填料塔和填料

合集下载

塔公称直径与填料尺寸的关系_理论说明

塔公称直径与填料尺寸的关系_理论说明

塔公称直径与填料尺寸的关系理论说明1. 引言1.1 概述本文旨在探讨塔公称直径与填料尺寸之间的关系,并对其进行理论说明。

在化工和环境保护等领域,填料塔广泛应用于气体吸收、脱硫和蒸馏等过程中。

而填料的尺寸和塔的直径是两个影响塔性能的重要因素。

研究塔公称直径与填料尺寸之间的关系,有助于优化填料设计和提高工艺效率。

1.2 文章结构本文共分为五个部分,包括引言、塔公称直径与填料尺寸的关系、理论说明、结论和结束语。

下面将逐一介绍每个部分的内容。

1.3 目的本文旨在通过对塔公称直径与填料尺寸之间关系进行理论说明,明确它们之间的联系以及对塔性能的影响。

同时,探讨存在的问题和挑战,并提出未来改进方向。

最后总结研究发现,并展望进一步研究的方向。

以上是“1. 引言”部分内容,请根据需要进行修改完善。

2. 塔公称直径与填料尺寸的关系2.1 塔公称直径的定义与影响因素塔公称直径是指在化工和环保领域中用于描述填料塔尺寸的一个参数。

它通常表示为D,单位为米。

塔公称直径的确定需要考虑多方面因素,包括流体物性、操作条件以及所需分离效果等。

其中,流体物性是影响塔公称直径的重要因素之一。

流体物性如粘度、密度以及相变等会对传质和传热过程产生影响,从而影响到塔的尺寸设计。

另外,操作条件也会对塔公称直径造成影响。

例如,在高压工艺下,由于需要抗压能力较强,所以塔的直径可能较大;而在低压工艺下,则可以选择较小的直径。

除此之外,所需分离效果也是决定塔公称直径大小的一个重要因素。

如果需要实现更高的分离效果,可能需要增加填料高度和表面积,并相应地增加填料层与填料层之间的有效间隙大小。

2.2 填料尺寸对填料性能的影响填料尺寸是指填料的物理特性参数,如直径、高度等。

填料尺寸对填料的性能具有重要影响。

首先,填料尺寸会影响填料的比表面积。

较小的填料尺寸会导致更大的比表面积,从而提供更多的传质界面和反应活性位点,增加了传质和反应过程中的接触机会,提高了塔的分离效果。

常用填料的种类及其相关特性

常用填料的种类及其相关特性

常用填料的种类及其相关特性填料是一种在化工生产和环保处理中广泛应用的物质,能够提供增大接触面积和增加质量传递的效果。

常用填料的种类很多,每种填料都有其独特的特性和适用范围。

以下是一些常见的填料种类及其相关特性:1.聚丙烯填料:聚丙烯填料是一种具有较高表面积和孔隙率的填料,广泛应用于塔床填料和废气处理。

它具有耐腐蚀性强、比表面积大、重量轻、机械强度高的特点。

2.陶瓷填料:陶瓷填料是一种具有良好耐酸碱性和机械强度的填料,在化工和环保领域广泛应用。

它由于表面光滑而减少了液滴聚结的可能性,同时其高比表面积也提高了质量传递效率。

3.金属填料:金属填料一般由不锈钢、铝、铜等材料制成,具有良好的导热性和耐腐蚀性。

金属填料常用于高温或有腐蚀性气体的处理,如蒸汽吸收和腐蚀性废气处理。

