数字信号处理作业+答案

数字信号处理作业+答案
数字信号处理作业+答案

数字信号处理作业

哈尔滨工业大学

2006.10

DFT 习题

1. 如果)(~

n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~

n x 看作周期为N 的周期序列,令)(~

1k X 表示)(~

n x 的离散傅里叶级数之系数,再把)(~

n x 看作周期为N 2的周期序列,再令)(~

2k X 表示)(~

n x 的离散傅里叶级数之系数。当然,)(~

1k X 是周期性的,周期为N ,而)(~

2k X 也是周期性的,周期为N 2。试利用)(~

1k X 确定)(~

2k X 。(76-4)

2. 研究两个周期序列)(~

n x 和)(~

n y 。)(~

n x 具有周期N ,而)(~

n y 具有周期M 。序列

)(~n w 定义为)()()(~

~~n y n x n w +=。

a. 证明)(~

n w 是周期性的,周期为MN 。

b. 由于)(~

n x 的周期为N ,其离散傅里叶级数之系数)(~

k X 的周期也是N 。类似地,

由于)(~

n y 的周期为M ,其离散傅里叶级数之系数)(~

k Y 的周期也是M 。)(~

n w 的离散傅里叶级数之系数)(~

k W 的周期为MN 。试利用)(~

k X 和)(~

k Y 求)(~

k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ):

a. )()(n n x δ= b .N n n n n x <<-=000)()(δ

c .10)(-≤≤=N n a n x n

(78-7)

4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

5. 令)(k X 表示N 点序列)(n x 的N 点离散傅里叶变换

(a ) 证明如果)(n x 满足关系式:)1()(n N x n x ---=,则0)0(=X 。 (b ) 证明当N 为偶数时,如果)1()(n N x n x --=,则0)2/(=N X 。(80-14)

6. 令)(k X 表示N 点序列)(n x 的N 点离散傅里叶变换,)(k X 本身也是一个N 点序列。如果计算)(k X 的离散傅里叶变换得到一序列)(1n x ,试用)(n x 求)(1n x 。(82-15)

7. 若)(n x 为一个N 点序列,而)(k X 为其N 点离散傅里叶变换,证明:

∑∑

-=-==10

k 2

1

2

)k (X N 1)(N N n n x ,这是离散傅里叶变换的帕斯维尔关系式。

(82-16)

8. 长度为8的一个有限时宽序列具有8点离散傅里叶变换)(k X ,如图所示。长度为16的

一个新的序列)(n y 定义为:

?????=为奇数

为偶数n n n

x n y 0)2()(,试画出相当于

)(n y 的16点离散傅里叶变换的略图。(86页-18)

k

0 1 2 3 4 5 6

7

9. 令()x n 表示z 变换为()X z 的无限时宽序列,而1()x n 表示长度为N 的有限时

宽序列,其N 点离散傅立叶变换用1()X k 表示。如果()X z 和1()X k 有如下关系:1()()|, 0,1,2,,1k N

z W X k X z k N -===-

式中2j

N

N W e

π-=。试求()x n 和1()x n 之间的关系。(93-22)

10. 令)(ωj e X 表示序列)()2/1()(n u n x n =的傅里叶变换,并令)(n y 表示长度为10的一个

有限时宽序列,即0n 时,0)(=n y ,)(n y 的10点离散傅里叶变换用)(k Y 表示,它相当于)(ω

j e X 的10个等间隔取样,即)()(10/2k j e X k Y π=,试

求)(n y (94-23)

11. 讨论一个长度为N 的有限时宽序列)(n x ,0N n 时,0)(=n x ,我们要求

计算其z 变换)(z X 在单位圆的M 个等间隔点上的取样。取样数M 小于序列的时宽N ;即N M ≤,试求一种得到)(z X 的M 个取样的方法,它只要计算一次M 点序列(这个序列是由)(n x 得来的)的M 点离散傅里叶变换。(96-25)

12. 研究两个0

当时

当20n 0)(8n 0)(≥=≥=n y n x ,将每一个序列的20点离散傅里叶变换,然后计算离散傅里叶反变

换,令)(n r 表示它的离散傅里叶反变换,指出)(n r 的哪些点相当于)(n x 与)(n y 线性卷积中的点。(96-26)

FFT 习题

1. 假设有一计算如下离散傅里叶变换的程序:

1,...,1,0)()(1

)/2(-==∑-=-N k e n x k X N n kn

N j π,试指出如何用此程序来计算如下反变换:

1,...,1,0)(1)(1

)/2(-==∑-=-N n e k X N n x N k kn

N j π(193-8)

