第五讲套利定价模型(APT)
5.套利定价模型

X1β1 +X2β2 +X3β3 +L +Xnβn =0
3、套利证券组合的预期收益率>0 X1E(R1)+X2E(R 2 )+X3E(R3 )+L +XnE(R n )>0
如果A与C的贝塔不相等呢?
充分分散的投资 组合A与C,无 风险收益分别为 4%,各自的β=1, 0.5
四、充分分散的投资组合
• 对一个充分分散的投资组合, 随着 组合中资产数量的增加,ep均值、 方差接近于0。
rP = E (rP) + βPF
五、套利定价理论
• β相等的充分分散化组合必须有相同 的期望收益,否则存在套利机会。
• 例:充分分散的投资组合A与B,期望 收益分别为10%,8%,各自的β=1。
• 假设条件少 • 没有指明相关风险因素
• 依赖于均值方差的有效性。 许多小投资者的行动迫使 CAPM再次均衡。CAPM 描述了所有资产的均衡。
• 所有证券都满足期望收益 -贝塔关系
• 假设条件多
思考:A和C可 以同时存在吗?
如果A与C的贝塔不相等呢?
• 所有充分分散化投资组合的期望收 益必须在证券市场线上;
• 分散化投资组合的风险溢价与β成 正比
证券市场线:市场组合
E(rp )=rf + [E(rM )-rf ]β p
单一证券也满足
期望收益-贝塔关系吗?
• 如果所有的投资组合都满足套利定 价理论,那么对绝大多数单一证券 也将满足期望收益-贝塔关系。
• 极少数的股票可能不满足这种关系 。套利定价模型不排除特殊的单个 资产违背期望收益-贝塔关系。
E(ri )=rf + [E(rM )-rf ]βi
套利定价理论(APT)

E( ft t1) 0
▪ 若市场有效,则t-1时刻的信息集预测t时刻 的价格无效,这等价于t-1时刻信息无法预 测t时刻的因子,即对于因子的变化没有任 何倾向——公平赌局(Fair game)
▪ 从有效市场的理论来看,价格(回报)的 不可预测,本质上是信息的不可预测,也 就是因子的变化不可预测,这些信息既有 宏观的、也有微观的。
n个期望收益,n个bi1, n个bi2, n个残差,2 个因子f方差,1个因子间的协方差,共4n+3 个估计值。
➢ 分散化导致因子风险的平均化。
➢ 分散化缩小非因子风险。
多因子模型
对于n种证券相关的m(m<n)个因子,证券i的 收益可以表示为
m
ri a bij f j ei j 1
其中,i 1,..., n; j 1,..., m
➢ 套利行为将导致一个价格调整过程,最终使 同一种资产的价格趋于相等,套利机会消失!
▪ APT的基本原理:由无套利原则,在因子 模型下,具有相同因子敏感性的资产(组 合)应提供相同的期望收益率。
▪ APT与CAPM的比较
➢ APT对资产的评价不是基于马克维模型, 而是基于无套利原则和因子模型。
➢ 不要求“同质期望”假设,并不要求人人一致 行动。只需要少数投资者的套利活动就能消除 套利机会。
8.3.2 构建套利组合(Arbitrage portfolio)
1. 零投资:套利组合中对一种证券的购买所需要 的资金可以由卖出别的证券来提供,即自融资 (Self-financing)组合。
2. 无风险:在因子模型条件下,因子波动导致风 险,因此,无风险就是套利组合对任何因子的 敏感度为0。
3. 正收益:套利组合的期望收益大于零。
▪ 如果上述假设不成立,则单因子模型不准 确,应该考虑增加因子或者其他措施。
套利定价模型(APT)

双因素以及多因素 2bi 2 依照单因素模型对0的分析,仍然可以可到0 rf 关于1的含义,考虑一个充分多样化组合,该组合对其一种因素的敏感度为 1, 对第二种因素的敏感度为0,从而可得1 rp1 rf 对第二种因素的敏感度为1,从而可得2 rp 2 rf 从而,可得两因素模型的定价公式: ri rf (rp1 rf )bi1 (rp 2 rf )bi 2 同样道理,在多因素模型下,APT资产定价公式为: ri rf (rp1 rf )bi1 (rp 2 rf )bi 2 (rp 3 rf )bi 3 (rpk rf )bik 即一种证券的预期收益率等于无风险利率加上k个因素的风险报酬。
谢谢!
