逻辑无环流可逆调速系统

逻辑无环流可逆调速系统
逻辑无环流可逆调速系统

目录

1逻辑无环流可逆直流调速系统简介 ............................................................................ 1 2逻辑无环流直流调速系统参数和缓解特性的测定 (3)

2.1电枢回路电阻R 的测定 ................................................................................... 3 2.2主电路电磁时间常数的测定 ............................................................................ 5 2.3电动机电势常数e C 和转矩常数M C 的测定........................................................ 6 2.4系统机电时间常数Tm 的测定 ......................................................................... 7 2.5测速发电机特性)(n f U TG 的测定 .................................................................. 8 3驱动电路的设计 (10)

3.1电流调节器的设计 (10)

3.1.1电流调节器的原理图 ........................................................................... 10 3.1.2电流调节器的参数计算 ....................................................................... 11 3.2速度调节器的设计 .. (13)

3.2.1速度调节器的原理图 ........................................................................... 13 3.2.2速度调节器的参数计算 ....................................................................... 13 3.3触发电路的设计 .. (15)

3.3.1系统对触发器的要求 ........................................................................... 16 3.3.2 触发电路及其特点 .............................................................................. 16 3.3.3KJ004的工作原理 . (16)

4无环流逻辑控制器DLC 设计 ................................................................................... 19 5系统主电路设计 (20)

5.1主电路原理及说明 ......................................................................................... 20 5.2保护电路的设计 ............................................................................................ 21 总结 ........................................................................................................................... 22 参考文献 .. (23)

附录 (24)

1逻辑无环流可逆直流调速系统简介

许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速的启动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是需要可逆的调速系统。采用两组晶闸管反并联的可逆调速系统解决了电动机的正、反转运行和回馈制动问题,但是,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流。这样的环流对负载无益,只会加重晶闸管和变压器的负担,消耗功率。换流太大时会导致晶闸管损坏,因此应该予以抑制或消除

有环流可逆系统虽然具有反向快、过渡平滑等优点,但设置几个环流电抗器终究是个累赘。因此,当工艺过程对系统过度特性的平滑性要求不高时,特别是对于大容量的系统,常采用既没有直流平均环流又没有瞬时脉动环流的无环流可逆系统。无环流可逆调速系统可按实现无环流原理的不同而分为两大类:逻辑无环流系统和错位控制无环流系统。而错位无环流系统在目前的生产中应用很少,逻辑无环流系统目前生产中应用最为广泛的可逆系统,当一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使它完全处于阻断状态,确保两组晶闸管不同时工作,从根本上切断了环流的通路,这就是逻辑控制的无环流可逆系统,组成逻辑无环流可逆系统的思路是:任何时候只触发一组整流桥,另一组整流桥封锁,完全杜绝了产生环流的可能。至于选择哪一组工作,就看电动机组需要的转矩方向。若需正向电动,应触发正组桥;若需反向电动,就应触发反组桥,可见,触发的选择应决定于电动机转矩的极性,在恒磁通下,就决定于*

U信

i 号。同时还要考虑什么时候封锁原来工作桥的问题,这要看工作桥又没有电流存在,有电流时不应封锁,否则,开放另一组桥时容易造成二桥短路。可见,只要用*

U信号极

i

性和电流“有”、“无”信号可以判定应封锁哪一组桥,开放哪一组桥。基于这种逻辑判断电路的“指挥”下工作的可逆系统称逻辑无环流可逆系统。

这种逻辑无环流系统有一个转速调节器ASR,一个反号器AR,采用双电流调节器1ACR和2ACR,双触发装置GTF和GTR结构。主电路采用两组晶闸管装置反并联线路,由于没有环流,不用再设置环流电抗器,但是为了保证稳定运行时的电流波形的连

续,仍应保留平波电抗器,控制线路采用典型的转速﹑电流双闭环系统,1ACR用来调节正组桥电流,其输出控制正组触发装置GTF;2ACR调节反组桥电流,其输出控制反组触发装置GTR,1ACR的给定信号*

U经反号器AR作为2ACR的给定信号*i U,这样

i

可使电流反馈信号

U的极性在正﹑反转时都不必改变,从而可采用不反映极性的电流检i

测器,在逻辑无环流系统中设置的无环流逻辑控制器DLC,这是系统中关键部件。它按照系统的工作状态,指挥系统进行自动切换,或者允许正组触发装置发出触发脉冲而封锁反组,或者允许反组触发装置发出触发脉冲而封锁正组。在任何情况下,决不允许两组晶闸管同时开放,确保主电路没有产生环流的可能。

逻辑无环流可逆调速直流系统主要分为三部分:主电路和稳压电源,驱动电路,逻辑无环流控制器。系统原理图如图1.1。

图1.1 逻辑无环流可逆调速系统原理图

ASR——速度调节器

ACR1﹑ACR2——正﹑反组电流调节器

GTF、GTR——正反组整流装置

VF、VR——正反组整流桥

DLC——无环流逻辑控制器

HX——推β装置

TA ——交流互感器 TG ——测速发电机 M ——工作台电动机 LB ——电流变换器 AR ——反号器 GL ——过流保护环节

2逻辑无环流直流调速系统参数和缓解特性的测定

2.1电枢回路电阻R 的测定

电枢回路的总电阻R 包括电机的电枢电阻Ra ,平波电抗器的直流电阻RL 和整流装置的阻Rn ,即R=Ra+RL+Rn

为测出晶闸管整流装置的电源阻,可采用福安比较法来测定电阻。将变压器RP (可采用两只900Ω电阻并联)接入被测系统的主电路,并调节电阻负载至最大。测试时电动机不加励磁,并使电机堵转。