2. 在计算实序列的离散傅里叶变换时,利用序列是实序列这一特点有可能减少计算量,本

题中讨论了两种减少计算量的途径:

a. 研究两个分别具有离散傅里叶变换1()X k 和2()X k 的实序列1()x n 和2()x n ,令

()g n 为一个复序列,12()()()g n x n jx n =+,()G k 为其离散傅里叶变换。令

()OR G k 、()ER G k 、()OI G k 、()EI G k 分别表示()G k 的实部的奇数部分、实部的偶

数部分、虚部的奇数部分和虚部的偶数部分,试利用()OR G k 、()ER G k 、()OI G k 和

()EI G k 表示1()X k 和2()X k 。

b. 假设()x n 是一个N 点的实序列,且N 可以被2整除,令1()x n 和2()x n 为两个/2

N 点序列,其定义为:

1()(2),0,1,2,...,/21x n x n n N ==-, 2()(21),0,1,2,...,/21x n x n n N =+=-

试利用1()X k 和2()X k 求()X k 。(198-10)

3. 研究一个有限长度序列)(n x ,并且0n n <和01n N n +->时,0)(=n x 。假设我们想

要计算在z 平面内下列各点上)(n x 的z 变换之取样:

))/2((k M j k re z πθ+=,1,...,2,1,0-=M k ,式中N M <。试详细说出一种计算这些点上的

)(z X 的有效方法。

(199页-11)

4. 研究一个长度为M 的有限时宽序列)(n x ,并且0时,0)(=n x 。我们希

望计算z 变换∑-=-=

1

)()(N n n

z

n x z X 在单位圆上N 个等间隔点上的取样,即在

k N j e z )/2(π=,1,...,2,1,0-=N k 上的取样,试找出对下列情况只用一个N 点离散傅里

叶变换就能计算)(z X 的N 个取样的方法,并证明之。 (a ) M N ≤

(b ) M N >(200-12)

5.

)(ωj e X 表示长度为10的有限时宽序列)(n x 的傅里叶变换,

我们希望计算)(ω

j e X 在频率)9,...1,0)(100/2(2

==k k k πω时的10个取样。计算时不能采取先算出比要求多的取样,然后再丢掉一些的办法。讨论采用下列各方法的可行性:

(a) 直接利用10点快速傅里叶变换算法。 (b) 利用线性调频z 变换算法。(201-13)

6. 在下列说法中选择正确的结论并加以证明。线性调频z 变换可以用来计算一个有限时宽序列()h n 在z 平面实z 轴上诸点{}k z 的z 变换()H z ,使

a) ,0,1,...,1,k k z a k N a ==-≠±为实数,a 1; b) ,0,1,...,1,0k k z a k N a ==-≠为实数,a c) a)和b)两者都行;

d) a)和b)都不行,即线性调频z 变换不能计算()H z 在z 为实数时的取样。(203-15)

Hilbert 变换习题

1. 令()x n 为()x n <∞的一个实因果序列,已知()x n 的z 变换为 0

()()n

n X z x n z

-==

上式为变量1

z -的泰勒级数,所以它在以z=0为中心的某一圆外部处处收敛于一个解析函数。[收敛区域包括点z=∞,事实上,()(0)X x ∞=]。我们说()X z 是解析(在其收敛区域内)的,表示对X 加了苛刻的约束条件,即它的实部和虚部各都满足拉普拉斯方程,且实部和虚部之间满足柯西-黎曼方程。现在我们利用这些性质,根据()X z 的实部确定()X z ,条件是

()x n 为有限值的实因果序列。

令()x n 为实(有限值的)因果序列,其z 变换为:

()()()R I X z X z jX z =+

式中:R X 和I X 是z 的实函数。 假设j z

e ωρ=时,R X 给定为

cos ()j R X e ωραω

ρρ

+=

(α为实数)

假设除了z=0外,()X z 处处解析,试求()X z 并表示成z 的显函数。 (建议用时域法解此题)(214-4)

2. 序列()x n 的偶部定义为:()()

()2

e x n x n x n +-=

,假设()x n 是一个有限时宽实序列,定

义为0n <和n N ≥时,()0x n =。令()X k 表示为()x n 的N 点的离散傅立叶变换。 (a )()e x n 的离散傅立叶变换是否等于Re[()X k ]?

(b )试求出以()x n 表示的Re[()X k ]的离散傅立叶反变换。(228-15)

3. 研究一个长度N 的有限时宽实序列(即n<0,n ≥N 时,()x n =0),此处N 为奇数。用()

X k 表示()x n 的M 点的离散傅立叶变换,因

令()R X k 表示()X k 的实部。

(a ) 试利用N 来求能使()R X k 唯一确定()X k 的最小M 值(M=1,2除外)。

(b ) 如果M 满足(a )中所确定的条件,则()X k 可以表示为()R X k 和序列()U k 的循环

卷积。请确定()U k 。(228-16)