L x1 x2 x3 xn 0 0 L b1 x1 b2 x2 b2 x3 bn xn 0 1 可得到: ri 0 1bi ; 此即为单因素模型APT定价公式,其中0,1是常数。
应用价值
这里就四点来看: 1.大多数机构投资者评价投资业绩时 2.监管当局确定监管对象的资本成本时 3.法院就未来收入损失判断赔偿金额涉及 收益率时 4.企业资本预算决策确定最低收益率时
不管如何,拿到APT才是关键
多因素模型的定价公式
因素敏感度 因素敏感度 因素敏感度 因素敏感度
rit rf (rp1t rf )bi1t (rp 2t rf )bi 2t (rp 3t rf )bi 3t (rpkt rf )bikt
关于2的含义,另考虑一个充分多样化组合,该组合对其一种因素的敏感度为0,
套利定价模型的意义
1.套利机制是实现金融市场均衡的重要机制
第五讲-套利定价模型(APT)

3.如果检验是基于某种无效率的指数,则风险资产 收益的任何情形都有可能出现,它取决于无效指数的选 择。
该结论断言,即便市场组合是均值-方差效率的, CAPM也是成立的,但使用前述方法得到的SML,也不能够 证明单一风险资产均衡收益同β 风险、市场组合之间存 在某种有意义的关系。
因此,罗尔认为,由于技术上的原因和原理上的模 糊,CAPM是无法检验的。
第五讲 套利定价模型 (APT)
本讲的主要内容:
1、CAPM模型的缺陷 2、因素模型 3、套利组合 4、APT模型 5、CAPM与APT的比较
一、CAPM的局限性
(一)相关假设条件的局限性 1.市场无摩擦假设和卖空无限制假设与现实不符; 2.投资者同质预期与信息对称的假设意味着信息是无
成本的,与现实不符; 3.投资者为风险厌恶的假设过于严格。
根据套利的定义,套利组合要满足三个条件:
条件1:
套利组合要求投资者不追加资金,即套利组合属于自融 资组合.如果我们用xi表示投资者持有证券i金额比例的变化 (从而也代表证券i在套利组合中的权重,注意xi可正可负), 则该条件可以表示为:
x1 x2 x3 xn 0
条件2:
套利组合对任何因素的敏感度为零,即套利组合没有因素风 险。证券组合对某个因素的敏感度等于该组合中各种证券对该因 素敏感度的加权平均数,因此在单因素模型下该条件可表达为:
五、套利定价模型
投资者的套利活动是通过买入收益率偏高的证券同时 卖出收益率偏低的证券来实现的,其结果是使收益率偏高 的证券价格上升,其收益率将相应回落;同时使收益率偏 低的证券价格下降,其收益率相应回升。这一过程将一直 持续到各种证券的收益率跟各种证券对各因素的敏感度保 持适当的关系为止。下面我们就来推导这种关系:
第五讲 静态套利定价理论(APT)

第五讲 静态套利定价理论第一节 套利机会考虑一个无摩擦经济,假定投资者在期初进行投资决策,期末的资产回报具有不确定性。
假定该经济中存在2≥N 种可以进行交易的风险资产,其随机回报率向量1~r 、2~r 、…、N r ~线性无关,具有有限方差和期望回报率,其它风险资产和投资组合都是这N 种风险资产的线性组合。
假定风险资产可以无限卖空。
记Z 为这N 种资产的回报率矩阵,即:⎪⎪⎪⎭⎫ ⎝⎛ΩΩ)()()()(||||1111ωωωωN N r r r r则对任意一个可行投资组合w ,投资一份该组合的成本为w T1 ,回报率向量为Zw 。
定义:一个投资组合被称为套利组合,如果其成本为零,即01=w T。
定义:一个投资组合(或资产)被称为无风险组合(或资产),如果该组合(或资产)在每个自然状态上具有相同的回报,即1R Zw =,其中R为无风险利率。
定义:一个特定的投资组合1w 被称为可复制的(duplicable),如果存在其它不同的投资组合12w w ≠,满足21Zw Zw =。
定义:称一个投资组合是第一类套利机会,如果它满足:01≤ηT,0≥ηZ 。
其中第二个不等号至少有一个分量严格大于零。