4.聚酰胺填料:聚酰胺填料是一种具有优良的物理和化学性质的填料,广泛应用于化工和环保领域。

它具有较高的热稳定性和机械强度,可耐受较高温度和腐蚀性环境。

5.活性炭填料:活性炭填料是一种由活性炭制成的颗粒状填料,具有较高的吸附性能。

它广泛应用于空气和水处理中,可去除有机物、异味和有害气体等。

6.化学填料:化学填料是一种特殊的填料,常用于特定的化学反应中。

例如,硫酸铁填料可用于硫化氢的催化氧化反应,酶填料可用于酶催化反应等。

7.填料塔盘:填料塔盘是一种特殊的填料构造,常用于化工分离和乙烯生产中。

填料塔盘可提供更大的相互接触面积,提高质量传递效率。

填料的选择应依据具体应用要求和填料的特性来确定。

例如,在废气处理中,催化剂填料可以提高反应速率和选择性,而吸附剂填料可以去除有害气体。

此外,填料的粒径、比表面积、堆积密度等参数也会影响填料的性能。

总之,填料种类繁多,每种填料都有其独特的特性和适用范围。

根据具体需求选择合适的填料,可以提高化工生产和环境处理的效率和效果。

填料塔常用填料概要

填料塔常用填料概要

填料塔
(四)手孔 手孔是指手和手提灯能伸入的设备孔口,用于不便进入或不必进 入设备即能清理、检查或修理的场合。 手孔又常用作小直径填料塔装卸填料之用,在每段填料层的上下 方各设置一个手孔,卸填料的手孔有时附带挡板,以免反应生成物积 聚在手孔内。 (五)塔内件 填料塔的内件有填料、填料支撑装置、填料压紧装置、液体分布 装置和液体收集再分布装置等。合理的选择和设计塔内件,对保证填 料塔的正常操作及优良的传质性能十分重要。 (1)除沫器 当空塔气速较大,塔顶溅液现象严重,以及工艺过 程不允许出塔气体夹带雾滴的情况下,设置除沫装置,从而减少液体 的夹带损失,确保气体的纯度,保证后续设备的正常操作。 常用的除沫装置有折板除沫器(见图4.5)丝网除沫器(见图4.6) 以及旋流板除沫器。此外还有链条型除沫器、多孔材料除沫器及玻璃 纤维除沫器等。在分离要求不严格的场合,还将干填料层作除沫器用。
填料塔
填料塔结构如右图所示,它由塔体、 液体分布器、填料压紧装置、填料层、 液体收集与再分配装置和支撑栅板组成。
ቤተ መጻሕፍቲ ባይዱ
1-塔体;2-液体分布器;3-填料 压紧装置;4-填料层;5-液体收集与 再分配装置;6-支撑栅板 图4.3 填料塔结构
填料塔
(二)塔体支座 塔设备常采用裙式支座 (见图4.4),它应当具有足 够的强度和刚度,来承受塔 体操作重量、风力等引起的 载荷。
(d)排管式
(e)环管式
填料塔-液体分布装置
槽式液体分布器通常是由分流槽(又 称主槽或一级槽)、分布槽(又称副槽或二 级槽)构成的。一级槽通过槽底开孔将液体 初分为若干流股,分别加入其下方的液体分 布槽,分布槽的槽底(或槽壁)上设有孔道, 将液体均匀分布于填料层上,如图片4.10 (f)所示。槽式分布器具有较大的操作弹 性和较好的抗污性,特别适合于气液负荷大 及含有固体悬浮物、粘度大的分离场合。由 于槽式分布器具有优良的分布性能和抗污垢 性能,应用范围非常广泛。

化工原理第五章(填料塔)

化工原理第五章(填料塔)

