时间序列分析自回归模型详解
时间序列分析中的自回归模型和滑动平均模型

时间序列分析中的自回归模型和滑动平均模型随着人们对数据分析和预测需求的不断增加,时间序列分析也成为了一个备受关注的领域。
而在时间序列分析中,自回归模型和滑动平均模型是两种重要的预测方法。
自回归模型(Autoregressive Model,AR)是建立在一组时间上的自回归思想中的,其核心是用前一时期的观测值来预测当前时期的观测值。
其数学式表示为:Y_t = c + Σφ_i * Y_t-i + e_t其中,Y_t为当前时期的观测值,c为截距项,φ_i 为 AR 模型中自回归系数,e_t为当前时期的噪声项。
AR 模型存在自相关性的问题,也就是说模型中的一部分误差项与模型中的其他自变量或误差项之间可能存在相关性。
为了解决自相关性问题,滑动平均模型(Moving Average Model,MA)岿然而生。
滑动平均模型是一种使用到多个时间上的滑动平均思想,其核心是对过去一段时间内的噪声项进行平均,作为当前时期噪声项的估计。
MA 模型的数学式表示为:Y_t = c + Σθ_i * e_t-i + e_t其中,θ_i 为 MA 模型中的滑动平均系数,e_t 为当前时期的噪声项。
MA 模型建立在数据中存在噪声项的前提之下,因而只要数据不存在自相关性问题,滑动平均模型就会产生更好的预测结果。
然而,实际情况下,许多时间序列数据中存在着自相关和噪声项的问题,如何有效地处理这些问题,提高模型的预测能力是时间序列分析中的重要课题。
因此,自回归滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)应运而生。
ARIMA 模型是将自回归模型和滑动平均模型结合起来,同时加入对时间序列数据的差分,以对误差项中的自相关性和噪声项进行有效建模。
其数学式表示为:Y_t –μ = φ_1 * (Y_t-1 –μ) + θ_1 * e_t-1 + e_t其中,Y_t 为当前时期的观测值,μ为中心化参数,φ_1 为一阶自回归系数,θ_1 为一阶滑动平均系数,e_t 为当前时期的噪声项。
SAS学习系列39时间序列分析Ⅲ—ARIMA模型

SAS学习系列39时间序列分析Ⅲ—ARIMA模型ARIMA模型(自回归移动平均模型)是一种广泛应用于时间序列分析中的统计模型。
在时间序列数据中,存在着一定的趋势和季节性变动,ARIMA模型可以帮助我们揭示和预测这些变动。
ARIMA模型由三个部分组成:自回归(AR)、差分(I)和移动平均(MA)。
下面我们具体来介绍一下这三个部分的含义和作用。
首先是自回归(AR)部分。
自回归是指当前时刻的数值与前几个时刻的数值之间存在相关性,即当前时刻的数值与之前一段时间的数值有关。
AR模型通过计算时间序列与其前几个时刻的线性组合来预测未来的值。
AR模型的阶数p表示使用多少个历史时刻的数值来进行预测。
其次是差分(I)部分。
差分是指对时间序列进行差分处理,即对相邻两个时刻的数值进行相减,目的是去除时间序列中的趋势性。
差分阶数d表示对时间序列进行差分的次数,通常根据时间序列的趋势性确定。
最后是移动平均(MA)部分。
移动平均是指当前时刻的数值与前几个时刻的误差的加权和有关,即通过计算与历史误差的加权平均来预测未来的值。
MA模型的阶数q表示使用多少个历史误差来进行预测。
通过将这三个部分合并在一起,就可以构建ARIMA模型。
ARIMA模型可以表示为ARIMA(p,d,q),其中p是自回归模型的阶数,d是差分阶数,q是移动平均模型的阶数。
在SAS中,可以使用PROCARIMA来建立ARIMA模型。
首先需要通过分析时间序列的自相关图、偏自相关图和ACF/PACF图来确定ARIMA模型的阶数。
然后使用PROCARIMA来估计模型参数,并进行模型拟合和预测。
ARIMA模型在时间序列分析中应用广泛,可以用于预测股票价格、商品销量、气温等数据的变动趋势。
此外,ARIMA模型还可以用于检测时间序列数据的稳定性和平稳性,以及识别时间序列中的异常值和异常模式。
总之,ARIMA模型是一种常用的时间序列分析工具,能够帮助我们揭示和预测时间序列数据中的趋势和季节性变动。
时间序列 自回归模型

时间序列自回归模型时间序列自回归模型 (Time Series Autoregressive Model) 是一种预测时间序列的方法。
