圆柱表面积与圆柱圆锥体积实际应用练习题精选
小学圆柱和圆锥体积表面积常考解答应用题

解答题1.木工师傅加工一块长方体木块(如图),它的底面是正方形。
将它削成 14圆柱(阴影部分),削去部分的体积是8.6dm 3。
原来长方体木块的体积是多少?【解析】【分析】可以设底面边长是1,高是h ,用阴影部分底面积乘高表示出14圆柱的体积,根据长方体体积公式表示出长方体体积。
写出圆柱体积与长方体体积的最简比是157:200,那么削去部分的份数是(200-157),由此用削去部分的体积除以削去部分的份数求出每份数,用每份数乘200求出长方体体积。
2.一个直角三角形的三条边分别是6厘米、8厘米和10厘米,沿着它的一条直角边为轴旋转一周,可得到( )体,体积最小是多少?体积最大是多少?【解析】【分析】一个直角三角形,沿它的一条直角边为轴旋转一周,可以得到一个圆锥体,此题中直角三角形的两条直角边不相等,所以旋转出的圆锥有两种不同的情况:①以8厘米的直角边为轴旋转可得到一底面半径是6厘米,高是8厘米的圆锥;②以6厘米的直角边为轴旋转可得到一底面半径是8厘米,高是6厘米的圆锥,根据公式:V=13πr 2h ,据此计算并比较大小即可。
3.将一个长30厘米,宽25厘米,高20厘米的长方体木块削成一个最大的圆柱,这个圆柱的体积是多少?【解析】【分析】长方形中,要剪一个大圆,那么圆的直径与长方形的宽相等;圆柱的体积=πr 2h 。
据此作答即可。
4.从一个底面半径为10分米的圆柱形水桶里取出一块底面积是6.28平方分米完全浸泡在水中的圆锥形钢材,取出后水面下降5厘米,求圆锥形钢材的体积。
【解析】【分析】根据题意可知,水面下降部分的体积,就是圆锥的体积,因为是圆柱形水桶,所以下降的水的体积根据圆柱的体积公式:V=πr 2h ,据此列式解答.5.已知一根长3米的圆柱形木料,将它截成4段,其表面积增加18.84平方米,如果将它削成一个最大的圆锥,则这个圆锥的体积是多少立方米?【解析】【分析】把木料截成4段,那么就说明把这根木料切了3次,每切一次就增加2个面,所以增加了2×3=6个底面积,那么这个圆柱的底面积=表面积增加的平方米数÷6,削成最大的圆锥的体积=这个圆柱的底面积×圆柱形木料的长度×13,据此代入数据作答即可。
经典圆柱和圆锥表面积体积应用题

授课教案学员姓名:授课教师:所授科目:三、典型例题(需有解析题目的详细过程)圆柱、圆锥的认识,圆柱的表面积例1、把一张长分米,宽分米的长方形铁皮圈成一个圆柱形无盖容器,要配上底面半径多少分米的圆形铁皮。
例2、一个圆柱体底面周长和高相等,如果高缩短了2厘米,表面积就减少平方厘米。
求这个圆柱体的表面积。
例3、下面的圆柱沿着箭头方向竖着切开,表面积增加了40平方厘米,求圆柱的表面积。
例4、一个圆柱的表面积是平方分米,底面半径是2分米,则这个圆柱的高是多少分米例5、一个高是20厘米的圆柱,把高增加4厘米后,圆柱表面积比原来增加了平方厘米,那么新的圆柱表面积是多少平方厘米例6、将这根水管内外表面镀锌,求镀锌的面积(单位:厘米)6 850例7、求下图的表面积。
例8、已知下面圆柱的直径是6厘米,高是8厘米,其底面是32圆的扇形,求表面积。
圆柱的体积1、把一块长厘米,宽20厘米,高4厘米的长方体钢坯熔化后浇铸成底面半径是4厘米的圆柱体,圆柱体的高是多少厘米2、一根空心的钢管长2米,量得内直径6厘米,管壁厚1厘米。
如果每立方厘米钢重7.8克,这根钢管大约重多少千克(得数保一位小数)3、一个圆柱形底面周长是厘米,高10厘米,把它装满盐水后,再倒入一个长10厘米,宽8厘米的长方体容器中,水面高多少厘米4、把一个长7厘米,宽6厘米,高厘米的长方体铁块和一个棱长5厘米的正方体的铁块,熔铸成一个大圆柱体,这个圆柱体的底面积是平方厘米,那圆柱的高应是多少厘米5、把一个直径是2分米的圆柱的底面分成许多相等的扇形,然后沿直径把圆切开,拼成一个和它体积相等的长方体,这个长方体表面积比原来圆柱的表面积增加8平方分米,这个长方体的体积是多少6、如右图,是一个棱长为4分米的正方体零件,它的上、下、左、右面上各有一个半径为2厘米的圆孔,孔深为1分米,这个零件的表面积是多少体积是多少8、下面的是装可乐的盒子,已知沿着长可以放6听,沿着宽可以放4听,可乐罐的底面直径是8厘米,高是13厘米,那么这个盒子的容积至少是多少立方厘米。
圆柱表面积与体积实际应用练习题精选

圆柱表面积与体积实际应用练习题精选一选择:(在正确答案下划线)(1)一只铁皮水桶能装水多少升是求水桶的(侧面积、表面积、容积、体积)(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的(侧面积、表面积、容积、体积)(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的(侧面积、表面积、容积、体积)(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)二、深化练习1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?3、用铁皮制10节同样大小的通风管,每节长是5分米,底面直径是1.2分米,至少需要多少平方分米铁皮?4、一种压路机的滚筒是圆柱形的,筒宽1.5米,直径是0.8米。
这种压路机每分钟向前滚动5周。