MCL-31的给定电位器RP1逆时针调到底,使Uct=0。调节偏移电压电位器RP2,使α=150°。

合上主电路电源开关。调节Ug 使整流装置输出电压Ud=110V ,然后调整RP 使电枢电流为0.88A ,读取电流表A 和电压表V 的数值为1I ,1U ,则此时整流装置的理想空载电压为

11U R I U do +=

调节RP ,使电流表A 的读数为0.44A 。在Ud 不变的条件下读取A,V 表数值,则

21U R I U do +=

求解两式,可得电枢回路总电阻

)/()(2112I I U U R --=

如把电机的电枢两端短接,重复上述实验,可得

)/()('

2'1'1'2I I U U R R n L --=+

则电机的电枢电阻为

)(n L a R R R R +-=

同样,短接电抗器两端,也可测得电抗器之久电阻RL 。 测试结果:当示波器显示如图2.1时,开始测定参数。

图2.1

?=150α

表2.1电枢回路总电阻测试

V U / 79 62 A I /

0.44

0.88

据公式)/()(2112表2.2 平波电抗器的直流电阻RL 与整流装置的阻Rn 之和测试

V U /' 82 91 A I /'

0.88

0.44

2112

I I U U R R n L --=+得,Ω≈--=+45.20)44.088.0/()8291(n L R R 表2.3整流装置的阻Rn 与电枢电阻Ra 之和测试

V U /'' 71 85 A I /''

0.88

0.44

2112

I I U U R R n a --=+得,Ω≈--=+82.31)44.088.0/()7185(n a R R 所以可得:电枢回路总电阻 R ≈38.64Ω 整流装置的阻Rn ≈13.63Ω

电枢电阻Ra ≈18.19Ω

平波电抗器的直流电阻RL ≈6.82Ω

2.2主电路电磁时间常数的测定

采用电流波形法测定电枢回路电磁时间常数Td ,电枢回路突加给定电压时,电流id 按指数规律上升 )1(/Td t d d e I i --=

其电流变化曲线如图2.1所示。当t =Td 时,有 d d d I e I i 632.0)1(1=-=- MCL-31的给定电位器RP1逆时针调到底,使Uct=0。 合上主电路电源开关。 电机不加励磁。

调节Uct ,监视电流表的读数,使电机电枢电流为(50~90)%Inom 。然后保持Uct 不变,突然合上主电路开关,用示波器拍摄id=f(t)的波形,由波形图上测量出当电流上升至63.2%稳定值时的时间,即为电枢回路的电磁时间常数Td 。

图2.2 电流变化曲线

测定结果如图2.3

图2.3主电路电磁时间常数的测定

由图2.3可知,电磁时间常数ms T d 2.5= 三相桥式整流电路L=0.693

m in

2d I u =0.693

=??1

.01.13220796.74mH 取L=0.80H

l

T =

R L =64

.3880.0=0.02s 2.3电动机电势常数e C 和转矩常数M C 的测定

将电动机加额定励磁,使之空载运行,改变电枢电压Ud ,测得相应的n ,即可由下式算出Ce

)/()(1212n n U U K C d d e e --==φ

Ce 的单位为V/(r/min)

转矩常数(额定磁通时)CM 的单位为N.m/A ,可由Ce 求出

e M C C 55.9=

由实验测得两组数据

表2.4 电动机电势常数e C 的测定

Ud/V 177 147

1212d d e e m in)//(15.0)10001200/()147177(r V K C e e =--==φ

A m N C M /.43.115.055.9≈?=

2.4系统机电时间常数Tm 的测定

系统的机电时间常数可由下式计算

M CeL R GD Tm 375/)(2?=

由于Tm>>Td ,也可以近似地把系统看成是一阶惯性环节,即

Ud TmS K n ?+=)1/(

当电枢突加给定电压时,转速n 将按指数规律上升,当n 到达63.2%稳态值时,所经过的时间即为拖动系统的机电时间常数。

测试时电枢回路中附加电阻应全部切除。

MCL —31的给定电位器RP1逆时针调到底,使Uct=0。 合上主电路电源开关。 电动机M 加额定励磁。

调节Uct ,将电机空载起动至稳定转速1000r/min 。然后保持Uct 不变,断开主电路开关,待电机完全停止后,突然合上主电路开关,给电枢加电压,用示波器拍摄过渡过程曲线,即可由此确定机电时间常数。实测曲线如图2.4所示:

由实验测得:Tm=37ms

图2.4 系统机电时间常数Tm 的测定

2.5测速发电机特性)(n f U TG =的测定

电动机加额定励磁,逐渐增加触发电路的控制电压Uct ,分别读取对应的UTG ,的数值若干组,即可描绘出特性曲线U TG =f(n)。晶闸管整流装置放大倍数C

d

s U U K ??=。实验结果如表2.5

表2.5测速发电机特性

)

