初中七年级数学课件 因式分解的简单应用
合集下载
七年级下《因式分解》(苏科版)-课件

一元二次方程的求解
求解一元二次方程
因式分解法是求解一元二次方程的一种常用方法。通过将方程$ax^2 + bx + c = 0$因 式分解为$(x - x_1)(x - x_2) = 0$,可以得到方程的解$x_1$和$x_2$。
判断解的合理性
在得到一元二次方程的解后,可以通过因式分解法判断解的合理性。例如,对于方程 $x^2 - 4 = 0$,因式分解为$(x + 2)(x - 2) = 0$,得到解$x = 2$和$x = -2$,这两
因式分解的历史与发展
古代数学中的因式分解
01
在古代数学中,因式分解就已经有了一些初步的应用,如中国
的《九章算术》等。
近现代因式分解的发展
02
ห้องสมุดไป่ตู้
随着数学的发展,因式分解的方法和技巧也得到了不断的完善
和发展,出现了许多新的方法和技巧。
因式分解在现代数学中的应用
03
因式分解是代数中的基本技能之一,它在代数学、几何学、方
例子
$2x^2 + 5x - 3 = (2x - 1)(x + 3)$
03
因式分解的应用与 实例
代数式的化简
代数式化简
通过因式分解,可以将复杂的代数式简化,使其更易于计算 和理解。例如,将多项式$x^2 - 4$因式分解为$(x + 2)(x 2)$,可以更方便地处理后续的运算。
简化计算过程
因式分解可以简化计算过程,减少不必要的复杂运算。例如 ,在计算$(x + 3y)(x - y)$时,通过因式分解可以快速得到结 果$x^2 + 2xy - 3y^2$。
因式分解的重要性
01
02
《因式分解的应用》教学PPT课件

的长方形(B类)以及边长为b的大正方形(C类),发现
利用图①中的三种材料各若干可以拼出一些长方形来解释某
些等式.比如图②可以解释为:(a+2b)(a+b)
=a2+3ab+2b2
(1)取图①中的若干个(三种图形都要取到)拼成一个长方
形,使其面积为(3a+b)(2a+2b),在下面虚框③中画
出图形,并根据图形回答(3a+b)(2a+2b)=
03
用于整除问题 用于代数式的求值问题
04 用于判断三角形的形状
二、探索新知
应用一:用于简便计算
例1:请用简便方法计算下列各式
(1)23 2.718 34 2.718 43 2.718
(2)(1
-
1 22
)
(1
1 32
)
(1
1 42
)
(1
-
1 52
)......(
1
1 10 2
一、复习回顾
1、因式分解的概念:
一般地,把一个多项式化成几个整式的 积的形式,叫做因式分解。
2、因式分解的主要方法:
(1)提公因式法 (2)公式法 (3)十字相乘法
先看有无公因式, 再看能否套公式, 十字相乘试一试, 分组分解要合适
(4)分组分解法等
因式分解的应用
01 用于简便运算
02
目录
CONTENTS
应用二:用于整除问题 例2: 利用因式分解说明 3200 - 4 3199 10 3198能被7整除
解:原式 319(8 32 - 43 10)
3198 7
3200 - 43199 10 3198能被7整除。
因式分解的简单应用 PPT课件 2 浙教版

•
74、先知三日,富贵十年。付诸行动,你就会得到力量。
•
75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。
•
76、好习惯成就一生,坏习惯毁人前程。
•
77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。
•
78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。
•
79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。
探索新知
( 2 ) 4 x 2 9 3 2 x
解: 原式 2 x 3 2 x 3 2 x 3
2x3
2x3
因式分解
两个多项式相除
(未知)
换元
单项式的除法 (已知)
运用因式分解进行多项式除
梳理知识 法的步骤:1、因式分解
练习1.计算:
挑战自我
( 3) x2x22
温馨提示
当方程两边有公因式时, 切忌两边同时除以公因式, 仍应按一般步骤解.
开动脑筋,试试吧!
例3 解下列方程:
(1) 3x3 48x (2) x3 4x 0
综合与应用
( 1 )若 a b c 0 ,求 ( a 2 b 2 ) ( a c c b ) 的 值
,
x2
3.
梳理知识 练习2.解下列方程:
用因式分解解方程的步骤: ( 1) x22x0
1、移项,使方程右边变形为零;
2、等式左边因式分解; ( 2) 4x2x12
3、转化为一元一次方程.
8765432198765432101987654320 8765432198765432101987654320
2.4《因式分解法》课件(共35张PPT)