2013-7-14
(3)填料因子 【定义】比表面积a与空隙率所组成的复合量a/3。 ①干填料因子 填料未被液体润湿时的a/3称为干填 料因子,它反映了填料的几何特性; ②湿填料因子 填料被液体润湿后,填料表面覆盖了 一层液膜,空隙率变小,此时的a/ 3称为湿填料因 子,用φ表示。其单位为1/m。 湿填料因子反映了填料的流体力学性能,空隙率
2013-7-14
二、填料层内气液两相的流体力学特性
填料塔的流体力学性能主要包括填料层的持液量、 填料层的压降、液泛等。 1、填料层的持液量 在一定操作条件下,由于液膜与填料表面的摩擦
以及液膜与上升气体的摩擦,有部分液体停留在填
料表面及其缝隙中。
【定义】单位体积填料层内所积存的液体体积,以
(m3液体)/(m3填料)表示。
2013-7-14
6、填料的性能评价 【评价依据】填料性能的优劣通常根据效率、通量 及压降三要素衡量。 (1)效率要高。在相同的操作条件下,填料的比表 面积越大,气液分布越均匀,表面的润湿性能越好 ,则传质效率越高; (2)通量(处理量)要大,压降要小。填料的空隙 率越大,结构越开敞,则通量越大,压降亦越低。
(3)极大的增大了气液两相的传质速率。
【波纹填料的材料】碳钢、不锈钢、铝、陶瓷、玻
璃钢及纸浸树脂等。
2013-7-14
【波纹填料的优点】波纹填料与板式塔、散堆填料 相比,具有以下优异的性能: (1)流通量大。新塔设计可缩小直径,老塔改造可 大幅度增加处理量; (2)分离效率高,较散堆填料有大得多的比表面积;
)更加连续,可使气体向上流动时主要沿弧形通道
流动。
【性能特点】空隙率大,压降和传质单元高度低,
泛点高、汽液接触充分、比重小、传质效率高、通

填料塔

填料塔

填料塔百科名片填料塔是塔设备的一种。

塔内填充适当高度的填料,以增加两种流体间的接触表面。

例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。

气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。

结构较简单,检修较方便。

广泛应用于气体吸收、蒸馏、萃取等操作。

为了强化生产,提高气流速度,使在乳化状态下操作时,称乳化填料塔或乳化塔(emulsifyingtower)。

目录[隐藏]结构原理发展历史基本分类历史事记应用领域发展状况工业应用结构原理发展历史基本分类历史事记应用领域发展状况工业应用[编辑本段]结构原理填料塔是以塔内的填料作为气液两相间接触构件的传质设备。