1

(2/)0

()()N j M nk

n X k x n e π--==∑

4.研究一个复序列x(n),x(n)=xr(n)+xi(n),其中xr(n)和xi(n)是实序列,序列x(n)的z变换X(z)在单位圆的下半部分为零。即,π≤ω≤2π时,X(ejω)=0. x(n)的实部为

x r(n)=

1/2,0

1/4,2 0,

n

n

=

????-=±??????其他

试求X(e jω)的实部和虚部。

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

数字信号处理(北航)实验二报告

数字信号处理实验二 信号的分析与处理综合实验 38152111 张艾一、实验目的 综合运用数字信号处理的理论知识进行信号的采样,重构,频谱分析和滤波器的设计,通过理论推导得出相应结论,再利用Matlab作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。 二、基本要求 1.掌握数字信号处理的基本概念、基本理论和基本方法; 2.学会MATLAB的使用,掌握MATLAB的程序设计方法; 3.掌握用MATLAB设计简单实验验证采样定理的方法; 4.掌握在Windows环境下语音信号采集的方法; 5.学会用MATLAB对信号进行频谱分析; 6.掌握MATLAB设计FIR和IIR数字滤波器的方法; 三、实验内容 1.利用简单正弦信号设计实验验证采样定理: (1)Matlab产生离散信号的方法,作图的方法,以及基本运算操作 (2)对连续正弦信号以不同的采样频率作采样 (3)对采样前后信号进行傅立叶变换,并画频谱图 (4)分析采样前后频谱的有变化,验证采样定理。

掌握画频谱图的方法,深刻理解采样频率,信号频率,采样点数,频率分辨率等概念2.真实语音信号的采样重构:录制一段自己的语音信号,并对录制的信号进行采样;画出采样前后语音信号的时域波形和频谱图;对降采样后的信号进行插值重构,滤波,恢复原信号。 (1)语音信号的采集 (2)降采样的实现(改变了信号的采样率) (3)以不同采样率采样后,语音信号的频谱分析 (4)采样前后声音的变化 (5)对降采样后的信号进行插值重构,滤波,恢复原信号 3.带噪声语音信号的频谱分析 (1)设计一频率已知的噪声信号,与实验2中原始语音信号相加,构造带噪声信号(2)画出原始语音信号和加噪声后信号,以及它们的频谱图 (3)利用频谱图分析噪声信号和原语音信号的不同特性 4.对带噪声语音信号滤波去噪:给定滤波器性能指标,采样窗函数法或双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采样的语音信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化; 回放语音信号; (1)分析带噪声信号频谱,找出噪声所在的频率段 (2)利用matlab中已有的滤波器滤波 (3)根据语音信号特点,自己设计滤波器滤波 (4)比较各种滤波器性能(至少四种),选择一种合适的滤波器将噪声信号滤除 (5)回放语音信号,比较滤波前后声音的变化

数字信号处理习题及答案1

数字信号处理习题及答案1 一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出 y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n ) 的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换 DFT 的是 ( ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列 C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即 可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理 想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)

数字信号处理作业答案

数字信号处理作业

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~1k X 是周期性的,周期为N ,而)(~2k X 也是周期性的,周期为N 2。试利用)(~1k X 确定)(~2k X 。(76-4)

2. 研究两个周期序列)(~n x 和)(~n y 。)(~n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000) ()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

数字信号处理实验报告

Name: Section: Laboratory Exercise 2 DISCRETE-TIME SYSTEMS: TIME-DOMAIN REPRESENTATION 2.1 SIMULATION OF DISCRETE-TIME SYSTEMS Project 2.1The Moving Average System A copy of Program P2_1 is given below: % Program P2_1 % Simulation of an M-point Moving Average Filter % Generate the input signal n = 0:100; s1 = cos(2*pi*0.05*n); % A low-frequency sinusoid s2 = cos(2*pi*0.47*n); % A high frequency sinusoid x = s1+s2; % Implementation of the moving average filter M = input('Desired length of the filter = '); num = ones(1,M); y = filter(num,1,x)/M; % Display the input and output signals clf; subplot(2,2,1); plot(n, s1); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Signal #1'); subplot(2,2,2); plot(n, s2); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Signal #2'); subplot(2,2,3); plot(n, x); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Input Signal'); subplot(2,2,4); plot(n, y); axis([0, 100, -2, 2]); xlabel('Time index n'); ylabel('Amplitude'); title('Output Signal'); axis;