第一类套利机会代表了一种投资,具有非正的成本,却在将来有可能获得正的收益,获得负的收益的可能为零。
定义:称一个投资组合是第二类套利机会,如果它满足:01<ηT,0)(=>ηZ第二类套利机会代表了一种投资,其成本为负,未来收益非负。
在一个经济中可能只有第二类套利机会,而没有第一类套利机会。
例如:⎪⎪⎭⎫ ⎝⎛--=2525Z 并不存在η,满足01≤ηT ,0≥ηZ ,因为⎪⎪⎭⎫⎝⎛+-+=)25(253121ηηηηηZ 。
但)5,2(-=T η时,满足31-=ηT,但T Z )0,0(=η。
在一个经济中可能只有第一类套利机会,而没有第二类套利机会。
例如:⎪⎪⎪⎭⎫⎝⎛--=111101Z 。
对任意投资组合),(21ηηη=T ,其回报率向量为T Z ))(),(,(21211ηηηηηη++-=。
套利定价理论ppt课件

完整版课件
15
对于证券i,由(8.2)其回报率的均值(期望值)为
ri ai bi f
(8.3)
其回报率的方差
因子风险
i2 bi22f e2i
非因子风险
对于证券i和j而言,它们之间的协方差为
ij cov(ri,rj)cov(aib ifei,ajbjfej)
相反,APT所作的假设少得多。APT的基本 假设之一是:个体是非满足,而不需要风 险规避的假设!
每个人都会利用套利机会:在不增加风险的前提 下提高回报率。
只要一个人套利,市场就会出现均衡!
完整版课件
5
因子模型 (Factor model)
定义:因子模型是一种假设证券的回报率只 与不同的因子波动(相对数)或者指标的 运动有关的经济模型。
对于证券i和j,其协方差为
ij cov(ri,rj)cov(aibi1f1bi2f2ei,
ajbj1f1bj2f2ej)
b i 1 b j 12 f1 b i 2 b j 22 f2 ( b i 1 b j 2 b i 2 b j 1 ) c o v ( f 1 ,f 2 )
完整版课件
22
除CAPM理论外,另一种重要的定价理论是由 Stephen Ross在1976年建立的套利定价理论 (Arbitrage pricing theory,APT),从另 一个角度探讨了资产的定价问题。
市场均衡条件下的最优投资组合理论=CAPM
无套利假定下因子模型=APT
完整版课件
4
CAPM是建立在一系列假设之上的非常理想 化的模型,这些假设包括Harry Markowitz 建立均值-方差模型时所作的假设。这其中 最关键的假设是同质性假设。
第五讲 Ross 的套利定价理论 (APT) 和资产定价基本定理(货币金融学)

APT 开始时作为 CAPM 的替代物出现 的。
《金融经济学》第五讲 2
Stephen Ross (1944-)
《金融经济学》第五讲
3
摘 自 Levy 《 投 资 学 》 3 2 5 页
《金融经济学》第五讲
4
Markowitz 理论和 CAPM
Markowitz 理论指出,对于固定的收益(期望 收益率),怎样选取适当的证券组合,使得风 险 (收益率方差) 最小。 CAPM 则指出,任何证券和证券组合的收益 (期望收益率) 怎样通过两个均值-方差有效 的收益率的期望值来估计。 两者通过“系统风险”、“非系统风险”之 说联系在一起。
《金融经济学》第五讲 36
Ross 1978 年的经典论文
《金融经济学》第五讲
37
Ross 论文的引言
《金融经济学》第五讲
38
引言的译文
“在一个没有未被开发的套利机会的资产市场中,存 在一个线性估值算子,它可以毫不含糊地以完善的 市场替代来为收益流定价,或者对通过市场组合界 定的现金流来界定其值。用不到进一步假定,只要 预计的收益可以通过购买一个市场资产组合的确定 的跨时规划来复制(或界定),这是可能的。这些结 果已被证明,并且被用来简化和统一许多金融经济 学中的论述,其中包括项目估值,Modigliani-Miller 理论,远期定价,封闭式互助基金悖论以及有效市 场理论。”