2、用适当方法解下列方程 ① -5x2-7x+6=0
② 2x2+7x-4=0
③ 4(t+2 3 )2=3
④ x2+2x-9999=0
(5) 3t(t+2)=2(t+2)
小结: 1、
ax2+c=0
====>
直接开平方法
ax2+bx=0 ====>
因式分解法
ax2+bx+c=0 ====>
因式分解法 公式法(配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
⑨ (x-2)2=2(x-2)
适合运用直接开平方法
;
适合运用因式分解法
;
适合运用公式法
;
适合运用配方法
.
我的发现
➢一般地,当一元二次方程一次项系数为0时 (ax2+c=0),应选用直接开平方法;
例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
➢若常数项为0( ax2+bx=0),应选用因式分解法;
➢若一次项系数和常数项都不为0 (ax2+bx+c=0), 先化为一般式,看一边的整式是否容易因式分解, 若容易,宜选用因式分解法,不然选用公式法;
② 2x2+7x-4=0
③ 4(t+2 3 )2=3
④ x2+2x-9999=0
(5) 3t(t+2)=2(t+2)
小结: 1、
ax2+c=0
====>
直接开平方法
ax2+bx=0 ====>
因式分解法
ax2+bx+c=0 ====>
因式分解法 公式法(配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
⑨ (x-2)2=2(x-2)
适合运用直接开平方法
;
适合运用因式分解法
;
适合运用公式法
;
适合运用配方法
.
我的发现
➢一般地,当一元二次方程一次项系数为0时 (ax2+c=0),应选用直接开平方法;
例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
➢若常数项为0( ax2+bx=0),应选用因式分解法;
➢若一次项系数和常数项都不为0 (ax2+bx+c=0), 先化为一般式,看一边的整式是否容易因式分解, 若容易,宜选用因式分解法,不然选用公式法;
初中数学教学课件因式分解

常 规 方 法 ■ 分 组 分 解 法
解: ax+ay+bx+by = a(x+y)+b(x+y) = (a+b)(x+y)
解:5ax+5bx+3ay+3by =5x(a+b)+3y(a+b) =(5x+3y)(a+b)
【例题】
(3)
2
因式分解 x -x-y -y
2
2
2
解析:利用二二分法,再利用公式法a b =(a+b)(a-b),然后相合解决。
【例题】
(1) 因式分解ax+ay+bx+by
解析:把ax和ay分一组,bx和by分一组,利用乘 法分配律,两两相配,立即解除了困难。
(2) 因式分解5ax+5bx+3ay+3by
解析:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看 成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。
常 规 方 法 ■ 提 公 因 式 法
【口诀】
找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。
【例题】
(1) 9m n-3m n
2
2 2 2
(4)
= 3m n(3-n)
2
9×10 -10 100 100 = 9×10 -10 ×10 100 = 10 (9-10) 100 = -10
(3)
常 规 方 法 ■ 提 公 因 式 法
公式法
如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形 式的多项式分解因式,这种分解因式的方法叫做公式法。 需要注意的是:公式中的a.b 可以是具体的数,也可以是单项式或多项式。
因式分解ppt课件

