα-∆=∆为弧段PQ 的平均曲率.如果存在有限极限|||lim ||lim |00dsd s s K s t ααα=∆∆=∆∆=→∆→∆则称此极限K 为曲线C 在点P 处的曲率.图10-4(2)计算公式设曲线C 是一条光滑的平面曲线,由参数方程(10-1)给出,则曲率的计算公式为2322)(||''''''''y x y x y x K +-=若曲线由()y f x =表示,则相应的曲率公式为2''3'2||(1+y )y K =四、旋转曲面的面积1.设平面光滑曲线C 的方程为(),[,]y f x x a b =∈(不妨设()0f x ≥),这段曲线绕x 轴旋转一周得到旋转曲面的面积为2(baS f x π=⎰2.如果光滑曲线C 由参数方程(),(),[,]x x ty y t t αβ==∈给出,且()0y t ≥,那么由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为2(S y t βαπ=⎰五、定积分的近似计算 1.梯形法公式121()(...)22bn n ay y b a f x dx y y y n --=+++++⎰2.抛物线法公式(辛普森Simpsom 公式)021*******()[4(...y )2(...)]6bn n n ab af x dx y y y y y y y n---≈+++++++++⎰10.2 课后习题详解§1 平面图形的面积1.求由抛物线y =x 2与y =2-x 2所围图形的面积.解:该平面图形如图10-1所示.两条曲线的交点为(-1,1)和(1,1),所围图形的面积为图10-12.求由曲线与直线所围图形的面积.解:该平面图形如图10-2所示.所围图形的面积为。

平面曲线的弧长与曲率旋转曲面的面积

平面曲线的弧长与曲率旋转曲面的面积

11
若 r( )在 [ , ] 上连续,且 r( ) 与 r( ) 不同时为零,
则弧长为
s r 2( ) r2( ) d
2022年9月29日10时14分
上一页 下一页 主 页 返回 退出
12
例1. 计算摆线
一拱
的弧长 .
y
解 因为 x(t) a(1 cos t) ,
y(t) a sin t
2
x
2
s 2 1 y2 d x
2
( y cos x )
2 2 0
1 ( cos x )2 d x
(1 cos
x
2 cos 2
x )
2
2 2
2 cos x d x
0
2
2
2
2 sin
x 2
2
0
4
2022年9月29日10时14分
上一页 下一页 主 页 返回 退出
16
设光滑曲线 C
25
例6. 我国铁路常用立方抛物线 y 1 x3 作缓和曲线, 6Rl
其中R是圆弧弯道的半径, l 是缓和曲线的长度, 且 l << R.
求此缓和曲线在其两个端点
解: 当 x [0,l ]时,
y 1 x2 l 0 2 Rl 2 R
y 1 x Rl
K y 1 x Rl
显然
K x0 0;
o
x
2022年9月29日10时14分
上一页 下一页 主 页 返回 退出
2
设平面曲线 C 由参数方程
x x(t), y y(t), t
给出,如果 x(t), y(t) 在[, ] 连续,且 [ x(t)]2 [ y(t )]2 0, t [ , ] ,

双纽线绕极轴旋转所得旋转曲面的面积

双纽线绕极轴旋转所得旋转曲面的面积

双纽线绕极轴旋转所得旋转曲面的面积双纽线绕极轴旋转所形成的曲面称为旋转曲面。

旋转曲面是微分几何学中一个重要的主题,广泛应用于数学、物理、机械制造等领域。

在利用数学方法计算旋转曲面的面积时,我们先要获得旋转曲面的参数方程,其次再通过计算极限以及微积分的方法来确定旋转曲面的面积。

一般来说,双纽线绕极轴旋转而形成的旋转曲面,其参数方程由公式$${\vec {r}}(u,v)=\left(r\left(u,v\right) {\cos v} {\cos u},r\left(u,v\right) {\cos v} {\sin u},r\left(u,v\right){\sin v}\right)$$ 来表示,其中,r(u,v) 为双参数函数; u 为方向角,v 为极角,取值范围分别为:$$-\pi <u <\pi,0\leqslant v <2\pi$$旋转曲面的面积可以通过积分的方法求解,即:$$S=\int _A^B\int _C^D{r\left(u,v\right) {\cos v}\,du\,dv}$$其中,A 、 B 、 C 、 D 分别表示 u 、 v 的取值范围。