2020年数字信号处理大作业新版修订

2019~2020年度《数字信号处理》大作业题目与要求 大作业要求: 本学期大作业总分40分,学生可选择任意数量的题目完成,只要所选题目总分达到40分即可,所选题目总分如果超过40分,超过的部分不计入大作业总分。大作业以电子版的形式提交,内容应包括详细的程序设计思路与题目分析(题目分析指的是对该题目中所用到的知识点的说明,不要照搬书上或网上的内容,写出你自己对该知识点的理解。),程序截图,程序源码,其中设计思路和程序截图可写在同一个文档中,程序源码可以是.txt或.m 文件,并在源码中标注代码注释。另:题目中有GUI设计要求的部分占该题目分值的20%,功能实现部分占该题目分值的80%。 注:以下题目均用MATLAB完成。 大作业题目: 1、实现有限长序列的基本运算(包括:加法、乘法、累加、移位、翻褶、抽取、插值、卷积和),并以GUI的形式将这些运算整合起来,使用者可通过向GUI输入任意有限长序列得到对应的运算结果。(5分) 2、设计一个GUI,实现奈奎斯特采样定理,要求:1、在GUI中输入任意一个模拟信号,显示该模拟信号的时域和频域谱图;2、在GUI中设置任意采样频率,对输入的模拟信号进行采样处理,显示采样信号的时域和频域谱图; 3、在GUI中实现采样信号向模拟信号的恢复功能,要求显示恢复后的模拟信号的时域和频域谱图。(10分) 3、通过GUI动态展示z变换与s变换之间的所有关系。(5分) 4、设计一个GUI,通过向GUI输入任意系统函数,得到其对应系统的相关信息(包括:系统频率响应中的幅度响应和相位响应、系统零极点的分布、系统的稳定性判定)。(10分) 5、设计一个GUI,实现利用DFT(或FFT)完成任意时域信号的频谱分析,要求:1、可在GUI中输入时域数字或模拟信号;2、可设置DFT点数;3、在GUI中显示输入信号经DFT(或FFT)处理后的频谱图;3、若输入信号为模拟信号,需完成对该模拟信号的采样,采样频率可在GUI中设置。(10分) 6、在GUI中,实现IIR滤波器的直接型、级联型和并联型三种结构之间的任意转换,要求:在GUI中输入任意一型的系统函数后可在该GUI中显示出对应的另外两型的系统函数。(10分) 7、实现巴特沃斯样本模拟低通滤波器及其对应的数字低通滤波器的设计,以GUI的形式给出。要求:输入所需的模拟低通滤波器参数指标后,程序能将该指标转化为数字低通滤波器指标(在GUI中应能选择转化方式:冲激响应不变法、双线性变换法),并在GUI中显示出所给参数下巴特沃斯样本模拟低通滤波器及其对应的数字低通滤波器的频率响应中幅度响应的频谱图。(15分) 8、已知某组数字信号(见大作业数据压缩包中HWDATA.mat文件),该信号中除了目标信号之外还掺杂有强噪声,但噪声与目标信号的频率不重叠,要求采用本学期已学的知识对该信

数字信号处理实验报告

语音信号的数字滤波 一、实验目的: 1、掌握使用FFT进行信号谱分析的方法 2、设计数字滤波器对指定的语音信号进行滤波处理 二、实验内容 设计数字滤波器滤除语音信号中的干扰(4 学时) 1、使用Matlab的fft函数对语音信号进行频谱分析,找出干扰信号的频谱; 2、设计数字滤波器滤除语音信号中的干扰分量,并进行播放对比。 三、实验原理 通过观察原语音信号的频谱,幅值特别大的地方即为噪声频谱分量,根据对称性,发现有四个频率的正弦波干扰,将它们分别滤掉即可。采用梳状滤波器,经过计算可知,梳状滤波器h[n]={1,A,1}的频响|H(w)|=|A+2cos(w)|,由需要滤掉的频率分量的频响w,即可得到A,进而得到滤波器的系统函数h[n]。而由于是在离散频域内进行滤波,所以令w=(2k*pi/N)即可。 对原信号和四次滤波后的信号分别进行FFT变换,可以得到它们的幅度相应。最后,将四次滤波后的声音信号输出。 四、matlab代码 clc;clear;close all; [audio_data,fs]=wavread('SunshineSquare.wav'); %读取未处理声音 sound(audio_data,fs); N = length(audio_data); K = 0:2/N:2*(N-1)/N; %K为频率采样点

%sound(audio_data,fs); %进行一次FFT变换 FFT_audio_data=fft(audio_data); mag_FFT_audio_data = abs(FFT_audio_data); %画图 figure(1) %原信号时域 subplot(2,1,1);plot(audio_data);grid; title('未滤波时原信号时域');xlabel('以1/fs为单位的时间');ylabel('采样值'); %FFT幅度相位 subplot(2,1,2);plot(K,mag_FFT_audio_data);grid; title('原信号幅度');xlabel('以pi为单位的频率');ylabel('幅度'); %构造h[n]={1,A,1}的梳状滤波器,计算A=2cosW,妻子W为要滤掉的频率%由原信号频谱可知要分四次滤波,滤掉频响中幅度大的频率分量 %第一次滤波 a = [1,0,0,0];%y[n]的系数 [temp,k]=max(FFT_audio_data); A1=-2*cos(2*pi*k/N); h1=[1,A1,1]; audio_data_h1 = filter(h1,a,audio_data); FFT_audio_data_h1=fft(audio_data_h1);