这种压路机1分钟压路多少平方米?5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,(1) 要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?(2) 这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)6、做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,(1) 做这个铁皮油桶,至少要用铁皮多少平方分米?( 得数用进一法保留整平方分米)(2) 这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)7、一根长4米,底面直径是4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?8、用一块边长是9.42分米的正方形铁皮配上一个地面,做成一个圆柱形铁皮水桶。
(1)这个水桶的底面半径是多少?(2)这个水桶的侧面积是多少?(3)这个水桶最多能容纳多少升水?9、一个水杯从里面量底面直径10厘米,高15厘米,杯里的水面离杯口5厘米,这个杯子有水多少升?10、有两个等底的圆柱,第一个圆柱的高是第二个圆柱高的4/5,第一个圆柱的体积是3.2立方厘米,第二个圆柱比第一个圆柱多多少立方厘米?11、一个零件,底面直径5厘米,高10厘米,沿着它的一条底面直径往下切,切成相同大小的两份,(1)总面积比原来增加了多少平方厘米?(2每半个零件的表面积是多少?体积是多少?12、某宾馆大堂有6根圆柱形大柱,高10米,大柱周长25.12分米,要全部涂上油漆,如果按每平方米的油漆费为80元计算,需用多少钱?13、一根长2米,底面积半径是4厘米的圆柱形木段,把它据成同样长的4根圆柱形的木段。
六年级数学下册典型例题系列之期中专项练习:圆柱、圆锥的应用题(解析版)苏教版

苏教版六年级数学下册典型例题系列之期中专项练习:圆柱、圆锥的应用题(原卷版)专项练习一:与圆柱表面积有关的实际问题1.一个圆柱形水池,底面半径6米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?2.如图,一个蛋糕的包装盒,其中打结处用了25厘米,绳子共长多少米?侧面积是多少平方厘米?3.请计算下图长方形绕虚线旋转一周后得到的圆柱的表面积。
4.如图,一根长4米,横截面是半径为2分米的圆柱形木料被截成同样长的2段后。
表面积比原来增加了多少平方分米?(π取3.14)5.如果把棱长是2分米的正方体木块削成一个最大的圆柱,这个圆柱的表面积是多少平方分米?6.把一段长1米,侧面积18.84平方米的圆柱体的木料,沿着平行于底面的方向截成两段,这时它的表面积增加了多少平方米?7.一个圆柱体,高减少2厘米,表面积就减少了50.24平方厘米,圆柱的底面积是多少平方厘米?8.小区砌一个无盖的圆柱形蓄水池,底面直径是4米,深2米。
在池的周围与底面抹上水泥。
抹水泥部分的面积是多少平方米?9.张叔叔准备做一个有盖的圆柱形铁皮油桶,油桶的底面直径是4分米,高是5分米,做这个油桶至少需要多少平方分米铁皮?10.一个圆柱形的木棒,底面直径是4厘米,高是10厘米,在地面上滚动一周后前进了多少厘米?压过的面积是多少平方厘米?专项练习二:与圆柱体积有关的实际问题11.零件中有一个圆柱形孔儿,圆柱的高度与正方体相同(如下图所示)。
已知正方体的棱长是3厘米,圆柱的底面直径是2厘米,求这个零件的体积。
12.挖一个圆柱形蓄水池,底面直径为20米,深1.5米,需挖土多少立方米?在水池四周与底面涂上水泥,每平方米需水泥0.4千克,共需水泥多少千克?13.一块石头完全浸没在一个底面半径是10厘米的圆柱形的水箱中,水面上升了2厘米。
这块石头的体积是多少立方厘米?14.一个圆柱形玻璃容器的底面直径是10cm,把一块完全浸在这个容器的水中的铁块取出后,水面下降2cm。
圆柱圆锥的表面积和体积练习题

圆柱、圆锥的表面积与的体积练习题803、一个圆柱形奶粉盒的谋面半径是5厘米,高是20厘米,它的容积是多少立方厘米?4、把一块棱长12分米的正方体木料加工成一个体积最大的圆柱体,这个圆柱体的体积是多少?5、计算下面各圆柱体的体积。
A 、底面积是1.25平方米,高3米。
B 、底面直径和高都是8分米。
6、一个圆柱形的油桶,从里面量底面半径直径是4分米,高3分米,做这个油桶至少要用多少平方分米的铁皮?如果1升柴油重0.82千克,这个油桶能装多少千克的柴油?(得数保留两位小数)7、一个圆柱形水池的容积是43.96立方米,池底直径4米,池深多少米?8、一口周长是6.28米的圆柱形水井,它的深是10米,平时蓄水深度是井深的0.8倍,这口井平时的水量是多少立方米?9、一个长8分米,宽6分米,高4分米的长方体与一个圆柱体的体积相等,高相等,这个圆柱的底面积是多少?10、一段圆柱形钢材,长50厘米,横截面半径是4厘米,如果每立方厘米钢是7.9克,这段钢材的重量是多少千克?(得数保留一位小数)11、求下面图形的表面积和体积(单位:分米)12、有一段底面是环形的钢管,外圆直径是40厘米,内圆直径是20厘米,这根钢圆柱的体积练习二1、一个圆柱的底面半径是6厘米,高是2分米,求这个圆柱的体积。
2、小刚有一个圆柱形的水杯,水杯的底面半径是5厘米,高是10厘米,有资料显示:每人每天的正常饮水量大约是1升,小刚一天要喝几杯水?3、一个圆柱形水桶,底面直径和高都是40厘米,用这个水桶容积的85%装水,每升水重1千克,桶中的水大约有多少千克?4、一个底面半径是10米的圆柱形蓄水池,能蓄水2512立方米,若再挖深2米,可蓄水多少立方米?5、一个圆柱形油桶,内底面直径是40厘米,高是50厘米,它的容积是多少升?如果1升柴油重0.85千克,这具油桶可装柴油多少千克?(得数保留整千克)6、一个圆柱形玻璃杯底面半径是10厘米,里面装不水,水的高度是12厘米,把一小块铁块放进杯中,水上升到15厘米,这块铁块重多少克?(每立方厘米铁重7.8克)7、下图是一个长15厘米,宽6厘米、高15个底面半径为5厘米的圆柱形空洞,求这个零件的体积。