一般情况下,参数方程r(u,v)是一个复杂的函数,因此,在求解此种椭圆旋转曲面的面积时,就需要利用极限、微积分的方法,去证明此旋转曲面的面积的存在及其具体的数值。

在计算双纽线绕极轴旋转所形成的旋转曲面面积时,最先要获得此曲面的参数方程,其次再根据此参数方程计算出体积积分,然后用极限、微积分的方法运算其所表示的旋转曲面的面积。

简单来说,可以先找到参数上界和参数下界,再对参数进行变化,将曲面分成若干小部分,将小部分曲面的面积之和为整体曲面的面积。

此外,有时候也会使用古典的椭圆积分和旋转曲面的几何特性(例如平面积公式),求解双纽线绕极轴旋转所形成的旋转曲面的面积。

以上就是旋转曲面面积计算的算法汇总。

计算双纽线绕极轴旋转所得旋转曲面的面积需要利用古典数学方法,微积分方法,多元函数的极限等方法,来证明旋转曲面的面积的存在与数值确定。

旋转曲面知识点总结

旋转曲面知识点总结

旋转曲面知识点总结一、旋转曲面的概念旋转曲面是通过将一个曲线或者一个封闭曲线绕着某个轴进行旋转而形成的曲面。

简单来说,就是用一个曲线或者曲线围成的区域来绕着一条直线或者曲线旋转,就可以得到一个旋转曲面。

通常来说,绕直线旋转得到的曲面称为旋转抛物面,绕曲线旋转得到的曲面称为旋转曲线面。

二、旋转曲面的性质1. 旋转曲面是旋转对称的。

这意味着旋转曲面上的每一点都具有旋转对称性,即曲面上的任意一点和以曲面为轴的旋转曲面上的另一点关于曲面旋转中心对称。

2. 旋转曲面具有定向性。

这表示曲线或者曲线围成的区域旋转后得到的曲面具有确定的方向。

3. 旋转曲面是连续的。

这就是说曲线或者曲线围成的区域绕着轴旋转后,曲面上的点是连续的,并且形成了一个完整的曲面。

三、旋转曲面的参数方程求解旋转曲面的参数方程通常可以分为两种情况:一种是绕直线旋转得到的旋转抛物面,一种是绕曲线旋转得到的旋转曲线面。

1. 绕直线旋转得到的旋转抛物面设直线为z轴,旋转曲面为曲线y=f(x)绕z轴旋转得到的曲面。

则可得到参数方程如下:x = r*cosθy = r*sinθz = f(r)其中,r为y轴到曲线f(x)的距离(注意r与polar coordinates中的r不同,不要混淆),θ为极角。

2. 绕曲线旋转得到的旋转曲线面如果是曲线y=f(x)绕曲线y=g(x)旋转得到的曲面,则参数方程如下:x = g(x)*cosθy = g(x)*sinθz = f(x)其中,g(x)是旋转曲线的参数方程,f(x)是曲面的参数方程,θ为极角。

四、旋转曲面的表面积和体积1. 旋转曲面的表面积计算旋转曲面的表面积通常可以使用定积分进行求解。

对于绕x轴旋转得到的曲面,表面积的计算公式如下:S = 2π∫a^b f(x)*sqrt(1+(f'(x))^2)dx对于绕y轴旋转得到的曲面,表面积的计算公式如下:S = 2π∫c^d x*g(x)*sqrt(1+(g'(x))^2)dx2. 旋转曲面的体积计算旋转曲面的体积同样可以使用定积分进行求解。

旋转曲面的面积

旋转曲面的面积

§4 旋转曲面的面积教学目的与要求:1. 理解并掌握在直角坐标系、参数方程、极坐标中, 计算旋转曲面的面积的公式.2. 理解并掌握微元法的思想及应用.教学重点,难点:1. 在直角坐标系、参数方程、极坐标中, 计算旋转曲面的面积的公式.2. 微元法的思想及应用.教学内容:定积分的所有应用问题,一般总可按“分割,近似求和,取极限”三个步骤导出所求量的积分形式。