数字信号处理课后答案

1.4 习题与上机题解答 1. 用单位脉冲序列δ(n)及其加权和表示题1图所示的序列。 题1图 解:x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n -1)+2δ(n -2)+4δ(n -3)+0.5δ(n -4)+2δ(n -6) 2. 给定信号: ?? ? ??≤≤-≤≤-+=其它04 061 452)(n n n n x (1) 画出x(n)序列的波形, 标上各序列值; (2) 试用延迟的单位脉冲序列及其加权和表示x(n)序列; (3) 令x 1(n)=2x(n -2),试画出x 1(n)波形; (4) 令x 2(n)=2x(n+2),试画出x 2(n)波形; (5) 令x 3(n)=x(2-n),试画出x 3(n)波形。 解:(1) x(n)序列的波形如题2解图(一)所示。 (2) x(n)=-3δ(n+4)-δ(n+3)+δ(n+2)+3δ(n+1)+6δ(n)+6δ(n -1)+6δ(n -2)+6δ(n -3)+6δ(n -4) (3)x 1(n)的波形是x(n)的波形右移2位,再乘以2,画出图形如题2解图(二)所示。 (4) x 2(n)的波形是x(n)的波形左移2位,再乘以2,画出图形如题2解图(三)所示。 (5) 画x 3(n)时,先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°),然后再右移

2位, x 3(n)波形如题2解图(四)所示。 3.判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)是常数 A n A n x 8π73 cos )(??? ??-=π (2))8 1 (j e )(π-= n n x 解:(1) 因为ω=7 3 π, 所以314 π 2= ω , 这是有理数,因此是周期序列,周期T=14。 (2) 因为ω=81 , 所以ωπ2=16π, 这是无理数, 因此是非周期序列。 4. 对题1图给出的x(n)要求: (1) 画出x(-n)的波形; (2) 计算x e (n)=1/2[x(n)+x(-n)], 并画出x e (n)波形; (3) 计算x o (n)=1/2[x(n)-x(-n)], 并画出x o (n)波形; (4) 令x 1(n)=x e (n)+x o (n), 将x 1(n)与x(n)进行比较, 你能得到什么结论? 解:(1)x(-n)的波形如题4解图(一)所示。 (2) 将x(n)与x(-n)的波形对应相加,再除以2,得到x e (n)。毫无疑问,这是一个偶对称序列。x e (n)的波形如题4解图(二)所示。 (3) 画出x o (n)的波形如题4解图(三)所示。 (4) 很容易证明:x(n)=x 1(n)=x e (n)+x o (n) 上面等式说明实序列可以分解成偶对称序列和奇对称序列。偶对称序列可以用题中(2)的公式计算,奇对称序列可以用题中(3)的公式计算。 5.设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出,判断系统是否是线性非时变的。

西电数字信号处理大作业

第二章 2.25 已知线性时不变系统的差分方程为 若系统的输入序列x(x)={1,2,3,4,2,1}编写利用递推法计算系统零状态响应的MATLAB程序,并计算出结果。 代码及运行结果: >> A=[1,-0.5]; >> B=[1,0,2]; >> n=0:5; >> xn=[1,2,3,4,2,1]; >> zx=[0,0,0];zy=0; >> zi=filtic(B,A,zy,zx); >> yn=filter(B,A,xn,zi); >> figure(1) >> stem(n,yn,'.'); >> grid on;

2.28图所示系统是由四个子系统T1、T2、T3和T4组成的,分别用单位脉冲响应或差分方程描述为 T1: 其他 T2: 其他 T3: T4: 编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。 代码及结果如下: >> a=0.25;b=0.5;c=0.25; >> ys=0; >> xn=[1,zeros(1,99)]; >> B=[a,b,c]; >> A=1; >> xi=filtic(B,A,ys); >> yn1=filter(B,A,xn,xi); >> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1]; >> h3=conv(h1,h2); >> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31; >> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys); >> yn=filter(D,C,yn2,xi); >> n=0:99; >> figure(1) >> stem(n,yn,'.'); >> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');

数字信号处理上机作业

数字信号处理上机作业 学院:电子工程学院 班级:021215 组员:

实验一:信号、系统及系统响应 1、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。 (2) 熟悉时域离散系统的时域特性。 (3) 利用卷积方法观察分析系统的时域特性。 (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。 2、实验原理与方法 (1) 时域采样。 (2) LTI系统的输入输出关系。 3、实验内容及步骤 (1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。 (2) 编制实验用主程序及相应子程序。 ①信号产生子程序,用于产生实验中要用到的下列信号序列: a. xa(t)=A*e^-at *sin(Ω0t)u(t) b. 单位脉冲序列:xb(n)=δ(n) c. 矩形序列: xc(n)=RN(n), N=10 ②系统单位脉冲响应序列产生子程序。本实验要用到两种FIR系统。 a. ha(n)=R10(n); b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) ③有限长序列线性卷积子程序 用于完成两个给定长度的序列的卷积。可以直接调用MATLAB语言中的卷积函数conv。 conv 用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。调用格式如下: y=conv (x, h) 4、实验结果分析 ①分析采样序列的特性。 a. 取采样频率fs=1 kHz,,即T=1 ms。 b. 改变采样频率,fs=300 Hz,观察|X(e^jω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(e^j ω)|曲线。 程序代码如下: close all;clear all;clc; A=50; a=50*sqrt(2)*pi; m=50*sqrt(2)*pi; fs1=1000; fs2=300; fs3=200; T1=1/fs1; T2=1/fs2; T3=1/fs3; N=100;