小学奥数--圆柱与圆锥-精选练习例题-含答案解析(附知识点拨及考点)

立体图形表面积 体积 圆柱h r222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱圆锥hr 22ππ360n S l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体 板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)11111.50.5【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.84⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【答案】32.97【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?例题精讲圆柱与圆锥【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米). 【答案】307.72【例 3】 (希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米) 当圆柱的高是12厘米时体积为212360π()102ππ⨯⨯=(立方厘米).所以圆柱体的体积为300π立方厘米或360π立方厘米. 【答案】300π立方厘米或360π立方厘米【例 4】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆的直径为:()16.561 3.144÷+=(米),而油桶的高为2个直径长,即为:428(m)⨯=,故体积为100.48立方米.【答案】100.48立方米【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:2π1062.8⨯⨯=(厘米),原来的长方形的面积为:10462.81022056()()(平方厘米).⨯+⨯⨯=【答案】2056【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.562 6.28÷=厘米,底面半径为6.28 3.1421÷÷=厘米,所以原来的圆柱体的体积是2⨯⨯==(立方厘米).π188π25.12【答案】25.12【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.高缩短4厘米,表面积就减少50.24平方厘米.阴影部分的面积为圆柱体表面积减少部分,值是50.24平方厘米,所以底面周长是50.24412.56⨯=(平方厘米),两÷=(厘米),侧面积是:12.5612.56157.7536个底面积是:()2⨯÷÷⨯=(平方厘米).所以表面积为:3.1412.56 3.142225.12+=(平方厘米).157.753625.12182.8736【答案】182.8736【例 6】(两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱)体木棒的侧面积是________2cm.(π取3.14【考点】圆柱与圆锥【难度】3星【题型】解答第2题【解析】根据题意可知,切开后表面积增加的就是两个长方形纵切面.设圆柱体底面半径为r,高为h,那么切成的两部分比原来的圆柱题表面积大:2r h⨯=,所以,圆柱体侧面积为:502(cm)222008(cm)r h⨯⨯=,所以22⨯⨯⨯=⨯⨯=.r h2π2 3.145023152.56(cm)【答案】3152.56【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了=)40平方厘米,求圆柱体的体积.(π3【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱切开后表面积增加的是两个长方形的纵切面,长方形的长等于圆柱体的高为10厘米,宽为圆柱底面的直径,设为2r,则210240r=(厘米).圆柱体积为:r⨯⨯=,12⨯⨯=(立方厘米).π11030【答案】30【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【考点】圆柱与圆锥【难度】3星【题型】解答【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为()2÷⨯=(厘米),所以增加的表面积为2421650.24 3.1424⨯⨯=(平方厘米);(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为50.24立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为3.142 6.28⨯=厘米,所以侧面长方形的面积为50.24 6.288÷=平方厘米,所以增加的表面积为8216⨯=平方厘米.【答案】16【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【考点】圆柱与圆锥【难度】3星【题型】解答【解析】这是一个半圆柱体与长方体的组合图形,通过分割平移法可求得表面积和体积分别为:11768平方厘米,89120立方厘米.【答案】89120【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】100毫升的吊瓶在正放时,液体在100毫升线下方,上方是空的,容积是多少不好算.