填料塔的塔身填料塔结构示意图是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

填料的上方安装填料压板,以防被上升气流吹动。

液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。

气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。

填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。

当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。

壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。

因此,当填料层较高时,需要进行分段,中间设置再分布装置。

液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。

填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。

填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

填料塔反应器结构、特点和适用范围

填料塔反应器结构、特点和适用范围

填料塔反应器结构、特点和适用范围填料塔反应器是一种常见的化工设备,广泛应用于催化反应、吸收分离、气体净化等工艺过程中。

它的结构特点和适用范围如下所述。

一、结构特点:1. 填料:填料塔反应器内部装有填料,填料的种类和形状不同,可以根据反应物质的性质和反应条件进行选择。

常见的填料有环状填料、球状填料、网状填料等。

填料的存在可以增加反应器的表面积,提高反应效率。

2. 反应器壳体:填料塔反应器通常由金属或非金属材料制成,具有耐高温、耐腐蚀的特性。

壳体内部通常有进料口、出料口、排气口等设备,方便反应物质的输入、产物的收集和废气的排放。

3. 分层结构:填料塔反应器内部通常采用分层结构,可以使反应物质在塔内均匀分布,增加反应效率。

分层结构可以采用板式结构或者隔板结构,使流体在塔内产生旋涡状流动,增加反应物质与填料的接触面积。

4. 冷却装置:填料塔反应器通常需要进行冷却处理,以控制反应的温度。

冷却装置可以采用内置冷却管或者外部冷却器,通过循环冷却剂来降低反应温度,确保反应的稳定进行。

二、特点:1. 高效:填料塔反应器可以通过增加填料的方式增加反应表面积,提高反应效率。

填料的存在可以使反应物质与催化剂充分接触,提高反应速率。

2. 灵活性:填料塔反应器的填料种类和形状可以根据不同的反应物质和反应条件进行选择,具有较大的灵活性。

可以适应不同的反应过程和催化剂要求。

3. 安全性:填料塔反应器通常具有较好的密封性能,可以有效地防止反应物质的外泄和废气的排放。

同时,填料塔反应器可以进行温度和压力的控制,确保反应的安全进行。

4. 经济性:填料塔反应器的结构简单,制造成本较低。

填料的存在可以提高反应效率,减少反应时间,降低能耗和生产成本。

三、适用范围:1. 催化反应:填料塔反应器广泛应用于各种催化反应过程中,如氨合成、氢化反应、裂解反应等。

填料的存在可以提高催化剂的利用率,提高反应速率。

2. 吸收分离:填料塔反应器可以用于气体吸收分离过程中,如酸气的吸收、有机物的吸附等。

填料塔讲座


泛点气速 泛点气速:开始发生液泛时的气速。
设计气速取泛点气速的50%~80%。 填料的种类,物系的物性以及气液相负荷等对泛点有影响。 采用埃克特(Eckert)压降和气速通用关联图求泛点曲线。 根据两相流动参数由关联图泛点线查得纵坐标,继而求泛点气速。
壁效应: 壁效应:
若塔壁附近空隙率显著大于填料主体区,则会造成液体向壁区偏流, 造 成气体走短路,使填料塔操作恶化。 改进措施:加强液流入塔初始分布均匀性,在塔内设置液体再分布器, 以避免壁效应等。
气体
1 2 4 8 3 7
液体
6 5
填料(Tower packing) 填料(Tower packing)
填料性能与填料几何形状紧密相关,表征填料特性的数据主要有: 比表面积 a:单位体积填料层所具有的表面积(m2/m3)。大的 a 和良好 的润湿性能有利于传质速率的提高。对同种填料,填料尺寸越小, a 越大,但气体流动的阻力也要增加。 空隙率 ε:单位体积填料所具有的空隙体积(m3/m3)。代表的是气液 两相流动的通道, ε 大,气液通过的能力大,ε = 0.45~0.95。 堆积密度 ρp :单位体积填料的质量(kg/m3)。填料的壁要尽量减薄, 以降低成本又可增加空隙率。 其他:机械强度大,化学稳定性好以及价格低廉。
c HETP = c1GG2 D c3 Z 3
1
αµ L ρL
式中: GG —— 气体的空塔质量速度,kg/(m2⋅h); α —— 相对挥发度; D —— 塔径,m; µ —— 液体的粘度,mPa⋅s; Z —— 填料层高度,m; ρL —— 液体的密度,kg/m3; c1, c2, c3 —— 常数,取决于填料类型及尺寸。 适用范围: (1) 常压操作,操作气速为泛点气速的25~85%; (2) 高回流比操作; (3) α 值不大于3的碳氢化合物蒸馏系统; (4) 填料层高度0.9~3.0m,塔径0.5~0.75m,填料尺寸不大于塔径的1/8。