《金融经济学》第五讲 51
资产定价基本定理的数学困难
最后形成一个能张成 S 维空间的基本证券集, 使问题归结为完全市场情形。 在不完全市场情形下,对一种证券确定其定 价范围是问题的关键。解决这一问题有本质 的数学困难。它需要凸集分离定理或者其他 定价命题。
套利定价理论(APT)

r J
AJ
JI
J
,
J 1,2,, N
(6.1)
其中: I 是影响各证券收益率的因子的收益率; AJ是因子 I 收益率为零时证券 J 的预期收益率;
J是因子 I 收益率变化对证券 J 收益率的影响程度;
J是证券 J 的收益率为与因子 I 无关的残差。
套利定价理论(APT)
套利定价理论(APT)
二、多因子模型
假定各证券收益率都受多个市场因子影响,并具有 线性关系,对任意证券J 的收益率可以表示为 k 个 因子收益率的线性模型
k
r J
AJ
i
1
Ji
Ii
J
,
J 1,2,, N
(6.16)
其中: I1,, Ik 是影响各证券收益率的因子的收J益率;
利用与单因子模型类似方J法,可以得到证券K的预
套利定价理论(APT)
2021/7/11
6.1 套利定价模型
套利是指利用一个或多个市场存在的各种价格差异,在
不冒风险或冒较小风险的情况下赚取较高收益率的交
易行为
勇于开始,才能找到成功的路
套利是市场无效率的产物
套利是利用资产定价的错误,价格联系的失常,买入
价格被低估的资产,同时卖出价格被高估的资产来获 取无风险利润的行为
套利定价理论的进一步讨论
区别 两者虽然模型的线性形式相同,但建模思想不
同,CAPM模型是建立在市场均衡的基础上, 以市场投资组合存在为前提。而APT模型是建 立在无套利均衡分析基础上,出发点是通过少 数投资者构造大额无风险套利头寸,迫使市场 重建均衡,以消除市场无风险套利机会。不需 过多的假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)CAPM的实证检验问题
1.市场组合的识别和计算问题
CAPM刻画了资本市场达到均衡时资产收益的决定方法。所 有的CAPM(包括修正的CAPM)的共同特点是,均衡资产的收 益率取决于市场资产组合的期望收益率。理论上,市场资产 组合定义为所有资产的加权组合,每一种资产的权数等于该 资产总市场价值占所有资产总价值的比重。但实际上,市场 资产涵盖的范围非常广泛,因此,在CAPM的实际运用中要识 别一个真正的市场组合几乎是不可能的。
数推导而出,其理论基础为一价定律(The Law of One Price),即两种风险-收益性质相同的资产不能按不同价 格出售。该模型推导出的资产收益率决定于一系列影响资产 收益的因素,而不完全依赖于市场资产组合,而套利活动则 保证了市场均衡的实现。同时,APT对CAPM中的投资者风险 厌恶的假设条件作了放松,从而较CAPM具有更强的现实解释 能力。
2 2 2 2 i2 bi2 b 2 b b COV ( F , F ) 1 F1 i2 F 2 i1 i 2 1 2 i
其中COV(F1,F2)表示两个因素F1和F2之间的协方差。 证券i和证券j的协方差为:
2 2 ij bi1b j1 F b b 1 i 2 j 2 F 2 (bi1b j 2 bi 2 b j1 )COV ( F1 , F2 )
i
it 为证券i在t时期的随机变量,其均值为零,标准
收益率。因素模型认为,随机变量ε与因素是不相关的,
且两种证券的随机变量之间也是不相关的。
根据式(5-1),证券i 的预期收益率为:
ri ai bi F
(5-2)
其中 F 表示该要素的期望值。 根据式(5-1),证券i 收益率的方差为:
在季节效应。
上述两方面的局限性都削弱了CAPM对现实经济的解释能 力。
(三)关于CAPM检验的罗尔批评(Roll’s Critique)