但倒过来后,变成圆柱体,根据标示的格子就可以算出来.由于每分钟输2.5毫升,12分钟已输液2.51230⨯=(毫升),因此开始输液时液面应与50毫升的格线平齐,上面空的部分是50毫升的容积.所以整个吊瓶的容积是10050150+=(毫升).【答案】150【例 10】(”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)8(单位:厘米)4106【考点】圆柱与圆锥【难度】3星【题型】解答【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为6厘米的圆柱,空气部分构成高为1082-=厘米的圆柱,瓶子的容积为这两部分之和,所以瓶子的容积为:24π()(62) 3.1432100.482⨯⨯+=⨯=(立方厘米).【答案】100.48【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的623÷=倍.所以酒精的体积为326.4π62.17231⨯=+立方厘米,而62.172立方厘米62.172=毫升0.062172=升.【答案】0.062172【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)253015【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm ,因为酒瓶深30cm ,这样所剩空间为高5cm 的圆柱,再加上原来15cm 高的酒即为酒瓶的容积. 酒的体积:101015π375π22⨯⨯= 瓶中剩余空间的体积1010(3025)π125π22-⨯⨯= 酒瓶容积:375π125π500π1500(ml)+==【答案】1500【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由已知条件知,第二个图上部空白部分的高为752cm -=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米.【答案】60【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3=)5cm【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥的高为x 厘米.由于两次放置瓶中空气部分的体积不变,有:()22215π611π6π63x x ⨯⨯=-⨯⨯+⨯⨯⨯,解得9x =, 所以容器的容积为:221π612π69540π16203V =⨯⨯+⨯⨯⨯==(立方厘米). 【答案】1620【例 11】 (希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 在水中的木块体积为55375⨯⨯=(立方厘米),拿出后水面下降的高度为7550 1.5÷=(厘米)【答案】1.5【例 12】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将圆柱体分别放入A 盒、B 盒后,两个盒子的底面被圆柱体占据的部分面积相等,所以两个盒子的底面剩余部分面积也相等,那么两个盒子的剩余空间的体积是相等的,也就是说A 盒中装的水恰好可以注满B 盒而无剩余,所以A 盒余下的水是0立方厘米.【答案】A 盒余下的水是0立方厘米【例 13】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 最后拉出的面条直径是原先面棍的164,则截面积是原先面棍的2164,细面条的总长为:21.6646553.6⨯=(米).注意运用比例思想.【答案】6553.6【例 14】 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 因为18分钟水面升高:502030-=(厘米).所以圆柱中没有铁块的情形下水面升高20厘米需要的时间是:20181230⨯=(分钟),实际上只用了3分钟,说明容器底面没被长方体底面盖住的部分只占容器底面积的13:124=,所以长方体底面面积与容器底面面积之比为3:4. 【答案】3:4【例 15】 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米);(法2):设水面上升了x 厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)x x =+,解得:2x =,8210+=(厘米).(提问”圆柱高是15厘米”,和”高为12厘米的长方体铁块”这两个条件给的是否多余?)【答案】10【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 8010(8016)12.5⨯÷-=,因为12.512>,所以此时水已淹没过铁块,8010(8016)1232⨯--⨯=,32800.4÷=,所以现在水深为120.412.4+=厘米【答案】12.4【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 玻璃杯剩余部分的体积为80(1513)160⨯-=立方厘米,铁块体积为1612192⨯=立方厘米,因为160192<,所以水会溢出玻璃杯,所以现在水深就为玻璃杯的高度15厘米【总结】铁块放入玻璃杯会出现三种情况:①放入铁块后,水深不及铁块高;②放入铁块后,水深比铁块高但未溢出玻璃杯;③水有溢出玻璃杯.【说明】教师可以在此穿插一个关于阿基米德测量黄金头冠的体积的故事. 