(n f U TG =的测定

n (r/min ) 1000 1100 1200 1300 1400 Uct (V ) 6.89 7.63 8.30 8.99 9.68 UCT (V)

1.07

1.20 1.36 1.55 1.76 Ud(V) 152.50 166.51

180.28

194.83

209.34

分析可知 取Ks ≈20

3驱动电路的设计

由晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,由第二章测的,基本数据如下:

直流电动机:220V, 185W, 1.1A, 1600r/min ; 晶闸管装置放大系数:Ks ≈20

电枢回路总电阻:R=24.35Ω; 时间常数:Td=21ms ,Tm=49ms ; 电流反馈系数:A V I V N /06.65.1/10≈≈β 转速反馈系数:r V r V N V n min/0063.0min/1600

10

10?≈?=≈

α 设计要求:设计电流调节器,要求电流超调量%5=i σ;设计转速调节器,要求转速超调量%10=n σ

3.1电流调节器的设计

3.1.1电流调节器的原理图

如图3.1

图3.1 电流调节器原理图

3.1.2电流调节器的参数计算 1.确定时间常数

1)整流装置滞后常数Ts 。三相桥式电路的平均失控时间Ts=0.0017s 。

2)电流滤波时间常数Toi 。三相桥式电路每个波头时间是3.3ms ,为了基本滤平波头,应有(1~2)Toi=3.33ms ,因此取Toi=2ms=0.002s 。 3)电流环小时间常数之和i T ∑。按小时间常数近似处理,取0.0037i s oi T T T s

∑=+=

2选择电流调节器结构

根据设计要求,并保证稳态电流无差,可按典型Ⅰ型系统设计电流调节器。电流环控制对象是双惯性的,因此可用 PI 型电流调节器,其传递函数为:

(1)

()i i ACR i K s W s s

ττ+=

检查对电流电压的抗扰性能:

68.50037

.0021

.0==∑i d T T ,参照附录表1的典型Ⅰ型系统动态抗扰性能,各项指标都是可以接受的。 3.计算电流调节器参数

电流调节器超前时间常数:s T d i 021.0==τ。

电流环开环增益:要求%5=i σ时,按照附录表2,应取5.0=∑i I T K ,因此

11.1350037

.05

.0-==

s K I

于是,ACR 的比例系数为

60.006

.62035

.24021.01.135=???==

βτS i I I K R K K 4.校验近似条件

电流环截止频率:11.135-==s K w I ci

⑴ 晶闸管整流装置传递函数的近似条件

ci s w s s

T >=

?=-11.1960017.03131 满足近似条件。

⑵ 忽略反电动势变化对电流环动态影像的条件

ci d m w s T T <=??=-152.93049

.0021.01

313

满足近似条件。

⑶ 电流环小时间常数近似处理条件

ci oi s w s s

T T >=?=-18.180002.00017.01

31131

满足近似条件。 5计算调节器电阻和电容

如图3.2,按所用运算放大器取Ω=k R 400,各电阻和电容值为

图3.2 PI 型电流调节器

i i 0

R K R =

i i i

R C τ=

oi 0oi 1

4T R C =

Ω=Ω?==k k R K R i i 244060.00,取Ωk 24

F F R C i

i

i μτ88.01024021

.03

=?=

=

,取F μ90.0

F F F R T C oi oi μ2.0102.010

40002.0446

30=?=??==

-,取F μ2.0

按照上述参数,电流环可以达到的动态跟随性能指标为%5%3.4<=i σ,满足设计要求。

3.2速度调节器的设计

3.2.1速度调节器的原理图

原理图如图3.3

图3.3 电流调节器原理图

3.2.2速度调节器的参数计算 1.确定时间常数 1)电流环等效时间常数

1/I

K :有前面的计算可得

1

220.00370.0074i I

T s s K ∑==?=

2)转速滤波时间常数 on T :有条件可知01.0=on T s 3)转速环时间常数 n T ∑:按小时间常数近似处理,取

0174.001.00074.01

=+=+=∑s T K T on I

n s 2. 选择转速调节器结构

按照设计要求,选用PI 调节器,其传递函数表达式为

(1)()n n ASR s K s W s s ττ+=

3. 计算转速调节器参数

按跟随和抗扰性能都比较好的原则,取 5h =,则ASR 的超前时间常数为

s hT

n

n 087.00174.05=?=∑=τ

转速开环增益N

K

1

2222

35.3960174.0521521-=??+=∑

+=

s T h h K n

N ASR 的比例系数N K

01.100174

.035.240063.052049

.015.006.662)1(=???????=+=

∑N m e n RT h T C h K αβ

4.检验近似条件 由公式

1c

K ωω= 可得转速环截止频率为

1

11

48.34087.035.396--=?===

s s K K n n n

cn τωω

(1)电流环传递函数简化条件为

1

163.695cn

s ω--==>

(2)转速环小时间常数近似处理条件为

cn

on I s T K ω>==-74.3801

.01.13531311

均满足近似要求。

5.计算调节器电阻和电容 根据图3.4,取0R =40K Ω

图3.4 PI 转速调节器

n n n R C τ=,

on 0on 1

4

T R C =

,n 0n R K R =

Ω=Ω?==k k R K R n n 4.4004001.100,取Ωk 400

F F F R C n

n

n μτ22.01022.010

400087.06

3

=?=?=

=

-,取F μ2.0 F F F R T C on on μ110110

4001.0446

30=?=??==

-.取F μ1 6.校核转速超调量

当 5h = 时,由附录表3得,37.6%n σ=,不能满足设计 10%n σ≤ 的要求。实际上,由于表3是按线性系统计算的,而突加阶跃给定时,ASR 饱和,不符合线性系统的前提,应该按ASR 退饱和的情况计算超调量。