Roll(1977)对CAPM提出了如下批评意见:
1.对于CAPM唯一合适的检验形式应当是:检验包括所
有风险资产在内的市场资产组合是否具有均值-方差效率。
2.如果检验是基于某种作为市场资产组合代表的股票
b 其中
2 i
2 2 2 i F i 2 表示F因素的方差, F
(5-3)
2 i 表示随机变量的方差,
式(5-3)表明,某种证券的风险等于因素风险 2 加上非因素风险 。
i
(b )
2 i 2 F
在单因素模型下,证券i和j收益率的协方差为:
ij bi b j
2 F
(5-4)
单因素模型可以大大简化马科维茨模型中确定切点处投 资组合的麻烦。
在单因素模型中,证券组合的方差等于:
b
2 p 2 p 2 F
2 p
(5-4)
其中,
bp
x i bi
i 1
N
2 p
x i2 2i
i 1
N
(二)两因素模型
两因素模型认为,证券收益率取决于两个因素,其表达 式为:
三、因素模型
套利定价理论认为,证券收益是跟某些因素相关的。 为此,在介绍套利定价理论之前,我们先得了解因素模型( Factor Models)。因素模型认为各种证券的收益率均受某 个或某几个共同因素影响。各种证券收益率之所以相关主要 是因为他们都会对这些共同的因素起反应。因素模型的主要 目的就是找出这些因素并确定证券收益率对这些因素变动的 敏感度。
指数,那么如果该指数具有均值-方差效率,则任何单个风
险资产都会落在证券市场线上,而这是由于恒等变形引起 的,没有实际意义;
3.如果检验是基于某种无效率的指数,则风险资产
收益的任何情形都有可能出现,它取决于无效指数的选 择。 该结论断言,即便市场组合是均值-方差效率的, CAPM也是成立的,但使用前述方法得到的SML,也不能够
一些经济学家采用一个容量较大的平均数(如标准普尔工
业指数)作为市场资产组合的替代,对CAPM进行了检验,得 出的结果却与现实相悖。
2.单因素模型无法全面解释对现实中资产收益率决定
的影响因素
Rosenberg and Marshe(1977)的研究发现,如果将 红利、交易量和企业规模加入计量模型,则β 系数会更有 说服力。 Basu(1977)发现,低市盈率股票的期望收益率高于资 本资产定价模型的估计;Banz(1981)的实证研究表明,股 票收益率存在“规模效应”,即小公司股票有较高的超常 收益率;Kleim(1983)发现股票收益呈季节性变动,即存
rit ai bi1 F1t bi 2 F2t it
其中,F1t和F2t分别表示影响证券收益率的两个因素在t时 期的预测值,bi1和bi2分别表示证券i对这两个因素的敏感度.
证券i的预期收益率为: r a b F b F i i i1 1 i2 2
证券i收益率的方差为:
(一)单因素模型
单因素模型认为,证券的收益率只受一种因素的影
响。对于任意的证券 i,其在t时刻的单因素模型表达式 为:
rit ai bi Ft it
rit
(5-1)
其中
表示证券i在t时期的收益率,Ft表示该因
素在t时期的预测值,bi表示证券i对该因素的敏感度。
差为 , a i为常数,它表示要素值为0时证券i的预期
证明单一风险资产均衡收益同β 风险、市场组合之间存
在某种有意义的关系。 因此,罗尔认为,由于技术上的原因和原理上的模 糊,CAP给出了一个以无套利定价为基础的 多因素资产定价模型,也称套利定价理论模型(Arbitrage
Pricing Theory,APT)。该模型由一个多因素收益生成函
第五讲 套利定价模型 (APT)
本讲的主要内容:
1、CAPM模型的缺陷 2、因素模型 3、套利组合 4、APT模型
5、CAPM与APT的比较
一、CAPM的局限性
(一)相关假设条件的局限性 1.市场无摩擦假设和卖空无限制假设与现实不符; 2.投资者同质预期与信息对称的假设意味着信息是无 成本的,与现实不符; 3.投资者为风险厌恶的假设过于严格。