一天国王让工匠做了一顶黄金的头冠,不知道工匠有没有掺假,必须知道黄金头冠的体积是多少,可是又没有办法来测量.(如果知道体积,就可以称一下纯黄金相应体积的重量,再称一下黄金头冠的重量,就能知道是否掺假的结果了)于是,国王就把测量头冠体积的任务交给他的大臣阿基米德.(小朋友们,你们能帮阿基米德解决难题吗?)阿基米德苦思冥想不得其解,就连晚上沐浴时还在思考这个问题.当他坐进水桶里,看到水在往外满溢时,突然灵感迸发,大叫一声:”我找到方法了……”,就急忙跑出去告诉别人,大家看到了一个还光着身子的阿基米德.他的方法是:把水桶装满水,当把黄金头冠放进水桶,浸没在水中时,所收集的溢出来的水的体积正是头冠的体积.【答案】15【例 16】 一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 把放入铁块后的玻璃杯看作一个底面如右图的新容器,底面积是72—6×6=36(平方厘米).水的体积是72 2.5180⨯=(立方厘米).后来水面的高为180÷36=5(厘米).【答案】5【例 17】 一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若圆柱体能完全浸入水中,则水深与容器底面面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:222515217517.72πππ⨯⨯+⨯⨯⨯=(厘米).它比圆柱体的高度要大,可见圆柱体可以完全浸入水中.于是所求的水深便是17.72厘米.【答案】17.72【例 18】 有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 两个圆柱直径的比是1:2,所以底面面积的比是1:4.铁块在两个杯中排开的水的体积相同,所以乙杯中水升高的高度应当是甲杯中下降的高度的14,即120.54⨯=(厘米). 【答案】0.5【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶底面半径的520,即41,钢材底面积就是水桶底面积的161.根据体积一定,圆柱体的底面积与高成反比例可知,钢材的长是水面下降高度的16倍.6÷(520)2=96(厘米),(法2):3.14×202×6÷(3.14×52)=96(厘米). 【答案】96【例 19】 一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若铁圆柱体能完全浸入水中,则水深与容积底面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:22251521817.725πππ⨯⨯+⨯⨯=⨯(厘米);它比铁圆柱体的高度要小,那么铁圆柱体没有完全浸入水中.此时容器与铁圆柱组成一个类似于下图的立体图形.底面积为225221πππ-=,水的体积保持不变为2515315ππ⨯=.所以有水深为315617217ππ=(厘米),小于容器的高度20厘米,显然水没有溢出于是6177厘米即为所求的水深. 【答案】6177【例 20】 如图11-7,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?【关键词】华杯赛,初赛,3题【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 圆锥的体积是211624,33ππ⨯⨯⨯=,圆柱的体积是248128ππ⨯⨯=.所以,圆锥体积与圆柱体积的比是16:1281:243ππ=. 【答案】1:24【例 21】 一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米? 【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥形容器底面积为S ,圆柱体内水面的高为h ,根据题意有:1243S Sh ⨯⨯=,可得8h =厘米. 【答案】8【例 22】 (”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水 升.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆锥容器的底面积是现在装水时底面积的4倍,圆锥容器的高是现在装水时圆锥高的2倍,所以容器容积是水的体积的8倍,即508400⨯=升.【答案】400【例 23】 如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥容器的底面半径为r ,高为h ,则甲、乙容器中水面半径均为23r ,则有21π3V r h =容器,221228ππ33381V r h r h =⨯=乙水(),222112219πππ333381V r h r h r h =-⨯=甲水(),2219π198188π81r h V V r h ==甲水乙水,即甲容器中的水多,甲容器中的水是乙容器中水的198倍. 【答案】198倍【例 24】 张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形的粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍? 【关键词】华杯赛,决赛,口试,23题【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 底面周长是3,半径是32π,2233()24πππ⨯=所以今年粮囤底面积是234π,高是2.同理,去年粮囤底面积是224π,高是1.2232(2)(1) 4.5.44ππ⨯÷⨯=因此,今年粮囤容积是去年粮囤容积的4.5倍.