下面对转速调节器退饱和时转速超调量的计算: 设理想空载启动时 0z =,

max

81.2%b

C C ?= , 带入

max max **(

)2()()n

b N n b b m

T

C n C n z C n C n T σλ∑????==-

可得 %10%65.9049

.00174.0160015.035

.241.15.1%2.812<=???

??=n σ,可以满足设计要求。 3.3触发电路的设计

3.3.1系统对触发器的要求

1)为保证较宽的调速围和可逆运行,要求触发脉冲能够在180°围移向。 2) 对于三相全控桥式整流电路,为了保证可控硅可靠换流,要求触发脉冲宽度大于60°,或者用双窄脉冲。

3)对可逆系统,为了防止逆变颠覆和提高工作的可靠性,触发脉冲需要有min β 和min α限制。

3.3.2 触发电路及其特点

根据对触发器的上述要求,选用同步信号为正弦波的晶体管触发电路。这种线路的优点是线路简单,调整容易。理论上移相围可达180°,实际上由于正弦波顶部平坦移相围只能有150°左右。移相的线性度就触发器本身来说较差,如把触发器和可控硅看成一个整体则由于相互补偿关系,它的线性度则较好,即控制电压k U 与可控硅整流电压0d U 的控制特性是接近线性的,由于作同步信号的正弦波电压随电源电压的波动而波动,当k U 不变时,控制角α也随电源电压的波动而波动,而可控硅整流电压

αcos max 00d d U U =,max do U 随电源电压增高而增高,而αcos 则随电源电压的增高而减小,

故0d U 可维持近于不变。但当电源电压降得太低时,同步电压和控制电压可能没有交点,触发器不能产生触发脉冲,致使可控硅工作混乱,造成事故,所以这种触发器不宜用于电网电压波动很大的场合,此外,正弦波触发器容易受电源电压波形畸变的影响,因此同步电压输入信号必须加R —C 滤波器,移相角度一般要大于30°。

根据系统性能要求,采用集成触发器。集成触发器具有可靠性高、技术性能好、体积小、能耗低、调试方便等优点。采用KJ004。它可分为同步、锯齿波形成、移向、脉冲形成、脉冲分选和脉冲放大几个环节。只需用三个KJ004集成块和一个KJ041集成块,即可形成六路双脉冲,再由六个晶体管进行脉冲放大,即构成完整的三相全控桥整流电路的集成触发电路。 3.3.3KJ004的工作原理

电路由同步检测电路、锯齿波形成电路、偏形电压、移相电压及锯齿波电压综合比较放大电路和功率放大电路四部分组成。电原理如图3.5:锯齿波的斜率决定于外接电

阻R6、RW1,流出的充电电流和积分电容C1的数值。对不同的移相控制电压VY,只有改变权电阻R1、R2的比例,调节相应的偏移电压VP。同时调整锯齿波斜率电位器RW1,可以使不同的移相控制电压获得整个移相围。触发电路为正极性型,即移相电压增加,导通角增大。R7和C2形成微分电路,改变R7和C2的值,可获得不同的脉宽输出。的同步电压为任意值。

图3.5 KJ004原理图

电路采用双列直插C—16白瓷和黑瓷两种外壳封装,外形尺寸按电子工业部部颁标准。《半导体集成电路外形尺寸》SJll00—76。芯片封装形式如图3.6,引脚功能如表3.1。

图3.6 KJ004封装形式表3.1 引脚功能说明

功能输

锯齿波

形成

-Vee

(1kΩ)

空地

同步

输入

综合

比较空

微分

阻容

封锁

调制

+Vcc

线

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 触发电路原理图如图3.7。

转速电流双闭环的数字式可逆直流调速系统的仿真与设计(课程设计完整版)

湖南科技大学 信息与电气工程学院 《课程设计报告》 题目:转速电流双闭环的数字式可逆直流调速系统的仿真与设计 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

任务书 题 目 转速电流双闭环的数字式可逆直流调速系统的仿真与设计 时 间安排 2013年下学期17,18周 目 的: 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB 软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL 进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 要 求:电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间s T s 1.0≤,电流超调量%5%≤i σ,空载起动到额定转速时的转速超调量%30%≤n σ。 总体方案实现:主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT 构成H 型双极式控制可逆PWM 变换器。其中属于脉宽调速系统特有的部分主要是UPM 、逻辑延时环节DLD 、全控型绝缘栅双极性晶体管驱动器GD 和PWM 变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差。 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 指导教师评语: 评分等级:( ) 指导教师签名:

直流电动机可逆调速系统设计 (1)要点

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

逻辑无环流可逆直流调速系统设计与研究

逻辑无环流可逆直流调速系统设计与研究 ——主电路设计 1 绪论 1.1电力拖动简介 随着科学技术的发展,人力劳动被大多数生产机械所代替。电力拖动及其自动化得到不断的发展。随着生产的发展,生产工艺对电力拖动系统的要求越来越高,尤其在其准确性、快速性、经济性、先进性等方面的要求,与日俱增。因此,需要不断地改进和完善电气控制设备,使电力拖动自动化可以跟得上技术要求。 电力拖动系统由电动机及其供电电源、传动机构、执行机构、电气控制装置等四部分组成。电动机及其供电电源是把电能转换成机械能;传动机构的作用是把机械能进行传递与分配;执行机构是使机械能完成所需的转变;电气控制装置是控制系统按着生产工艺的要求来动作,并对系统起保护作用。 随着生产的要求不断提高,技术不断更新,拖动系统也随之更新。同时,新型电机、大功率半导体器件、大规模集成电路、电子计算机及现代控制理论发展的发展使电力拖动自动化发生了巨大的变革。 1.2直流调速系统 直流电机由于其良好的起、制动性能和调速性能,在电力拖动调速系统中占有主导地位,虽然近年来交流电动机的调速控制技术发展很快,但是交流电动机传动控制的基础仍是直流电动机的传动技术。直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。 直流电机容易实现各种控制系统,也容易实现对控制目标的“最佳化”,直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度看,它又是交流拖动控制系统的基础。因此,掌握直流拖动控制系统可以更好的研究交流拖动系统。从生产机械要求控制的物理量来看,电力拖动控制系统有调速系统、位置

h桥可逆直流调速系统课设

燕山大学 课程研究项目报告 项目名称: H桥可逆直流调速系统设计与实验学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 日期: 2014年6月3日

目录 第一章摘要 (1) 第二章前言 (2) 第三章报告研究正文 (3) 3.1 调速控制系统设计 (3) 3.2 电源及操作系统设计 (7) 3.3 双闭环调节器电路设计 (11) 3.4 参数计算与计算机仿真 (12) 3.5 实物制作 (17) 3.6 性能测试 (19) 第四章结论 (20) 参考文献 (21)

本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理,利用MOSFET、二极管等器件设计了一个转速、电流双闭环直流晶闸管调速系统,并利用MATLAB对其进行仿真。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。 关键词:双闭环控制系统 MATLAB 电流调节器转速调节器

目前,转速﹑电流双闭环控制直流调速系统是性能很好﹑应用最广泛的直流调速系统。我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。故需要引入转速﹑电流双闭环控制直流调速系统,本文着重阐明其控制规律﹑性能特点和设计方法,是各种交﹑直流电力拖动自动控制系统的重要基础。首先介绍转速﹑电流双闭环调速系统的组成及其静特性,接着说明该系统的动态数学模型,并从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用。在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点。长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。在现代化的工业生产中,几乎无处不使用电力拖动装置。轧钢机、电铲、提升机、运输机等各类生产机械都要采用电动机来传动。随着对生产工艺,产品质量的要求不断提高和产量的增长,越来越多的生产机械能实现自动调速。从20世纪60年代以来,现代工业电力拖动系统达到了全新的发展阶段。这种发展是以采用电力电子技术为基础的,在世界各国的工业部门中,直流电力拖动至今仍广泛的应用着。直流拖动的突出优点在于:容易控制,能在很宽的范围内平滑而精确的调速,以及快速响应等。在一定时期以内,直流拖动仍将具有强大的生命力。

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

直流PWMM可逆调速系统的设计与仿真

基础课程设计(论文) 直流PWM-M可逆调速系统的设计与仿真 专业:电气工程及其自动化 指导教师:刘雨楠 小组成员:陈慧婷(20114073166) 石文强(20114073113) 刘志鹏(20114073134) 张华国(20114073151) 信息技术学院电气工程系 2014年10月20日

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:直流可逆调速数字触发PWM 数字控制器

α_=_β__配合控制的直流可逆调速系统的工作原理

目录 1α= β配合控制的直流可逆调速系统的工作原理 2 α =β配合控制的有环流直流可逆调速 系统的仿真模型及参数 3 仿真结果及分析 4 心得体会 5 参考文献