数字信号处理实验报告(同名22433)

《数字信号处理》 实验报告 课程名称:《数字信号处理》 学院:信息科学与工程学院 专业班级:通信1502班 学生姓名:侯子强 学号:0905140322 指导教师:李宏 2017年5月28日

实验一 离散时间信号和系统响应 一. 实验目的 1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解 2. 掌握时域离散系统的时域特性 3. 利用卷积方法观察分析系统的时域特性 4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析 二、实验原理 1. 采样是连续信号数字化处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: ?()()()a a x t x t p t = 式中()p t 为周期冲激脉冲,$()a x t 为()a x t 的理想采样。 ()a x t 的傅里叶变换为μ ()a X j Ω: 上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。也即采样信 号的频谱μ()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成 的。因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号 计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即 ()() n P t t nT δ∞ =-∞ = -∑μ1()()*() 21 ()n a a a s X j X j P j X j jn T π∞ =-∞ Ω=ΩΩ= Ω-Ω∑μ()()|j a T X j X e ωω=ΩΩ=

数字信号处理习题解答1

第一章 第二章 11-=--m/2 m=-m -/2 12 m=--/2 -/21 2 m=-m=-()121.7DTFT[x(2n)]=(2n)e m=2n DTFT[x(2n)]=(m)e =[()(1) ()]e [()e e ()e ] [()()] j n n j m j m j m j m j m j j x x x m x m x m x m X e X e ωωωωπ ωωωπ∞ ∞∞ ∞∞ ∞∞ ∞ ∞ ∞-+-=+ =+∑∑ ∑∑∑,为偶数 求下列序列的傅里叶变换()x(2n) 令,于是 -n 1 1 121 z (1) 2u(n)()2 ()2 1,|(2)|11(2),||n n n n n n X z u n z z z z z z z +∞ --=-∞+∞ --=-∞ --=== <-=>-∑∑14.求出下列序列的变换及收敛域 3.3(1).()cos(),781() 8 (2).()5.25n 640() (5)()x n A n A j n x n e x n y n e πππω=--==判断下面的序列是否周期的是常数 试判断系统是否为线性时不变的()y(n)=x (n)(7) y(n)=x(n)sin() .试判断系统是否为因果稳定系统()y(n)=x(n-n )

-1 -1-2 -1 -1112 1-317.X(z)=,2-5+2105< | z | < 2x(n)(2) | z | > 2x(n) 11 X(z)= -1-z 1-2z 05< | z | < 2(n)=2(-n-1)+()(n) | z | > 2(n)=()(n)-2(n)n n n n z z z u u u u 已知分别求:()收敛域.对应的原序列收敛域对应的原序列解:收敛域.时: x 收敛域时: x -1-1 -1 -1-1 -1 21.(n)=0.9y(n-1)+x(n)+0.9x(n-1)(1)h(n)(2)H(e )1+0.9(1)H(z)=,|z|>0.91-0.91+0.9F(z)=H(z)z =z 1-0.9n 1z=0.9(n j n n z z z z h ω≥已知线性因果网络用下面差分方程表示: y 求网络的系统函数及单位脉冲响应写出网络频率响应函数的表达式,并定性画出其幅频特性曲线解: 令当时,有极点-1-1=0.9-112-1-1-1-1=0=0.9-1-1)=Res[F(z),0.9]1+0.9=z (z-0.9)|1-0.9=20.9(n)=0,n<0 n=0z =0,=0.9(n)=Res[F(z),0]+Res[F(z),0.9]1+0.91+0.9=z z|+z (z-0.9)|1-0.91-0.9=-1+2=1 h(n)=n z n z z z z z h z z z z ?∴因为系统是因果系统,所以有h 当时,有极点00000000=0n-m =0n -m =0 n n 20.9(n-1)+(n)+0.9 (2)H(e )=-0.9 (3)y(n)=h(n)*x(n) =(m)x(n-m) =(m)e =(m)e e =e H(e )+0.9=e -0.9 n j j j m j m j j m j j j j j u e e h h h e e ωω ω ωωωωωωωωδ∞ ∞ ∞ ?∑∑∑( )

数字信号处理作业+答案讲解

数字信号处理作业 哈尔滨工业大学 2006.10

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~ 2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~ 1k X 是周期性的,周期为N ,而)(~ 2k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列 )(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~ k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~ n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~ k X 和)(~ k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