其基本假设是时间序列是自相关(autocorrelated)的,即当前时刻的值受前一时刻的值影响。
本文将基于此介绍时间序列自回归模型的基本概念和步骤。
一、基本概念1、时间序列:指按时间顺序排列的、反映某种变化过程的一系列随机变量值的序列。
时间序列通常不懂静态数据集,而是变化的数据集。
2、自相关性:指时间序列某个数据与其前一个数据之间存在的相关性。
当当前的数据值受到其前一个数据值的影响时,就存在自相关性。
3、自回归模型:指建立在自相关性假设下的对时间序列进行预测的模型。
二、建模步骤1、数据处理:时间序列模型建立的第一步是对数据进行处理,通常包括样本数据的收集、清洗、排序、排除离群值等操作。
2、确定模型类型:根据数据结构,确定一个最适合建模的模型特征,并选择适当的自相关平稳性检验方法(如ADF检验)。
3、选择自回归阶数:根据数据的自相关和偏相关函数图和信息准则等方法,选择合适的自回归阶数。
4、估算参数:利用样本数据,应用最小二乘法或最大似然法等方法对选定的自回归模型进行参数估算。
5、模型诊断:对模型拟合效果进行检验,如残差具有随机性、正态分布,检验该模型是否很好地描述了数据中自回归部分的特征。
三、应用范围时间序列自回归模型是一种通用的数据建模方法,可以适用于各种领域的数据预测,如股票价格预测、气象预测、经济指标预测等等。
但是,在使用时需要考虑到时间序列的动态性,尤其是数据的周期性和节假日等因素带来的干扰。
综上所述,时间序列自回归模型是一种常用的数据预测和建模方法。
建立时间序列自回归模型需要经历数据处理、模型类型的确定、自回归阶数选择、参数估计以及模型诊断等步骤。
应用时需要考虑到数据的周期性和节假日等因素带来的干扰,以达到更加精确的预测效果。
时间序列分析与ARIMA模型

时间序列分析与ARIMA模型时间序列分析是一种研究时间上连续测量所构成的数据的方法。
它可以用来分析数据中的趋势、周期性和随机性,并预测未来的走势。
ARIMA(自回归滑动平均模型)是时间序列分析中常用的模型之一。
本文将介绍时间序列分析的基本概念以及ARIMA模型的原理和应用。
一、时间序列分析的基本概念时间序列是按照时间顺序排列的一组连续观测数据。
在时间序列分析中,我们常常关注序列中的趋势(trend)、季节性(seasonality)和周期性(cycle)等特征。
趋势是指长期上升或下降的走势;季节性是指数据在相同周期内波动的规律性;周期性是指超过一年的时间内出现的规律性波动。
二、ARIMA模型的原理ARIMA模型是由自回归(AR)和滑动平均(MA)模型组成的。
AR模型用过去的观测值来预测未来的值,滑动平均模型则用过去的噪声来预测未来的值。
ARIMA模型是将这两种模型结合起来,对时间序列进行建模和预测。
ARIMA模型包括三个主要部分:自回归阶数(p)、差分阶数(d)和滑动平均阶数(q)。
p表示模型中的自回归项数目,d表示需要进行的差分次数,q表示模型中的滑动平均项数目。
通过对时间序列的观测值进行差分,ARIMA模型可以将非平稳的序列转化为平稳的序列。
然后,可以通过对平稳序列的自回归和滑动平均建模,预测未来的值。
三、ARIMA模型的应用ARIMA模型在实际应用中被广泛使用。
它可以用于经济学、金融学、气象学等领域中的时间序列预测和分析。
以股票市场为例,投资者可以利用ARIMA模型对历史股价进行分析,预测未来股价的走势。
在气象学中,ARIMA模型可以用于预测未来的天气情况。
除了ARIMA模型,时间序列分析还包括其他模型,如季节性分解、移动平均、指数平滑等。
这些模型都有各自的优点和应用领域。
在实际应用中,根据不同的数据特点和研究目的,选择合适的模型进行分析和预测是十分重要的。
总结时间序列分析和ARIMA模型是研究时间数据的重要方法。
时间序列分析 向量自回归(VAR)模型

VAR(1)模型
26
Yt A1 Yt -1 Ut (I - L A 1) Yt Ut Yt (I - L A 1)-1 Ut Ut A1Ut-1 A12Ut-2 A1sUt-s 因此,VAR(k )可以写成一个无限阶的向量MA()
Yts Uts A1Uts-1 A12Uts-2 A1sUt
I
令 Yt (Yt ,Yt1,Yt2....Ytk1)NK1
C (c, 0, 0....0)NK1
1 2 ... k1 k
I
0 ...