环境工程原理填料塔

环境工程原理填料塔填料塔的结构一般由填料层、喷头层、塔体和塔底等部分组成。

填料层是填充在塔体内的材料,可分为多种类型,如环形填料、波纹板填料等,填料能够提供大量的表面积,以便更好地与废气接触。

喷头层通常位于塔体上部,用于将废气喷入填料层,使废气均匀分布在填料中。

塔体和塔底则主要用于存储废气和收集处理后的气体。

填料塔的工作原理是通过废气与填料的接触,使废气中的污染物发生物理吸附或化学吸附作用。

物理吸附是指废气中的污染物通过填料的孔隙结构和表面张力的作用,被填料表面吸附附着。

化学吸附是指废气中的污染物与填料表面的活性位点发生化学反应,形成化合物,并在填料表面上吸附附着。

这些吸附或吸附的污染物可以是有害气体、颗粒物或溶解有机物等。

在填料塔中,填料的选择和设计是关键因素之一、填料应具有较大的表面积、较大的孔隙率和良好的耐腐蚀性能。

常用的填料材料有陶瓷、聚砜、活性炭等。

根据不同的应用场景和废气特性,可以选择不同类型的填料。

此外,填料的形状和密度也会影响填料塔的处理效果。

填料塔还需要配备适当的供气系统和排气系统。

供气系统用于将废气输送到填料塔中,需要合理安排喷头的布置以保证废气在填料中的均匀分布。

排气系统用于收集处理后的气体,通常包括脱除设备、排气风机等,以保证净化效果并控制排放浓度。

总的来说,环境工程原理填料塔是一种常见的废气处理设备,通过填料的大表面积和与废气接触的效果,吸附或吸附废气中的污染物,达到净化废气的目的。

填料塔的设计和填料的选择至关重要,而合理的供气系统和排气系统也是确保填料塔正常运行的关键因素。

填料塔手册

《填料塔手册》目录图表目录1. 简介1.1 填料塔的定义和用途1.2 填料塔的历史发展1.3 填料塔在化工、环保等领域的应用1.4 填料塔应用案例2. 填料塔的基本结构2.1 塔体2.2 填料层2.3 液体分布器2.4 气体分布器2.5 支撑板2.6 除雾器2.7 各部件的材质选择指南2.8 不同类型填料塔的结构差异比较3. 填料类型3.1 规整填料3.1.1 金属规整填料3.1.2 陶瓷规整填料3.1.3 塑料规整填料3.2 散堆填料3.2.1 鞍形填料3.2.2 拉西环3.2.3 球形填料3.3 各类填料的优缺点比较3.4 新型填料材料介绍4. 填料塔设计考虑因素4.1 操作条件(温度、压力、流量)4.2 物料特性4.3 塔径和塔高的确定4.4 填料选择4.5 液体分布系统设计4.6 设计软件介绍和使用指南4.7 不同行业特殊设计要求5. 填料塔的操作5.1 启动程序5.2 正常运行参数监控5.3 常见问题及解决方案5.4 停机程序5.5 自动化控制系统介绍5.6 不同工况下的操作参数调整指南6. 填料塔的维护6.1 日常检查项目6.2 定期维护计划6.3 填料更换指南6.4 清洗和除垢方法6.5 预测性维护技术介绍6.6 常见故障的诊断和排除方法7. 填料塔性能优化7.1 压降控制7.2 传质效率提高7.3 能耗降低策略7.4 优化案例分析7.5 新技术在性能优化中的应用8. 安全注意事项8.1 操作安全规程8.2 个人防护装备要求8.3 紧急情况处理8.4 安全培训计划的制定指南8.5 国际安全标准介绍9. 环境保护考虑9.1 废水处理9.2 废气排放控制9.3 噪音控制9.4 绿色生产技术在填料塔中的应用9.5 环境影响评估方法介绍10. 填料塔相关计算10.1 传质单元数(NTU)计算10.2 压降计算10.3 填料层高度计算10.4 计算实例10.5 常用计算公式的推导过程11. 新技术和发展趋势11.1 高效填料开发11.2 智能控制系统应用11.3 模拟和优化软件使用11.4 行业专家对未来发展的预测11.5 国际先进技术介绍12. 案例研究12.1 不同行业填料塔应用实例12.2 不同规模填料塔案例分析12.3 问题诊断和解决案例12.4 失败案例分析及经验教训13. 常见问题解答14. 附录14.1 常用填料参数表14.2 填料塔故障排查清单14.3 相关标准和规范列表14.4 常用符号和缩略语表14.5 相关专业术语的多语言对照表15. 参考文献索引本手册旨在为填料塔的设计、操作和维护人员提供全面的指导。