摘要: 针对面向系统传递函数结构图仿真方法的不足,提出了一种基于MATLAB的Simulink和 Power System工具箱、面向系统电气原理结构图的仿真新方法,实现了转速与电流双闭环α= β 配合控制的直流可逆调速系统的建模与仿真。分别介绍了同步脉冲触发器、移相器控制器和PI调节器的建模,给出了直流可逆调速系统的仿真模型和仿真结果,仿真结果表明了仿真算法可信度较高。 关键词: α= β 配合控制;直流电机;MATLAB仿真;移项控制器 Abstract: Anovelmethod ofconstruction& simulation was put forward forthe modelofα =βmoderating controlDC SR system basedon Matlab Simulink &Power SystemBlockset,beca use it was shortagefor facing system transferfunction construction drawingto simulate.Themodel of synchronized6-pulsegenerator, shifter and PI controller were introduced, andthe simulationresults&models for theα= βmoderating cont rol DC SRsystem were provided. Simulation results show that simulation methodis correct withhighcredibility. Key words:α =β moderating control; DC motor; MATLAB simulation;shifter 引言 晶闸管反并联的电枢可逆线路是可逆调速系统的典型线路之一。这种线路有能实现可逆运行、回馈制动等优点,同时正转制动和反转启动完全衔接起来,没有间断或死区,这是有环流调速系统的优点,特别是用于要求快速正反转的中小容量的系统。为保证系统安全,必须增加环流电抗器以消除其中的环流[1-2]。本文采用MATLAB的Simulink和PowerS ystem工具箱,介绍如何实现α=β配合控制的直流可逆调速系统的建模与仿真。 α= β配合控制的直流可逆调速系统的建模 控制系统传统的计算机仿真是用传递函数方法来完成的,各环节的传递函数是将实际模型经过一定的简化而得到的,很多重要细节会被忽略[3]。PowerSystem 工具箱提供了利用物理模型仿真的可能,其仿真建模方法与构建实际电路相似,仿真结果非常接近于实际。 1 α =β 配合控制的直流可逆调速系统的工作原理 α=β配合控制的有环流直流可逆调速系统的电气原理图如图1所示。图中,主电路由两组三相桥式晶闸管全控型整流器反并联组成,并共用同一路三相电惊。由于采用α= 卢配合控制方式,在两组整流器之间没有直流环流,但还存在脉动环流,为了限制脉动环流的大小,在主电路中串入了四个均衡电抗器Lc1-Lc4,用于限制脉动环流。平波电抗器L d 用于减小电动机电枢电流的脉动,减小电枢电流的断续区,改善电动机的机械特性。系统的控制部分采用F 转速和电流的双闭环控制。由于可逆调速电流的反馈信号不仅要反映电枢电流的大小还需要反映电枢电流的方向,因此电流反馈一般用直流电流互感器或霍尔电流检测器,在电枢端取电流信号。为了确保两组整流器的工作状态相反,电流调节器的输出分两路,一路经正组桥触发器GTF 控制正组桥 整流器,另一路经倒相器AR 、反组桥触发器GTR 控制反组桥整流器。

配合控制的有环流可逆调速系统的工作原理设计报告

自动控制系统课程 设计报告 课程名称:自动控制系统课程设计 设计题目:配合控制的有环流可逆调速系统设计

课程设计(论文)任务书

一、配合控制的有环流可逆调速系统概述及工作原理 (4) 1) 系统概述 (4) 2) 双闭环直流调速系统概述 (4) 3) V-M调速系统工作原理分析: (6) 二、主回路的设计 (8) 1) 主回路元器件参数计算及型号选择 (8) 2) 主电路保护元件的参数计算及选型。 (11) 3) 抑制环流电抗器参数的计算 (14) 4) 晶闸管脉冲触发电路设计: (16) 5) 电机励磁回路设计: (18) 6) 转速检测及反馈环节 (18) 三、控制回路的设计 (19) 1) 电流调节器ACR 的设计 (19) 2) 转速调节器的设计 (22) 3) 控制器输出限幅环节 (26) 4) 反相器设计 (26) 5) 电流反馈环节 (26) 四、直流稳压供电电源的设计 (27) 6) 工作原理 (27) 五、操作及系统故障保护回路的设计 (28) 六、参考文献 (29)

配合控制的有环流可逆调速系统概述及工作原理 1) 系统概述 有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆的调速系统。较大功率的可逆直流调速系统多采用晶闸管-电动机系统。由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路。 采用两组晶闸管反并联的可逆V-M 系统,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流。配合控制消除平均直流环流的原则是正组整流装置处于整流状态,即为正时,强迫使反组工作在逆变状态,即为负,且幅值与相等,使逆变电压把整流电压顶住,则直流平均环流为零。 图1-1 V-M 可逆调查速系统 2) 双闭环直流调速系统概述 1. 单闭环调速系统存在的问题 图1-2 单闭环直流调速系统稳态结构框图(dcr d I I ) 1) 用一个调节器综合多种信号,各参数间相互影响, 2) 环的任何扰动,只有等到转速出现偏差才能进行调节,因而转速动态降落大。 3) 电流截止负反馈环节限制起动电流,不能充分利用电动机的过载能力获得最快的动态响

H桥可逆直流调速系统设计与实验

CDIO课程项目研究报告 项目名称:H桥可逆直流调速系统设计与实验 姓名; 指导老师: 日期:

摘要 本设计的题目是基于SG3525的双闭环直流电机调速系统的设计。SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。所以双闭环直流调速是性能很好、应用最广的直流调速系统。本设计选用了转速、电流双闭环调速控制电路,本课题内容重点包括调速控制器的原理,并且根据原理对转速调节器和电流调节器进行了详细地设计。概括了整个电路的动静态性能,最后将整个控制器的电路图设计完成,并且进行仿真。 关键词:双闭环直流可逆调速系统、H桥驱动电路、SG3525信号产生电路、PI调节器、MATLAB仿真

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流无静差调速系统,其稳态性能指标实现要求如下:电流超调量S≤5%调速范围 D=20;其动态性能指标:转速超调量δn=10%;调整时间时间ts=2s;电流超调量δi≤5% 。