0
0
A 0 I ... 0 0
...
... ...
...
...
0 0 ... I
0 NKNK
Ut ut
0
0 ... 0 NK 1
上式可写为 Yt C AYt1 Ut
• VAR模型是自回归模型的联立形式,所以 称向量自回归模型。
6
假设y1t , y2t之间存在关系, 若分别建立两个回归模型 y1,t f ( y1,t1, y1,t2 ,......) y2,t f ( y2,t1, y2,t2 ,......)
产生的问题是什么? 无法捕捉两个变量之间的关系 解决办法:建立两个变量之间的关系
14
注意的问题
• (1)因为L1=1/0.978 =1/1, L2 =1/0.27=1/2, 所以特征方程与相反的特征方程的根互为倒数,L = 1/ 。
• (2)在单方程模型中,通常用相反的特征方程
(L) = 0的根描述模型的稳定性,即单变量过程 稳定的条件是(相反的)特征方程(L) = 0的根
都要在单位圆以外;而在VAR模型中通常用特征
随机时间序列分析模型

随机时间序列分析模型随机时间序列分析模型是用于描述时间序列数据的统计模型,旨在揭示数据的规律和变化趋势。
本文将介绍一种常用的随机时间序列分析模型——自回归移动平均模型(Autoregressive Moving Average model,简称ARMA模型)。
ARMA模型的一般形式为:$$ X_t = \sum_{i=1}^{p}\phi_iX_{t-i} + \sum_{i=0}^{q}\theta_i\varepsilon_{t-i} +\varepsilon_t$$ 其中,$X_t$为时间序列在时刻$t$的取值,$\phi_i$和$\theta_i$分别是AR和MA部分的系数,$p$和$q$分别表示AR和MA部分的阶数,$\varepsilon_t$是白噪声误差。
AR部分表示当前时刻的取值与前几个时刻的取值之间的关系,MA部分表示当前时刻的取值与前几个时刻的白噪声误差之间的关系。
这两部分分别用来描述时间序列的自相关和移动平均性质,通过确定合适的阶数和系数,可以很好地拟合并预测时间序列的未来趋势。
ARMA模型的建立一般包括以下几个步骤:1. 确定AR和MA部分的阶数$p$和$q$:通过观察自相关图和偏自相关图,可以确定AR和MA部分的阶数。
2. 估计模型的参数$\phi_i$和$\theta_i$:可以使用最小二乘法或极大似然估计法来估计模型的参数。
3. 检验模型的适应性:可以通过残差的自相关和偏自相关图来检验模型的适应性,如果图中没有明显的结构性相关,则说明模型适应良好。
4. 对模型进行预测:可以利用已有的数据对模型进行参数估计,然后使用模型对未来的数据进行预测。
ARMA模型具有一定的局限性,例如对于非平稳序列,需要进行差分等预处理操作;对于长期依赖的序列,ARMA模型的拟合效果可能较差。
在实际应用中,可能需要根据具体情况选择其他更适合的模型。
随机时间序列分析模型在经济学、金融学、气象学等领域都有广泛的应用。
时间序列分析中常用的模型

时间序列分析中常用的模型时间序列分析是一种重要的数据分析方法,用于研究随时间变化的数据。
在实际应用中,常常需要使用合适的模型来描述和预测时间序列数据。
本文将介绍时间序列分析中常用的几种模型,并对其原理和应用进行详细的讨论。
一、移动平均模型(MA模型)移动平均模型是时间序列分析中最简单的模型之一。
它基于时间序列在不同时刻的观测值之间存在一定的相关性,并假设当前的观测值是过去一段时间内的观测值的线性组合。
移动平均模型一般用“MA(q)”表示,其中q表示移动平均阶数,即过去q个观测值的影响。
二、自回归模型(AR模型)自回归模型是另一种常用的时间序列模型。
它假设当前的观测值与过去一段时间内的观测值之间存在线性关系,并通过自相关函数来描述观测值之间的相关性。
自回归模型一般用“AR(p)”表示,其中p表示自回归阶数,即过去p个观测值的影响。
三、自回归移动平均模型(ARMA模型)自回归移动平均模型是将移动平均模型和自回归模型相结合得到的一种模型。
它通过同时考虑观测值的移动平均部分和自回归部分来描述时间序列的相关性。
四、季节性模型在一些具有周期性波动的时间序列数据中,常常需要使用季节性模型进行分析。
季节性模型一般是在上述模型的基础上加入季节因素,以更准确地描述和预测数据的季节性变化。