数字信号处理实验报告要求

数字信号处理实验课程设计 题目:数字滤波器的设计与实现 一、课程设计目的 (1) 掌握用脉冲响应不变法和双线性变换法设计无限脉冲响应数字滤波器(IIR DF )的原理和方法; (2) 掌握用窗函数法和频率采样设计有限脉冲响应数字滤波器(FIR DF )的原理和方法; (3) 学会根据信号的频谱确定滤波器指标参数; (4) 学会调用MATLAB 信号处理工具箱中的滤波器设计函数设计IIR DF 和FIR DF 。 二、课程设计原理 已知一个连续时间信号())π2cos()π2sin(21t f t f t x +=,Hz 1001=f ,Hz 3002=f ,x (t )为两个单频信号叠加后的混合信号,其时域波形和幅频特性图如图1所示。由图可知,混合信号时域混叠,无法在时域进行分离,但是频域是分离的,可以通过设计合适的IIR DF 和FIR DF 将两个单频信号分离,形成两个单一频率信号。 -2-1 1 2 t/s x (t )(a)混合信号时域波 形 050100150200250 30035040045050000.5 1 f/Hz 幅度(b)混合信号幅频特性 图1混合信号x (t )及其频谱图 三、课程设计内容 设计低通滤波器和高通滤波器将两个单频信号分离。滤波器的通带截止频率和阻带截止频率通过观察x (t )的幅频特性图自行确定,设采样频率为Hz 1000=s f ,要求滤波器的通带最大衰减和阻带最小衰减分别为dB 50,dB 1s p ==αα。调用MATLAB 中的滤波器设计函数编写

程序设计低通滤波器和高通滤波器(其中,低通滤波器用脉冲响应不变法和双线性变换法两种方法设计,高通滤波器用窗函数法和频率采样法两种方法设计),并绘制滤波器的幅频特性图、经滤波分离后的信号时域波形图和幅频特性图,观察分离效果。 四、课程设计报告要求 课程设计报告应包含以下几个方面的内容: 1.课程设计目的 2.课程设计要求 3.课程设计过程(包括设计步骤、完整的程序及仿真图) 4.结果分析 5.心得体会、问题或者建议 6.参考文献

数字信号处理作业-答案

数字信号处理作业-答案

数字信号处理作业

DFT 习题 1. 如果)(~ n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1 k X 表示)(~ n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2 k X 表示)(~ n x 的离散傅里叶级数之系数。当然,)(~ 1 k X 是周期性的,周期为N ,而)(~ 2 k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2 k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~ n w 定义为)()()(~~ ~ n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~ n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地,由于)(~ n y 的周期为M ,其离散傅里叶级数之系数)(~ k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=0 0)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

数字信号处理实习报告

中国地质大学(武汉) 数字信号处理上机实习 学生姓名: 班级:071132 学号:2013100 指导老师:王晓莉

题目一 离散卷积计算 一、实验题目 设线性时不变(LTI )系统的冲激响应为h(n),输入序列为x(n) 1、h(n)=(0.8)n ,0≤n ≤4; x(n)=u(n)-u(n-4) 2、h(n)=(0.8)n u(n), x(n)=u(n)-u(n-4) 3、h(n)=(0.8)n u(n), x(n)=u(n) 求以上三种情况下系统的输出y(n),显示输入和输出波形。 二、实验目的 1.理解和掌握离散卷积计算; 2.学习如何用Mtalab 实现离散卷积计算。 三、算法设计 离散卷积定义为: ∑-∞ =-= n )()()(y k k n h k x n 1、n (0.8)=h(n),40≤≤n ,4)-u(n -u(n)=x(n), ∑∞ -∞ =-= *=m m n h m x n h n x n y )()()()()( (a) 当0

(b) 当30≤≤n 时,∑==n m n y 0 )((0.8)n ; (c) 当204≤≤n 时,∑ -== n 3)(n m n y (0.8)n ; (d) 当2321≤≤n 时,∑ -==20 3 )(n m n y (0.8)n ; (e) 当23>n 时,0)(=n y ; 3、)()8.0()(n u n h n =,)()(n u n x =,∑∞ -∞ =-= *=m m n h m x n h n x n y )()()()()( (a) 当0n 时,0)(=n y ; 四、程序分析 所用到的函数: (1)y=conv (x.,h ):卷积运算函数,计算)(*)()(n h n x n y =; (2)n1=0:4:n1取0~4; (3)subplot(m,n,p):subplot()函数是将多个图画到一个平面上的工具。其中,m 表示是图排成m 行,n 表示图排成n 列,也就是整个figure 中有n 个图是排成一行的,一共m 行,如果m=2就是表示2行图。p 表示图所在的位置,p=1表示从左到右从上到下的第一个位置。 (4)title(‘content ’):title()函数的功能是为当前坐标系添加标题“content ”。 五、程序设计 n=0:4; h=0.8.^n;

《数字信号处理》第三版课后答案(完整版)