不可逆单闭环直流调速系统静特性的研究

实验三不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图1-7。 四.实验设备及仪表 1.教学实验台主控制屏。 2.NMCL—31A组件 3.NMCL—33组件 4.NMEL—03组件 5.NMCL—18组件 6.电机导轨及测速发电机(或光电编码器)、直流发电机M01 7.直流电动机M03 8.双踪示波器 9.万用表 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。

4.三相主电源连线时需注意,不可换错相序。 5.系统开环连接时,不允许突加给定信号U g起动电机。 6.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的 调试(主电路未通电) (a)用示波器观察 NMCL—33的双脉冲观 察孔,应有双脉冲,且间 隔均匀,幅值相同;观察 每个晶闸管的控制极、阴 极电压波形,应有幅值为 1V~2V的双脉冲。 (b)触发电路输出 脉冲应在30°~90°范围 内可调。可通过对偏移电 压调节单位器及ASR输 出电压的调整实现。例 如:使ASR输出为0V, 调节偏移电压,实现 α=90°;再保持偏移电压 不变,调节ASR的限幅 电位器RP1,使α=30°。 2.求取调速系统在 无转速负反馈时的开环 工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且U g调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节直流发电机负载电阻,在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d,输出电流i d以及被测

H桥可逆直流调速系统设计与实验(1)

燕山大学 CDIO课程项目研究报告 项目名称: H桥可逆直流调速系统设计与实验 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 日期: 2014年6月3日

目录 前言 (1) 摘要 (2) 第一章调速系统总体方案设计 (3) 1.1 转速、电流双闭环调速系统的组成 (3) 1.2.稳态结构图和静特 (4) 1.2.1各变量的稳态工作点和稳态参数计算 (6) 1.3双闭环脉宽调速系统的动态性能 (7) 1.3.1动态数学模型 (7) 1.3.2起动过程分析 (7) 1.3.3 动态性能和两个调节器的作用 (8) 第二章 H桥可逆直流调速电源及保护系统设计 (11) 第三章调节器的选型及参数设计 (13) 3.1电流环的设计 (13) 3.2速度环的设计 (15) 第四章Matlab/Simulink仿真 (17) 第五章实物制作 (20) 第六章性能测试 (22) 6.1 SG3525性能测试 (22) 6.2 开环系统调试 (23) 总结 (26) 参考文献 (26)

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%;过渡过程时间小于等于0.1s的无静差调速系统。 项目分工:参数计算: 仿真: 电路设计: 电路焊接: PPT答辩: 摘要

逻辑无环流可逆调速系统汇总

目录 1逻辑无环流可逆直流调速系统简介 ..................................................................................... 1 2逻辑无环流直流调速系统参数和缓解特性的测定 . (3) 2.1电枢回路电阻R 的测定 ............................................................................................. 3 2.2主电路电磁时间常数的测定 ...................................................................................... 4 2.3电动机电势常数e C 和转矩常数M C 的测定 ............................................................... 6 2.4系统机电时间常数Tm 的测定 ................................................................................... 6 2.5测速发电机特性)(n f U TG 的测定 .......................................................................... 7 3驱动电路的设计 (9) 3.1电流调节器的设计 (9) 3.1.1电流调节器的原理图 ....................................................................................... 9 3.1.2电流调节器的参数计算 ................................................................................. 10 3.2速度调节器的设计 . (11) 3.2.1速度调节器的原理图 ..................................................................................... 11 3.2.2速度调节器的参数计算 ................................................................................. 12 3.3触发电路的设计 .. (14) 3.3.1系统对触发器的要求 ..................................................................................... 14 3.3.2 触发电路及其特点 ........................................................................................ 14 3.3.3KJ004的工作原理 . (15) 4无环流逻辑控制器DLC 设计 ............................................................................................. 18 5系统主电路设计 . (19) 5.1主电路原理及说明 .................................................................................................... 19 5.2保护电路的设计 ........................................................................................................ 19 总结 .......................................................................................................................................... 21 参考文献 .................................................................................................................................. 22 附录 (23)

实验1:不可逆单闭环直流调速系统静特性的研究(B5参考格式)

《运动控制系统》实验报告 姓名: 专业班级: 学号: 同组人: 实验一 不可逆单闭环直流调速系统静特性的研究 一、实验目的 1、了解转速单闭环直流调速系统的组成。 2、加深理解转速负反馈在系统中的作用。 3、研究直流调速系统中速度调节器ASR 的工作原理及其对系统静特性的影响。 4、测定晶闸管--电动机调速系统的机械特性和转速单闭环调速系统的静特性。 二、实验系统组成及工作原理 采用闭环调速系统,可以提高系统的动静态性能指标。转速单闭环直流调速系统是常用的一种形式。图1-1所示是不可逆转速单闭环直流调速系统的实验原理图。 图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V 供电,通过与电动机同轴刚性联接的测速发电机TG 检测电动机的转速,并经转速反馈环节FBS 分压后取出合适的转速反馈信号U n ,此电压与转速给定信号U n *经速度调节器ASR 综合调节,ASR 的输出作为移相触发器GT 的控制电压U ct ,由此组成转速单闭环直流调速系统。 在本系统中ASR 采用比例—积分调节器,属于无静差调速系统。 图中DZS 为零速封锁器,当转速给定电压U n *和转速反馈电压U n 均为零时,DZS 的输出信号使转速调节器ASR 锁零,以防止调节器零漂而使电动机产生爬行。 RP 给定 图1-1 不可逆转速单闭环直流调速系统