填料塔填料装填方案

填料塔填料装填方案填料塔是化工工艺中常用的设备,在精馏、吸收和萃取等过程中起到分相和传质的作用。

填料塔的填料选择和装填方案对于设备的运行效果和产品质量有着重要的影响。

下面是对填料塔填料选择和装填方案的详细介绍。

一、填料选择选择填料时需要考虑以下几个因素:传质效果、容积利用率、压降和耐腐蚀性。

1.传质效果:填料的传质效果直接影响到设备的分离效果。

通常选择表面积大、润湿性好的填料,如波纹板、骨状填料、环状填料等。

2.容积利用率:填料塔的容积利用率直接影响设备的经济性。

选择体积小、表面积大的填料可以提高容积利用率,如启擎环、泡泡板等。

3.压降:填料的压降越小,塔的运行能耗越低。

选择压降小的填料可以提高设备的经济性。

4.耐腐蚀性:填料需要具有一定的耐腐蚀性,以保证长期运行的稳定性。

根据具体的工作介质选择耐腐蚀性好的填料材料,如不锈钢、塑料等。

填料的装填方案一般有水平装填和垂直装填两种。

1.水平装填:水平装填适用于较小的填料塔,装填工艺相对简单。

具体操作步骤如下:(1)将填料按照设定的装填高度放置在填料托盘上。

(2)保持填料的平整度和紧密度,防止填料间产生空隙。

(3)在填料顶部设置平行的固定托板,以稳定填料并减少液相折射。

2.垂直装填:垂直装填适用于大型填料塔,装填工艺相对复杂。

具体操作步骤如下:(1)利用起重机将填料箱升入填料口,并将填料整齐的倒入填料塔中。

(2)使用振动器震动填料塔,以达到填料均匀分布的目的。

(3)对填料进行压实,采用专用的填料压实器将填料压实,使得填料间没有空隙。

(4)最后,在填料顶部设置平行的固定托板,以稳定填料并减少液相折射。

三、装填要点无论是水平装填还是垂直装填,都需要注意以下几个要点:1.填料的平整度和紧密度:填料的平整度和紧密度影响塔的运行和传质效果。

需要通过技术措施保持填料的平整度和紧密度,防止填料间产生空隙。

2.压实填料:对填料进行适当的压实,可以减少填料塔的压降和液相折射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、 液泛 气速通常取泛点气速的50%~80%。填料塔的直径D: 3、载液 从正常到载液的过渡往往是一段圆滑曲线。 4、持液量 持液量指单位体积填料层载其空隙中所持有地液体量。 5、润湿速率
润湿速率= 喷淋密度 液体体积流量/填料层截面积 = 填料比表面 填料层表面积/填料层体积
D
4Vs u