但为简便实用起见,也常采用下面介绍的“微元法”。

本节和下一节将采用此法来处理。

一 微元法为了介绍微元法,我们首先回顾一下在讲定积分定义时引入的例子——求曲边梯形的面积问题。

设f 为闭区间[a ,b]上的连续函数,且f (x )≥0。

由曲线y=f (x),直线x=a,x=b 以及x 轴所围成的平面图形(图9-1),称为曲边梯形,下面讨论曲边梯形的面积作法:(i)分割 在区间[ a ,b]内任取n-1个分点,它们依次为a=x 0<x 1<x 2<…<x n -1<x n =b,这些点把[a,b]分割成n 个小区间[x i-1, x i],I=1,2,…n.再用直线x= x i, i=1,2,…,n-1把曲边梯形分割成n 个小曲边梯形(图9-2)。

(ii )近似求和 在每个小区间[x i-1,x i ]上任取一点i ξ,作以f (i ξ)为高,[x i-1,x i ]为底的小矩形.当分割[a,b]的点分点较多,又分割得较细密时,由于f 为连续函数,它在每个小区间上的值变化不大,从而可用这些小矩形的面积近似替代相应小曲边梯形的面积.于是, n 个小矩形面积之和就可作为该曲边梯形面积S 的近似值,即1()n i i i S f x ξ=≈∆∑ ).(1--=∆i i i x x x(iii )取极限 注意到(1)式右边的和式既依赖于对区间[a,b]的分割,又与所有中间点i ξ(i=1,2,…,n )的取法有关。

可以想象,当分点无限增多,且对[a,b]无限细分时,如果此和式与某一常数无限接近,而且与分点x i和中间点i ξ的选取无关,则就把此常数定义作为曲边梯形的面积S.S=01()().lim n bi i a T i f x f x dx ξ→=∆=∑⎰ 引入问题:这个过程显然是比较繁琐的,那么遇到一个实际问题如何直接利用定积分表示呢? 我们看出,在引出Φ的积分表达式的步骤中,关键是第二步。

绕y轴旋转曲面面积公式

绕y轴旋转曲面面积公式

绕y轴旋转曲面面积公式
曲面面积是模拟空间物体表面积的重要方法,我们可以采用绕y轴
旋转曲面面积公式来计算曲面的面积。

一、定义:
绕y轴旋转曲面面积公式是一个求解空间物体表面积的积分方程。


的定义是,若y=f(x)是一条曲线,它的曲面积由空间中一段曲线y=f(x)
绕y轴旋转所而形成。

它的曲面积公式是:
∫Ax^2 f(x)dx
二、计算原理
求绕y轴旋转曲面面积的方法:首先,我们求出参数方程:y=f(x);求
出每条曲线的极限;再使用积分方程结合以上三个条件,求出曲面积。

求绕y轴旋转曲面面积的积分represents方程起原点于空间,它的形式
为∫Ax^2 f (x)dx ;式中,A 代表椭圆轴线长度,其范围为a≤x≤b;x 代
表椭圆轴短轴坐标,y 代表椭圆轴长轴坐标,f (x)代表当x 固定,y 的
函数。