【答案】4.5【例 25】 (仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是 平方米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 缠绕在一起时塑料薄膜的体积为:22208ππ1008400π22⎡⎤⎛⎫⎛⎫⨯-⨯⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(立方厘米),薄膜展开后为一个长方体,体积保持不变,而厚度为0.04厘米,所以薄膜展开后的面积为8400π0.04659400÷=平方厘米65.94=平方米.另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为22208ππ84π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π0.046594÷=厘米,所以展开后薄膜的面积为6594100659400⨯=平方厘米65.94=平方米.【答案】65.94【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4 毫米,问:这卷纸展开后大约有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积. 因此,纸的长度 :()22 3.1410093.1410 3.1437143.50.040.04⨯-⨯-⨯≈≈==纸卷侧面积纸的厚度(厘米)所以,这卷纸展开后大约71.4米.【答案】71.4【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 卷在一起时铜版纸的横截面的面积为2218050ππ7475π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),如果将其展开,展开后横截面的面积不变,形状为一个长方形,宽为0.25毫米(即0.025厘米),所以长为7475π0.025938860÷=厘米9388.6=米.所以这卷铜版纸的总长是9388.6米. 本题也可设空心圆柱的高为h ,根据展开前后铜版纸的总体积不变进行求解,其中h 在计算过程将会消掉.【答案】9388.6米【例 26】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 ⑴先求表面积.表面积可分为外侧表面积和内侧表面积.外侧为6个边长10厘米的正方形挖去4个边长4厘米的正方形及2个直径4厘米的圆,所以,外侧表面积为:210106444π225368π⨯⨯-⨯⨯-⨯⨯=-(平方厘米);内侧表面积则为右上图所示的立体图形的表面积,需要注意的是这个图形的上下两个圆形底面和前后左右4个正方形面不能计算在内,所以内侧表面积为:()24316244π22π232192328π24π22416π⨯⨯+⨯⨯-⨯+⨯⨯⨯=+-+=+(平方厘米),所以,总表面积为:22416π5368π7608π785.12++-=+=(平方厘米).⑵再求体积.计算体积时将挖空部分的立体图形取出,如右上图,只要求出这个几何体的体积,用原立方体的体积减去这个体积即可.挖出的几何体体积为:24434444π2321926424π25624π⨯⨯⨯+⨯⨯+⨯⨯⨯=++=+(立方厘米);所求几何体体积为:()10101025624π668.64⨯⨯-+=(立方厘米). 【答案】668.64板块二 旋转问题【例 27】 如图,ABC 是直角三角形,AB 、AC 的长分别是3和4.将ABC ∆绕AC 旋转一周,求ABC ∆扫出的立体图形的体积.(π 3.14=)CB A43【考点】旋转问题 【难度】3星 【题型】解答【解析】 如右上图所示,ABC ∆扫出的立体图形是一个圆锥,这个圆锥的底面半径为3,高为4,体积为:21π3412π37.683⨯⨯⨯==.【答案】37.68【例 28】 已知直角三角形的三条边长分别为3cm ,4cm ,5cm ,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14) 【考点】旋转问题 【难度】3星 【题型】解答【解析】 以3cm 的边为轴旋转一周所得到的是底面半径是4cm ,高是3cm 的圆锥体,体积为2313.144350.24(cm )3⨯⨯⨯= 以4cm 的边为轴旋转一周所得到的是底面半径是3cm ,高是4cm 的圆锥体,体积为2313.143437.68(cm )3⨯⨯⨯= 以5cm 的边为轴旋转一周所得到的是底面半径是斜边上的高345 2.4⨯÷=cm 的两个圆锥,高之和是5cm 的两个圆的组合体,体积为2313.14 2.4530.144(cm )3⨯⨯⨯=【答案】30.144【巩固】如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?ABC【考点】旋转问题 【难度】3星 【题型】解答【解析】 设BC a =,AC b =,那么以BC 边为轴旋转一周,所形成的圆锥的体积为2π3ab ,以AC 边为轴旋转一周,那么所形成的圆锥的体积为2π3a b ,由此可得到两条等式:224836ab a b ⎧=⎪⎨=⎪⎩,两条等式相除得到43b a =,将这条比例式再代入原来的方程中就能得到34a b =⎧⎨=⎩,根据勾股定理,直角三角形的斜边AB 的长度为5,那么斜边上的高为2.4.如果以AB 为轴旋转一周,那么所形成的几何体相当于两个底面相等的圆锥叠在一起,底面半径为2.4,高的和为5,所以体积是22.4π59.6π3⨯=.【答案】9.6π【例 29】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)。