西安电子 ( 高西全丁美玉第三版 ) 数字信号处理课后答案 1.2 教材第一章习题解答 1. 用单位脉冲序列 (n) 及其加权和表示 题 1 图所示的序列。 解: x( n)(n 4) 2 (n 2) ( n 1) 2 (n)(n 1) 2 (n 2) 4 ( n 3) 0.5 (n 4) 2 (n 6) 2n 5, 4 n 1 2. 给定信号: x( n) 6,0 n 4 0, 其它 (1)画出 x( n) 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示 x(n) 序列; (3)令 x 1( n) 2x(n 2) ,试画出 x 1( n) 波形; (4)令 x 2 (n) 2x(n 2) ,试画出 x 2 (n) 波形; (5)令 x 3 (n) 2x(2 n) ,试画出 x 3 (n) 波形。 解: ( 1) x(n) 的波形如 题 2 解图(一) 所示。 ( 2) x(n)3 ( n 4) (n 3) (n 2) 3 ( n 1) 6 (n) 6 (n 1) 6 ( n 2) 6 (n 3) 6 (n 4) ( 3) x 1 (n) 的波形是 x(n) 的波形右移 2 位,在乘以 2,画出图形如 题 2 解图(二) 所示。 ( 4) x 2 (n) 的波形是 x(n) 的波形左移 2 位,在乘以 2,画出图形如 题 2 解图(三) 所示。 ( 5)画 x 3 (n) 时,先画 x(-n) 的波形,然后再右移 2 位, x 3 ( n) 波形如 题 2 解图(四) 所 示。 3. 判断下面的序列是否是周期的,若是周期的,确定其周期。 (1) x( n) Acos( 3 n ) ,A 是常数; 7 8 (2) x(n) j ( 1 n ) e 8 。 解:

数字信号处理作业-2012

《数字信号处理Ⅰ》作业 姓名: 学号: 学院: 2012 年春季学期

第一章 时域离散信号和时域离散系统 月 日 一 、判断: 1、数字信号处理和模拟信号处理在方法上是一样的。( ) 2、如果信号的取值和自变量都离散,则称其为模拟信号。( ) 3、如果信号的取值和自变量都离散,则称其为数字信号。( ) 4、时域离散信号就是数字信号。( ) 5、正弦序列都是周期的。( ) 6、序列)n (h )n (x 和的长度分别为N 和M 时,则)n (h )n (x *的长度为N+M 。( ) 7、如果离散系统的单位取样响应绝对可和,则该系统稳定。( ) 8、若满足采样定理,则理想采样信号的频谱是原模拟信号频谱以s Ω(采样频率)为周期进行周期延拓的结果。( ) 9、序列)n (h )n (x 和的元素个数分别为21n n 和,则)n (h )n (x *有(1n n 21-+)个元素。( ) 二、选择 1、R N (n)和u(n)的关系为( ): A. R N (n)=u(n)-u(n-N) B. R N (n)=u(n)+u(n-N) C. R N (n)=u(n)-u(n-N-1) D. R N (n)=u(n)-u(n-N+1) 2、若f(n)和h(n)的长度为别为N 、M ,则f(n)*h(n)的长度为 ( ): A.N+M B.N+M-1 C.N-M D.N-M+1 3、若模拟信号的频率范围为[0,1kHz],对其采样,则奈奎斯特速率为( ): A.4kHz B. 3kHz C.2kHz D.1kHz 4、LTIS 的零状态响应等于激励信号和单位序列响应的( ): A.相乘 B. 相加 C.相减 D.卷积 5、线性系统需满足的条件是( ): A.因果性 B.稳定性 C.齐次性和叠加性 D.时不变性 6、系统y(n)=f(n)+2f(n-1)(初始状态为0)是( ): A. 线性时不变系统 B. 非线性时不变系统 C. 线性时变系统 D. 非线性时变系统

长沙理工数字信号处理大作业数字滤波器设计

IIR及FIR数字滤波器 一题干 对模拟信号进行低通滤波处理,要求通带0≤f≤4kHz,通带衰减小于0.5dB,阻带4.5k Hz≤f<∞,阻带衰减大于50dB,设采样频率Fs=20kHz。 (1)设计巴特沃斯模拟低通滤波器,求出Ha(s)的分子、分母多项式系数B和A,并画出幅频响应损耗函数曲线。 (2)分别用脉冲响应不变法和双线性变换法设计IIR低通数字滤波器,求出Ha(z) 的分子、分母多项式系数Bz和Az,并画出幅频响应损耗函数曲线 (3)采用窗函数法(分别用汉宁窗、哈明窗、布莱克曼窗函数)设计满足要求的FIR 低通滤波器,求出h(n),并画出幅频响应损耗函数曲线. (4)用频率采样法设计满足要求的FIR低通滤波器,求出h(n),并画出幅频响应损耗函数曲线。

二求解过程 具体内容如下: (1)设计巴特沃斯模拟低通滤波器,求出Ha(s)的分子、分母多项式系数B和A,并画出幅频响应损耗函数曲线。 程序: wp=2*pi*4000; ws=2*pi*5800; Rp=0.5; As=50; [N,wc]=buttord(wp,ws,Rp,As,'s'); [B,A]=butter(N,wc,'s'); k=0:511; fk=0:20000/512:20000; wk=2*pi*fk; Hk=freqs(B,A,wk); plot(fk/1000,20*log10(abs(Hk))); grid on xlabel('频率/kHz'); ylabel('幅度/dB'); axis([0,6,-65,5]); 波形图:

A = 1.0e+207 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 2.1576 B = 1.0e+207 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.1576 N = 46

相关文档
最新文档