三、实际应用
绕y轴旋转曲面面积公式非常重要,它可以用于几何学,物理学,结
构反载荷计算,产品设计等众多领域。

在几何学中,可以使用这个公
式来计算曲面的面积,以确定曲面的真实大小。

在物理学中,这个公
式可用于求解空间形状物体的质量、体积,以及容积等量纲。

同样,
绕y轴旋转曲面面积公式也可用于产品设计,结构反载荷计算等领域。

四、总结
绕y轴旋转曲面面积公式是一个求解空间物体表面积的积分方程。


的计算原理是求参数方程 y=f (x),求出每条曲线的极限,再使用积分
方程结合三个条件来求出曲面积。

它可以应用于几何学,物理学,结
构反载荷计算,产品设计等众多领域,广泛地使用于日常科学研究之中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 R
3
例 12 求以半径为 R的圆为底、平行且等于底
圆直径的线段为顶、高为h的正劈锥体的体积.
解 取坐标系如图
y
底圆方程为
x2 y2 R2,
o x Rx
垂直于x 轴的截面为等腰三角形
截面面积 A( x) h y h R2 x2
立体体积
V
R
h R
R2 x2dx 1 R2h. 2
• 习题7.3 3,5,6
63a3.
2 平行截面面积为已知的立体的体积
如果一个立体不是旋转体,但却知道该立
体上垂直于一定轴的各个截面面积,那么,这 个立体的体积也可用定积分来计算.
A( x) 表示过点 o a x 且垂直于x 轴
x x dx
b
x
的截面面积, A( x)为x 的已知连续函数
dV A( x)dx,
立体体积 V
习题7.Байду номын сангаас 1(3),2
作业
b
A( x)dx.
a
例 11 一平面经过半径为 R的圆柱体的底圆中
心,并与底面交成角 ,计算这平面截圆柱体所
得立体的体积.
解 取坐标系如图
R
底圆方程为 x2 y2 R2
o
y
x
R
垂直于x 轴的截面为直角三角形
x
截面面积 A( x) 1 (R2 x2 )tan ,
2
立体体积 V 1 R (R2 x2 )tandx 2 R3 tan .
绕x轴旋转一周,得到旋转 o
x x dx
x
曲面.
S [ f ( x) f ( x x)] x2 y2
[2 f ( x) y]
1
y x
2
x
dS 2f ( x) 1 f 2 ( x)dx,
S侧
b
2f ( x)
a
1 f 2 ( x)dx
§4 旋转体的体积
1 旋转体的体积
旋转体就是由一个平面图形绕这平面内 一条直线旋转一周而成的立体.这直线叫做 旋转轴.
3
x [a, a]
a
o
ax
旋转体的体积
V
aa
a
2 3
2
x3
3
dx
32 105
a3 .
类似地,
如果旋转体是由连续曲线 x ( y)、直线
y c 、y d 及 y 轴所围成的曲边梯形绕 y 轴
旋转一周而成的立体,体积为
y
V d [ ( y)]2 dy c
d
x ( y) c
o
x
例 9 求摆线 x a(t sin t),y a(1 cos t)的 一拱与 y 0所围成的图形分别绕 x轴、 y 轴旋
为体积元素,dV [ f ( x)]2 dx
旋转体的体积为 V b [ f ( x)]2 dx a
例 7 连接坐标原点O 及点 P(h, r)的直线、直线
x h及 x轴围成一个直角三角形.将它绕 x轴旋
转构成一个底半径为r 、高为h的圆锥体,计算
圆锥体的体积.
y
解 直线 OP方程为 y r x
x x1( y)
o
分别绕y 轴旋转构成旋转体的体积之差.
x x2( y) A
2a x
Vy
2a
x
2
2
(
y
)dy
0
2
a
x
2
1
(
y
)dy
0
a2 (t sin t)2 a sin tdt a2 (t sin t)2 a sin tdt
2
0
a3 2 (t sin t )2 sin tdt 0
圆柱
圆锥
圆台
一般地,如果旋转体是由连续曲线 y f ( x) 、 直线x a 、x b 及x 轴所围成的曲边梯形绕 x 轴旋转一周而成的立体,体积为多少?
取积分变量为x ,x [a,b] y y f (x)
在[a, b]上任取小区间 [ x, x dx],
o
x x dx
x
dx 为底的小曲边梯形绕 x轴旋转而成的薄片体积的近似
转构成旋转体的体积.
解 绕x 轴旋转的旋转体体积
y( x)
Vx
2a y2 ( x)dx
0
a
2a
2 a2 (1 cos t)2 a(1 cos t)dt 0
a3
2
(1
3cos t
3 cos2
t
cos3
t )dt
52a3 .
0
绕 y轴旋转的旋转体体积
y
2a C B
可看作平面图OABC 与OBC
§3 旋转曲面的面积
由平面上的曲线绕着平面内一条直线旋转得到的 曲面称为旋转曲面.
现在求S
:
y a
= f x≥
≤x≤b
0
绕x轴旋转一周得到的曲面的面积,
其中f x有连续的导数.
y
y f (x)
l1
r1 l
r2
oa
bx
设平面光滑曲线C的方程为 : y
y f ( x) 0, a x b
y f (x)
ho
x
取积分变量为x , x [0, h]
P
r hx
dV
r h
x
2
dx
V
h 0
r h
x
2
dx
r 2 h2
x3 h
3
0
hr2 3
.
2
2
2
例 8 求星形线 x 3 y 3 a 3 (a 0)绕 x轴旋转
构成旋转体的体积.
y
2
2
2
解 y3 a3 x3,
y2
2 a 3
2
x3
相关文档
最新文档