识别多项式的系数
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
因式分解(完全平方公式)课件

3 因式分解(完全平方公式)
因式分解(完全平方公式)是将多项式分解成平方因子的特殊方法。
完全平方公式的原理
1 平方公式
平方公式是指一个二次方程的两个解之和等于系数b的相反数,而两个解的乘积等于系数 c。
2 完全平方公式的推导
完全平方公式的推导基于平方公式,通过对多项式进行平方运算。
3 常用的完全平方公式
因式分解(完全平方公式) 课件
因式分解(完全平方公式)是一种数学方法,用于将多项式分解成较简单的因子。 它的原理基于完全平方的特性,可以帮助我们解决各种数学问题。
什么是因式分解(完全平方公式)
1 定义
因式分解是将一个多项式分解成多个乘积的过程,每个乘积都被称为因子。
2 完全平方
一个完全平方是一个数的平方,例如4的完全平方是16。
1
确定多项式的类型
首先,我们需要确定多项式的类型,是一个二次方程还是其他类型的多项式。
2
提取公因子
然后,我们可以尝试提取多项式的公因子,使其更容易进行因式分解。
3
应用完全平方公式
接下来,我们可以根据所学的完全平方公式,将多项式分解成平方因子。
因式分解(完全平方公式)的例子
二次方程
多项式
例如,我们可以用因式分解(完全 平方公式)来解决二次方程的问题。
常用的完全平方公式包括平方差公式和平方和公式。
完全平方公式的应用
求解方程
完全平方公式可以帮助我们求 解二次方程,找到方程的解。
化简多项式
通过因式分解(完全平方公式), 我们可以将复杂的多项式化简 为更简单的形式。
探索数学关系
通过分析完全平方公式,我们 可以发现数学中的一些有趣的 关系和特性。
因式分解(完全平方公式)的步骤
因式分解(完全平方公式)是将多项式分解成平方因子的特殊方法。
完全平方公式的原理
1 平方公式
平方公式是指一个二次方程的两个解之和等于系数b的相反数,而两个解的乘积等于系数 c。
2 完全平方公式的推导
完全平方公式的推导基于平方公式,通过对多项式进行平方运算。
3 常用的完全平方公式
因式分解(完全平方公式) 课件
因式分解(完全平方公式)是一种数学方法,用于将多项式分解成较简单的因子。 它的原理基于完全平方的特性,可以帮助我们解决各种数学问题。
什么是因式分解(完全平方公式)
1 定义
因式分解是将一个多项式分解成多个乘积的过程,每个乘积都被称为因子。
2 完全平方
一个完全平方是一个数的平方,例如4的完全平方是16。
1
确定多项式的类型
首先,我们需要确定多项式的类型,是一个二次方程还是其他类型的多项式。
2
提取公因子
然后,我们可以尝试提取多项式的公因子,使其更容易进行因式分解。
3
应用完全平方公式
接下来,我们可以根据所学的完全平方公式,将多项式分解成平方因子。
因式分解(完全平方公式)的例子
二次方程
多项式
例如,我们可以用因式分解(完全 平方公式)来解决二次方程的问题。
常用的完全平方公式包括平方差公式和平方和公式。
完全平方公式的应用
求解方程
完全平方公式可以帮助我们求 解二次方程,找到方程的解。
化简多项式
通过因式分解(完全平方公式), 我们可以将复杂的多项式化简 为更简单的形式。
探索数学关系
通过分析完全平方公式,我们 可以发现数学中的一些有趣的 关系和特性。
因式分解(完全平方公式)的步骤
6.4因式分解的简单应用OK