五、自回归积分移动平均模型(ARIMA模型)自回归积分移动平均模型是时间序列分析中最常用的模型之一。
它通过引入差分运算来处理非平稳时间序列,并结合自回归模型和移动平均模型来描述残差项之间的相关性。
六、指数平滑模型指数平滑模型是一种常用的时间序列预测方法。
它假设未来的观测值与过去的观测值之间存在指数级的衰减关系,并通过平滑系数来反映不同观测值之间的权重。
七、ARCH模型和GARCH模型ARCH模型和GARCH模型是用于处理时间序列波动性的模型。
它们基于过去的方差序列来描述未来的波动性,并用于金融市场等领域的风险管理和波动率预测。
总结来说,时间序列分析中常用的模型包括移动平均模型、自回归模型、自回归移动平均模型、季节性模型、自回归积分移动平均模型、指数平滑模型、ARCH模型和GARCH模型等。
时间序列分析自我回归模式

33
44
55 66
PACF
0.1796
-0.0538
-0.0058
0.1898
0.0957
0.0476
結果分析與討論
由圖(一)及得知,測線中各段的閉合差很明 顯的分為兩個群集,即前82個測段為一群集, 後35個測段為另一群集,已知此一測線為從台 中港往基隆方向施測,從目前手邊所有資料實 難足以判斷此現象發生的原因,可能原因有地 形因素、不同日期施測氣溫高低不同及各地重 力值不等…等因素。
var(Zt ) var(Ztk )
2 0
0
1
2
3
4
5
6
7
8
9
10
0.1551 -0.0171 -0.0164 -0.1083 0.0392 0.0701 0.0727 -0.1205 -0.2783 0.0623
k
0.1796
k
-0.0198 -0.0190 -0.1254 0.0454
圖(一)
mm
從上圖可知,測線全部117條測段,前82條測 段的閉合差跟後35條線段的閉合差有相當程度 的差異,因此再將前82條測段獨立出來,組成 新的數列,其閉合差分佈情形下圖
2 1 0 -1 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 -2 -3 -4 -5
k 0
參 考 文 獻:
林茂文,1992,時間數列分析與預測,華泰書局。 葉小蓁,1998,時間序列分析與應用。
依上述實驗,ACF及PACF並未如理論所述,可 能的原因有計算錯誤、模式選定錯誤(尚未成 平穩型)、數據本身有相異的系統誤差存在導 致序列不能吻合或需更高階的階數…等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j)
齐次线性差分方程的通解
定理1.1 设A(z)是k个互不相同的零点 z1, z2 , zk 其中z j
是r(j)重零点。则
{z
t j
tl
},
l
0,1, 2,
r( j) 1, j 1,2,
k
是(1.2)的p个解,而且(1.2)的任何解都可以写成
这p个解的线性组合
k r ( j)1
(1.7)
Xt
60
80
100
120
AR( p) 模型 定义2.1( AR( p) 模型) 如果{t} 是白噪声WN(0, 2 ),实数
a1, a2, ap , ap 0 使得多项式A(z)的零点都在单位圆外 p A(z) 1 aj z j 0, z 1 则称P阶差分方程 j 1
p
Xt a j Xt j t ,t Z j 1
是一个p阶自回归模型,简称为 AR( p) 模型
满足 AR( p) 模型(2.5)的平稳时间序列称为(2.5)的平稳解或 AR( p) 序列
称 a (a1,a2, ap )T 为 AR( p) 模型的自回归系数。
称条件(2.4)是稳定性条件或最小相位条件。 A(z)称为模型(2.5)的特征多项式。
X t [a1X t1 a2 X t2 ap X t p ] 0,t Z
为p阶齐次常系数线性差分方程,简称齐次差分方程。 满足上式方程的实数列称为它的解, 满足上式的实值(或复值)时间序列也成为它的解。
上式的解可以由p个初值逐次递推得到
Xt [a1X t1 a2 X t2 ap X t p ],t p
U
l
,
jt
'
z
t j
,
t
Z
j1 l0
其中的随机变量Ul, j 可以由 {Xt} 的初值唯一决定,(1.7)称为 齐次线性差分方程(1.2)的通解。
差分方程(1.2)的实值解可以表示为
k r ( j)1