六年级下学期数学 圆柱的表面积和体积 应用题训练30题。后面带答案
六年级下学期数学圆柱的表面积和体积应用题训练30题。
后面带答案1、一个边长为5分米的正方形纸片卷成圆柱筒,求该圆柱的侧面积。
2、压路机的前轮是圆柱形,底面直径1.2米,轮宽1.8米。
前轮滚动一周,压过的路面的面积是多少平方米?3、压路机的前轮是圆柱形,底面直径1米,轮宽1.5米。
前轮滚动一周,压过的路面的面积是多少平方米?4、一段圆钢长4米,底面半径是5厘米,将其平均分成3段后,表面积增加了多少平方厘米?5、一个圆柱粮囤,如果它的高增加2米,表面积就增加62.8平方米,该粮囤占地多少平方米?6、在一个高为6分米的圆柱形水桶里装了半桶水,把里面的水倒出12升后,剩下的水恰好占水桶容积的30%,该水桶的底面积是多少平方分米?7、将一个横截面积为正方形的长方体削成一个最大的圆锥,已知圆锥的底面周长是6.28厘米,高为5厘米,该长方体的体积是多少立方厘米?8、一个圆柱形水池的底面直径是8米,池深2米,如果要在水池的底面和四周池壁抹上水泥,抹上水泥的面积是多少平方米?9、XXX做了一个圆柱形的抱枕,长80厘米,底面直径是18厘米,如果侧面用花布,底面用黄色的布,两种布各需要多少?10、一个圆柱形铁皮水桶(无盖),高12分米,底面直径是高的2/3,做这个水桶大约需要用多少铁皮?(用进一法,得数保留一位小数)11、将一个圆柱的侧面沿着高展开,得到一个边长是31.4厘米的正方形,求该圆柱的表面积?12、一段长2米的圆柱形木料,从一段截去0.4米厚的一段后,原木料的表面积减少了1.256平方米,原来木料的表面积是多少平方米?13、将高都是1厘米,底面半径分别为3厘米、2厘米、1厘米的三个圆柱叠成一个立体图形,求该立体图形的表面积。
14、一根2米长的圆柱形木料,横截面的半径是10厘米,沿横截面的直径垂直锯开,分成相等的两块,每块的体积和表面积各是多少?15、XXX拿了一张长方形铁皮做油桶,做油桶的师傅根据铁皮的形状和大小量了量,标上了长度(如右图),你能算一算做成的这个油桶的表面积是多少吗?16、用铁皮做一个如图所示的工件(两端不封闭),需要铁皮多少平方厘米?17、挖一个圆柱形蓄水池,底面半径是5米,深是4米,该蓄水池可蓄水多少立方米?18、一个圆柱的底面半径为2厘米,侧面展开后正好是一个正方形,该圆柱的体积是多少立方分米?19、请计算下图所示的长方体的体积,单位为分米。
圆柱圆锥表面积和体积计算应用题
圆柱、圆锥外表积和体积计算应用题知识归纳:1.圆柱的定义;侧面积、外表积和体积公式:2.圆锥的定义及体积公式:例1.一根圆柱的高是50分米,底面半径是20分米,它的外表积是多少?〔圆柱的外表积=侧面积+底面积*2,可以先求出侧面积和底面积再来求外表积〕例2.一个圆柱的底面周长是12.56米,高是6米,它的侧面积是多少平方米?〔圆柱的侧面积=底面周长*高〕例3.做一个没有盖的铁皮圆桶,高是40厘米,底面直径是40厘米。
至少需要铁皮多少平方厘米?〔计算这个无盖水桶的用料,就是求侧面积和一个底面积的和。
〕例4.一个圆柱体的侧面积是376.8平方厘米,底面半径是6厘米,这样的圆柱高是多少厘米?(圆柱的侧面积=底面周长*高,那么高=?)例5.一根圆柱形铁管的底面直径是0.4米,高是5米,涂防腐漆的面积是多少平方米?例6.一个圆柱体的底面周长是12。
56米,高是1米。
涂上顏料需要涂多少平方米?练习:1.给10节底面周长是25.12分米,长2米的圆柱形铁皮烟筒涂上防腐漆,涂漆面积是多少平方分米?2.一个圆柱形的储物罐,底面直径和高都是8厘米.它的外表积是多少?3.量得一种圆柱形茶叶盒,它的底面直径和高都是8厘米.它的外表积是多少?4.一个圆柱形不锈钢茶杯,底面半径是5厘米,高是8厘米.它的外表积是多少?5.一种圆柱形铅笔底面直径是1厘米,长是18厘米,这支铅笔的侧面积是多少平方厘米?6.一只有底无盖的圆柱形铁皮桶,底面周长为6.28分米,高为1分米做成这只铁皮桶至少需要多少铁皮?7.铁筒长1.2米,直径0.5米,如果它在马路上滚动10圈,所压路面的面积是多少平方米?8.一个圆柱体,底面半径是2厘米,侧面积是62.8平方厘米,求这个圆柱体的高是多少厘米?9.做一个无盖的铁桶,底面直径是4分米,高是5分米.(1)做一只这样的铁桶至少要用多少铁皮?(2)如果1立方分米水重0.8千克,这只铁桶可装水多少千克?10.一张长8米,宽5米的铁片,做成一个最大的圆柱,它的侧面积是多少?经典例题例1.一个圆柱形储米桶,底面直径是20米,高4.5米.这个储米桶的容积是多少立方米?[圆柱的体积(容积)=底面积*高]例2.一个圆柱形粮囤的底面周长是9.42米,高是2米,每立方米小麦重800千克,这个粮囤能装小麦多少千克?例3.一个圆柱形茶叶盒底面半径是10厘米,高是15厘米.它的体积是多少立方厘米?例4.把一块长10厘米,宽15.7厘米,高10厘米的长方体橡皮泥,捏成直径是2厘米的圆橡皮泥条,橡皮泥条长多少?例5.一个圆柱体的体积是640立方厘米,底面积是80平方厘米,它的高是多少?例6.有一个圆柱形水桶,底面直径2分米,盛水未满,放入一个铁球,当铁球完全沉入水中之后,水面升高3厘米,求铁球的体积?例7.把棱长是8厘米的正方体木块,削成一个最大的圆柱,圆柱体的体积是多少?例8.把一根8米长的圆柱木截成四段,外表积比原来增加75.36平方厘米,求原木材的体积?例9.一只钢管,长100厘米,外直径20厘米,内直径是16厘米.每立方厘米钢重8.2克.这只钢管重多少千克?1.一只圆柱形的储油罐的容积是9.42立方分米,直径是2分米,这个储油罐的高是多少分米?2.