= m(a + b )
Hale Waihona Puke − b = (a + b )(a − b )
2
应用完全平方公式: 应用完全平方公式:a 2
± 2ab + b = (a ± b )
2
2
将下列各式因式分解. 将下列各式因式分解.
(1) (a + b) − 10(a + b) + 25 = (a + b − 5)
2
2
(2) 2ab − 8a b = 2ab(b − 4a )
2 2
(3) (2a − 1) − (3a − 1) = −a (5a − 2)
2 2
(4) 16 − x = (4 + x )(2 + x)(2 − x)
4 2
思考: 思考: 怎样计算
( 2ab
2
−8a b) ÷( 4a − b)
2
一、运用因式分解进行多项式除法. 运用因式分解进行多项式除法. 计算: 例1 计算
x = 0, 或 2 x + 1 = 0
只含有一个未知数的方程的解也叫做根。 只含有一个未知数的方程的解也叫做根。
注意: 注意:
当方程的根多于一个时, 当方程的根多于一个时,常用带足标的字母表示 x , x2 等 如 1
解下列方程: 例2:解下列方程: 2 2 ( (2)2 x − 1) = ( x + 2 )
x − 2x = 0
2
4 x = (x − 1)
2
2
1、移项,使等式一边变形为零; 3) 、移项,使等式一边变形为零; ( 2、等式另一边因式分解; 、等式另一边因式分解; 3、转化为解一元一次方程. 、转化为解一元一次方程. 答案: 答案:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用因式分解解方程的一般步骤:
1.移项,把方程右边化为零; 2.把方程左边因式分解; 3.将原方程转化为(一般为两个)一元一次方程; 4.写出方程的解.x1 _,x2 _,…
你能用上面的结论解方程吗?
例2 解下列方程:
(1) 2x2+x=0 (2)(2x-1)2=(x+2)2
(1) 2x2+x=0
解:(1) (2ab2-8a2b)÷(4a-b)
=-2ab(4a-b) ÷(4a-b) =-2ab
(2) (4x2-9) ÷(3-2x)
运用因式 分解和换 元思想, 把多项式 的除法转 化为单项 式的除法
=(2x+3)(2x-3) ÷[-(2x-3)]
=-(2x+3)
=-2x-3
练一练
课本P148 课内练习 ex1 作业题 ex1 ex2
解(1)将原方程左边因式分解,
得 x(2x+1)=0
则 x=0或2x+1=0
∴原方程的根是x1=0,x2=
1 2
(2)(2x-1)2=(x+2)2
解(1)移项,得(2x-1)2-(x+2)2=0
将原方程左边因式分解,
得 (3x+1) (x-3) = 0
则3x+1 =0或x-3 =0
∴原方程的根是x1=3,x2=
∴ a+c ﹥b a﹤b+c
∴ a-b+c﹥0 a-b-c ﹤0
即:(a-b+c)(a-b-c) ﹤0 因此 a2 -2ab+b2-c2小于零。
因式分解的两种应用: (1)运用因式分解进行多项式除法 (2)运用因式分解解简单的方程
接着继续解方程,
2、已知 a、b、c为三角形的三边, 设M= a2 -2ab+b2
(1)M的值大于零?小于零?等于零? (2)代数式M-c2的值呢?
2、已知 a、b、c为三角形的三边,试判断
a2 -2ab+b2-c2大于零?小于零?等于零?
解:
a2 -2ab+b2-c2
=(a-b)2 -c2
=(a-b+c)(a-b-c) ∵ a、b、c为三角形的三边
๔ 回顾 & 思考 ☞
▪ 把一个多项式化成几个整式积的形式, 这种变形叫做把这个多项式分解因式.
● 想一想: 分解因式与整式乘法有何关系? 分解因式与整式乘法是互逆过程
๔ 回顾 & 思考 ☞
提取公因式: ma mb ma b
平方差:a2 b2 (a b)(a b) 完全平方式: a2 2ab b2 (a b)2
合作学习
想一想:如果已知 ( )×( )=0 ,那么这两个 括号内应填入怎样的数或代数式子才能够满足条件呢?
讨论下列问题 若A·B=0,下面两个结论对吗? (1)A和B同时都为零,即A=0且B=0 (2)A和B至少有一个为零即A=0或B=0
你能运用上面的结论 解方程 (42xx2399)(20x 3) 0 吗?
1 3
练一练
解下列方程:
解方程时,切忌两边同
(1) x2 2x 0; 时除以公因式!!!
(2) 4x2 (x 1)2;
(3) y2 y.
1、解方程:(x2+4)2-16x2=0
解:将原方程左边分解因式,得 (x2+4)2- (4x)2=0
(x2+4+4x)(x2+4-4x)=0
(x2+4x+4)(x2-4x+4)=0 分解 (1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y (3)2 a2b-8ab2 (4)4x2-9
运用因式分解进行多项式除法; 运用因式分解解简单方程.
运用因式分解进行多项式除法:
例1 计算: (1) (2ab2-8a2b) ÷(4a-b) (2) (4x2-9) ÷(3-2x)