液体体积流量 液体体积流量 = 填料层表面积/填料层高度 填料层得周边长
3.气相传质系数
kV RT G C ( V )0.7 ( V )1 3 (ad P ) 2 aDV aV V DV
四、一些设计指标 1.填料尺寸
一般认为上述比值至少要等于8,对拉西环填料还须大一些。
2.操作气速 操作气速可按下列两种方法之一决定:
(1)取操作气速等于液泛气速得0.5~0.8倍;
对于一些要求持液量较高的吸收体系中,一般用乱堆填料。乱堆填料 中,综合技术性能较优越是金属鞍环、阶梯环、其次是鲍尔环,再次 是矩鞍填料。
3、 填料尺寸的选择 一般,填料尺寸(直径、波峰高)大,则比表面小,通量(容许 气速)大,压降低,但效率(每米填料的理论半数)也低,故多用于 生产能力(处理气量)大的塔。 大型工业用规整填料塔常用波峰高12mm左右的板波填料(比表面约 为250m2/m3)。
载干填料层内,气体流量的增大,将使压降按1.8~2.0次方增长。
3、 填料塔的液泛 当气液量达到某一定值时,两相交互作用恶性发展的结果会导致
液泛现象的出现。此时上升气流对液流的曳力加大到足以阻止液体
下流,于是液体充满填料层空隙,气体只能鼓泡上升。
二、填料塔的水力学性能 1、压力降
反映填料层阻力的压降随填料的类型与尺寸不同而变化。
2、 填料类型的选择 首先取决于工艺要求,如所需理论级数,生产能力(气量),容 许压降,物料特性(液体黏度、气相和液相中是否有悬浮物或生产过 程中的聚合等)等,然后结合填料特性来选择,要求所选填料能满足 工艺要求,技术经济指标先进,易安装和维修。 由于规则填料气、液分布较均匀,放大效应小,技术指标由于乱 堆填料,故近年来规则填料的应用日趋广泛,尤其是大型塔和要求压 降低的塔,但装卸清洗较为困难。 对于生产能力(塔径)大,或分离要求较高,压降有限制的塔, 选用孔板波纹填料较宜,如苯乙烯—乙苯精馏塔、润滑油减压塔等。
二、填料 填料式填充于填料塔中的材料,它是填 料塔的主要内构件,其作用是增加气、液两 相的接触面积,并提高液体的湍动程度以利 于传质、传热的进行。因此填料应能使气、 液接触面积大、传质系数高,同时通量大而 阻力小。表征填料特性的主要参数有: 1. 比表面积 2.空隙度 3. 堆积密度
4. 干填料因子及填料因子 5. 机械强度及 化学稳定性; 此外,性能优良的填料还必 须满足制造容易、造价低廉等多方面的要求
图10-5 填料的支撑
2、 液体分布器 (1)管式喷淋器
B A B A (a) A- A
(c)
B- B
(d) (b)
图10-6 管式喷淋器
(2)莲-9 槽式喷淋器
4、 其他 为避免操作中因气速波动而使填料被冲动及损坏,常需在填 料层顶部设置填料压板或挡网,否则有可能使填料层结构及塔的 性能急剧恶化,破碎的填料也可能被代入气、液出口管路而造成 阻塞。 填料塔气体进口的构形应考虑液体倒灌,更重要的是要有利 于气体均匀地进入填料层,对于小塔常见地方式是使进气管伸至 塔截面的中心位置,管端作向下倾斜的切口或向下弯的喇叭口。 对于大塔,应采取其他更为有效的措施。 气体出口有时需设置除雾沫装置,常用的除沫装置有折流板 除雾器、丝网除雾器等。 液体的出口应保证形成塔的液封,并能放置气体的挟带。
对于理论板数很多或塔高受厂房限制的场合,一般用小尺寸、高 比表面填料。
对于易结垢或易沉淀的物料通常用大尺寸的栅板(格栅)填料, 并在较高气速下操作。
7.1.2填料塔的流体力学性能与传质性能 一、填料塔内的流体流动
1、填料层中的流动
气体在填料层内的流动相当与气体在颗粒层内的流动。 2、 气液两相流动的交互影响和载点
第七章 气液传质设备
7.1 填料塔
7.2 板式塔
7.3 塔设备的比较和选型
7.1.1 填料塔和填料
一、填料塔的结构
填料塔是一种应用广泛的气液两相接触 并进行传热、传质的塔设备,可用于吸 收(解吸)、精馏和萃取等分离过程。 填料塔不仅结构简单,而且具有阻力小 和便于用耐腐蚀材料制造等优点,尤其 适用于塔直径较小地情形及处理有腐蚀 性的物料或要求压强较小的真空蒸馏系 统,此外,对于某些液气比较大的蒸馏 或吸收操作,也宜采用填料塔。
常用的填料可分为两大类:个体填料与规 整填料。
3.填料塔的附属结构
填料塔得附属结构包括填料支撑板,液体 分布器,液体再分布器,气、液体进口及出 口装置等。 (1) 支承板
(a)栅 板
(b)升 气 管 式

c)条形升气管
三、填料的选择
1、填料用材的选择
(1)当设备操作温度较低时,塑料能长 期操作而不出现变形,在此种情况下如果 体系对塑料无溶胀时可考虑使用塑料,因 其价格低、性能良好。塑料填料的操作温 度一般不超过1000C,玻璃纤维增强的聚 丙烯填料可达1200C左右。塑料除浓硫酸 、浓硝酸等强酸外,有较好的耐腐蚀性, 但塑料表面对水溶液的润湿性差。 (2)陶瓷填料一般用于腐蚀性介质,尤
(2)根据生产条件,规定出可容许得压力降,由此压力将反算出可 采用得气速。
3.填料层高度
填料层高度由传质单元数或理论板数来推算。
7.1.3填料塔的附属结构
(c)
填料塔得附属结构包括填料支撑板,液体分布器,液体再分布器, 气、液体进口及出口装置等。
1、 支承板
(c)条形升气管
(a)栅 板
(b)升 气 管 式
三、填料的传质性能 1.填料润湿表面的计算
aW c 0.75 GL 0.1 GL 2 0.05 GL 2 0.2 1 exp[1.45( ) ( ) ( 2 ) ( ) ] a a L L g L
2.液相传质系数计算
L 1 G kL ( ) 3 0.0051( L )2 3 ( L )1 2 (ad p )0.4 L g aW L L DL
相关文档
最新文档