三、实验注意事项 1. 直流电动机M03参数为:P N =185W ,U N =220V ,I N =1.1A ,n =1500r/min 。 2. 直流电动机工作前,必须先加上直流激励。 3. 系统开环以及单闭环起动时,必须空载,且不允许突加给定信号U g 起动电机,每次起动时必须慢慢增加给定,以免产生过大的冲击电流,更不允许通过突合主回路电源开关SW 起动电机。 4. 测定系统开环机械特性和闭环静特性时,须注意电枢电流不能超过电机额定值1A 。 5. 单闭环连接时,一定要注意给定和反馈电压极性。 四、实验内容 1、晶闸管--电动机系统开环机械特性及控制特性的测定 (1)连接晶闸管—电动机系统为开环控制,不必使用转速调节器ASR ,可将给定电压U g (开环时给定电压称为U g ,闭环后给定电压称为U n *)直接接到触发单元GT 的输入端(U ct ),电动机和测功机分别加额定励磁。 (2)测定开环系统控制特性时,须先使电动机空载(测功机负载回路开路),慢慢加给定电压U g ,使电动机转速慢慢上升至额定转速1500r/min ,在0~1500r/min 之间记录几组 (3)测定开环机械特性时,须先使电动机空载(测功机负载回路开路),慢慢加给定电压U g ,使电动机转速慢慢上升至额定转速1500r/min ,然后合上负载开关SL ,改变负载变阻器R g 的阻值,使主回路电流达到额定电流I N ,此时即为额定工作点(n =n N =1500r/min ,I d =I N =1A )。然后减小负载变阻器R g 阻值,使主回路负载从额定负载减少至空载,记录几组转速 n 和负载转矩T 的数据,并在图1-3所示坐标系中画出开环机械特性曲线。 U g e 图1-2 开环控制特性曲线 图1-3 开环机械特性曲线

逻辑无环流直流可逆调速系统设计

; 课程设计任务书 学生姓名:苌城专业班级:自动化0706 指导教师:饶浩彬工作单位:自动化学院 题目: 逻辑无环流直流可逆调速系统设计 初始条件: 1.技术数据: 晶闸管整流装置:R rec=Ω,K s=40。 / 负载电机额定数据:P N=,U N=230V,I N=37A,n N=1450r/min,R a=Ω,I fn=1.14A, GD2= 系统主电路:T m=,T l= 2.技术指标 稳态指标:无静差(静差率s≤2, 调速范围D≥10) 动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算) 要求完成的主要任务: ? 1.技术要求: (1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作 (2) 系统静特性良好,无静差(静差率s≤2) (3) 动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s (4) 系统在5%负载以上变化的运行范围内电流连续 (5) 调速系统中设置有过电压、过电流等保护,并且有制动措施

2.设计内容: ! (1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图 (2) 调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等) (3) 动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求 (4) 绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图) (5) 整理设计数据资料,课程设计总结,撰写设计计算说明书 时间安排: 课程设计时间为一周半,共分为三个阶段: (1): (2)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20% (3)根据技术指标及技术要求,完成设计计算。约占总时间的40% (4)完成设计和文档整理。约占总时间的40% 指导教师签名:年月日 系主任(或责任教师)签名:年月日 】

课程设计:直流PWM-M可逆调速系统的设计与仿真

直流PWM-M可逆调速系统的设计与仿真 摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。 微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM 调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。 论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:PWM调速、直流电动机、双闭环调速

目录 前言 (1) 第1章直流PWM-M调速系统 (2) 第2章UPE环节的电路波形分析 (4) 第3章电流调节器的设计 (6) 3.1 电流环结构框图的化简 (6) 3.2 电流调节器参数计算 (7) 3.3 参数校验 (8) 3.3.1 检查对电源电压的抗扰性能: (8) 3.3.2 晶闸管整流装置传递函数的近似条件 (9) 3.3.3 忽略反电动势变化对电流环动态影响的条件 (9) 3.3.4 电流环小时间常数近似处理条件 (9) 3.4 计算调节器电阻和电容 (9) 第4章转速调节器的设计 (11) 4.1 电流环的等效闭环传递函数 (11) 4.2 转速环结构的化简和转速调节器结构的选择 (11) 4.3 转速调节器的参数的计算 (14) 4.4 参数校验 (14) 4.4.1 电流环传递函数化简条件 (15) 4.4.2 转速环小时间常数近似处理条件 (15) 4.5 计算调节器电阻和电容 (15) 4.6 调速范围静差率的计算 (16) 第5章系统仿真 (17) 5.1 仿真软件Simulink介绍 (17) 5.2 Simulink仿真步骤 (17) 5.3 双闭环仿真模型 (17) 5.4 双闭环系统仿真波形图 (18) 结论 (19) 参考文献 (20)

相关文档
最新文档