Vl,
jt'
t j
cos(
jt
j
),
t
Z
j1 l0
{Vl, j ,l, j} 可以由初始值唯一决定。
AR( p) 的平稳解
设多项式A(Z)的互异根是 x1 x0 0,生成{t}~WN(0, 2)
取 1 min{ z j }
从而有泰勒级数 Xt A(1 B)t j t j
j0
令
A(1 B) j B j
j0
如果{Xt}是(2.6)的平稳解,则
Xt A1(B)A(B)Xt A1(B)t
单摆的10000个观测值(a=1):
100 80 60 40 20 0 -20 -40 -60 -80 0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
单摆的120个观测值(a=-1.25):
12
x 10 3
2
1
0
-1
-2
-3
-4 0
20
40
时间序列分析第二章自回归模 型
§2.1推移算子和常系数差分方程
一.推移算子
对任何时间序列 {Xt} 和无穷级数 (z) bj z j 只要级数 bj Xt j
在某种意义下收敛,就定义
j
j
() bj j j
() Xt bj j Xt bj Xt j
j
j
并称B是时间t的后向推移算子,简称推移算子。
Xtp
1 ap
[Xt
a1X t1
a2 X t2
ap1X t p1],t p 0
若初值是随机变量则递推得到的是时间序列。
用推移算子把差分方程写成 p A(B)Xt 0,t Z,其中A(z) 1 a j z j 0, z 1 j 1
A( z )称为差分方程的特征多项式。
解有线性性质:{Xt} 和{Y t} 是解,则 Xt +Yt 也是解。
由此可见平稳解如果存在必然为
Xt A1(B)t j t j j0
有
j0
A(B) Xt (B)[(z)Xt ] (B)[ (B) X t ]
p
(6) 对时间序列{Xt} ,{Yt} ,多项式 (z) cjz j 和随机变量U,V,W有 j0
(B)(UXt VYt W ) U (B) Xt V (B)Yt W (1)
二.常系数齐次线性差分方程 给定p个实数 a1, a2, ap , ap 0,我们称
通解的收敛性 如果差分方程的特征多项式A(Z)的根都在单位圆外:
z j 1, j 1, 2, k或A(z) 0, z 1
取 1 min{ z j : j 1, 2 k},则
tl z j tl ( / z j ) t o( t ) 于是方程的任意解满足 Xt o( t )a.s.,t 称Xt以负指数阶收
推移算子有称为时滞算子或延迟算子,推移算子的性质:
(1)对和t无关的随机变量Y有BY=Y,
(2)Bn (aXt ) aBn Xt aXtn (3)Bnm Xt Bn (Bm )Xt Xtnm
p
p
(4)对多项式 (z) cj z j有 (B)Xt cj Xt j
j0
j0
(5) 对多项式 (z) p cj z j和(z)=d j z j 的乘积 A(z) (z)(z)
k r ( j )1
Xt
X (0) t
Байду номын сангаас
U
l
,
j
t
'
z
t j
,
t
Z
j1 l0
§2.2 自回归模型及其平稳性
例子:
单摆的120个观测值(a=-0.35)
8
6
4
2
0
-2
-4
0
20
40
60
80
100
120
单摆的120个观测值(a=-0.85):
8
6
4
2
0
-2
-4
-6
-8
0
20
40
60
80
100
120
差分方程的基础解:设多项式A(z)是k个互不相同的零点 z1, z2, zk , 其中z j是r(j)重零点。 可以证明对每个z j有
A(B)t'zj t 0,l 0,1,2, r( j) 1
证明:设A(z)有分解
k
则有
A( z )
(1
j 1
z
1 j
z
)
r
(
j)
k
A(B)
(1
j 1
z j 1B)r(
敛到0.
通解不收敛的情形 如果特征多项式有单位根,则方程有一个周期解
Xt cos(jt),t Z
如果单位圆内有根,则方程有一个爆炸解
Xt
( 1
j
) cos( jt ), t
Z
非齐次线性差分方程及其通解
设{Yt}为实值时间序列
(1.10)
A(B) Xt Yt ,t Z
满足(1.10)的时间序列称为(1.10)的解。 如果有(1.10)的某个解,则通解可以写成