一个圆柱形油桶,底面半径是20厘米,高是50厘米,这个油桶能装多少毫升的油?3.一个圆柱形的茶叶盒,底面周长是18.84厘米,高是15厘米,它的体积是多少立方厘米?4.一把铁锤,底面积是20平方厘米,高是4厘米.它的体积是多少立方厘米?5.一个棱长是6厘米的正方体木块,削成一个体积最大的圆柱体,这个圆柱体的体积是多少立方厘米?6.一个圆柱形粮囤,底面的内直径是8米,高为2.5米,如果每立方米大米重550千克,这个粮囤能装多少吨大米?7.把2个长宽高分别是8厘米,5厘米,4厘米的长方体铁块,铸成一个底面积为40平方厘米的圆柱体,它的高是多少厘米?8.将一个长是6厘米的铁圆柱,切割成了节小圆柱体后,外表积比原来增加了20平方厘米.每立方厘米铁重7.8克,这两节铁圆柱共重多少克?9.一根钢管的外直径是20厘米,内直径是10厘米,这根钢管长2米,钢管每立方厘米重7.8克,这根钢管重多少千克?经典例题例1.一个圆锥形容器,它的体积是113.04立方厘米,底面半径是3厘米.这个容器的高是多少厘米?例2.一个圆锥形粮囤,测得底面周长是6.28米,高1.5米,如果每立方米稻谷重800千克,这个粮囤能装稻谷多少千克?例3.一个圆柱形钢材,底面半径是2分米,高是4分米,将它铸成底面半径是4分米的圆锥,圆锥高多少分米?1.一个圆锥形漏斗,体积是9.42立方米,底面半径是3米,高是多少米?2.一个圆锥形漏斗,量得底面周长是25.12分米,高是15分米,这个圆锥形钢材的体积是多少?3.一堆圆锥形的稻谷,底面积2.4平方米,高0.9米,稻谷每立方米重1.7吨,这堆稻谷重多少吨?4.一个圆锥形沙堆的体积是6.4立方米,高1.2米,这个沙堆的底面积是多少平方米?5.一个圆锥形米堆,高1.5米,底面半径为2米,每立方米的大米重1.7吨6.一种铜制圆锥体,底面半径是2厘米,高是4厘米,如果每立方厘米铜重8.9克,求它的重量.7.一个棱长是5厘米的正方体容器容积等于一个底面积是15平方厘米的锥形容器的容积,这个锥形容器的高是多少厘米?8.一个圆锥体,底面直径是8米,高是直径的1/4,这个圆锥体的体积是多少立方米?9.一个圆锥形的谷堆,底面积是31.4平方米,高是1.2米,把这些稻谷铺2厘米厚晒在10米宽的路上,能铺晒多少米?10.一个圆锥形沙堆,测得底面直径是4米,高是0.9米,求:(1)这堆沙子的体积是多少立方米?(2)如果每立方米沙子重1.7吨,这堆沙子重多少吨?走近奥数1.一段圆木长1.5米,锯成三段后,它的外表积增加25.12厘米,这段圆木的体积是多少?2.一个圆柱体笔筒的外表积是1884平方厘米,底面半径是10厘米,它的高是多少厘米?3.底面直径是4米,高是6米的一个圆柱,沿着底面直径把圆柱切成两半,求这个圆柱的外表积增加多少?4.一个圆柱钢材,底面半径是6分米,高是1米,切成3个小圆柱,外表积增加了多少?5.王海家有一个长方体鱼缸,长30厘米,宽20厘米,水深15厘米,妈妈又买来一个底面半径为10厘米圆柱形的新鱼缸,如果把方鱼缸盛满水倒入新鱼缸,新鱼缸内还有1/4的空间,这个圆柱形鱼缸的高是多少?6.一个装有水的长方体水桶底面积是2平方分米,水中放一个底面直径为6厘米,高为30厘米的圆锥体,完全浸没在水中,如果把圆锥体从水桶中取出来,水面会下降多少厘米?7.一个圆柱形鱼缸底面直径是10厘米,把一块铁块放入这个容器的水中,水面上升了2厘米,这块铁块的体积是多少?。
圆柱、圆锥的表面积和体积练习试题
圆柱、圆锥的表面积与的体积练习题3、一个圆柱形奶粉盒的谋面半径是5厘米,高是20厘米,它的容积是多少立方厘米?4、把一块棱长12分米的正方体木料加工成一个体积最大的圆柱体,这个圆柱体的体积是多少?5、计算下面各圆柱体的体积。
A、底面积是1.25平方米,高3米。
B、底面直径和高都是8分米.C、底面半径和高都是8分米。
D、底面周长是12。
56米,高2米。
6、一个圆柱形的油桶,从里面量底面半径直径是4分米,高3分米,做这个油桶至少要用多少平方分米的铁皮?如果1升柴油重0。
82千克,这个油桶能装多少千克的柴油?(得数保留两位小数)7、一个圆柱形水池的容积是43.96立方米,池底直径4米,池深多少米?8、一口周长是6.28米的圆柱形水井,它的深是10米,平时蓄水深度是井深的0.8倍,这口井平时的水量是多少立方米?9、一个长8分米,宽6分米,高4分米的长方体与一个圆柱体的体积相等,高相等,WORD格式整理版这个圆柱的底面积是多少?10、一段圆柱形钢材,长50厘米,横截面半径是4厘米,如果每立方厘米钢是7.9克,这段钢材的重量是多少千克?(得数保留一位小数)11、求下面图形的表面积和体积(单位:分米)12、有一段底面是环形的钢管,外圆直径是40厘米,内圆直径是20厘米,这根钢管长250厘米,求这根钢管的体积是多少立方厘米?圆柱的体积练习二1、一个圆柱的底面半径是6厘米,高是2分米,求这个圆柱的体积。
2、小刚有一个圆柱形的水杯,水杯的底面半径是5厘米,高是10厘米,有资料显示:每人每天的正常饮水量大约是1升,小刚一天要喝几杯水?3、一个圆柱形水桶,底面直径和高都是40厘米,用这个水桶容积的85%装水,每升水重1千克,桶中的水大约有多少千克?4、一个底面半径是10米的圆柱形蓄水池,能蓄水2512立方米,若再挖深2米,可蓄水多少立方米?5、一个圆柱形油桶,内底面直径是40厘米,高是50厘米,它的容积是多少升?如果1升柴油重0.85千克,这具油桶可装柴油多少千克?(得数保留整千克)6、一个圆柱形玻璃杯底面半径是10厘米,里面装不水,水的高度是12厘米,把一小WORD格式整理版WORD 格式整理版块铁块放进杯中,水上升到15厘米,这块铁块重多少克?(每立方厘米铁重7。
圆柱和圆锥应用题练习(六年级下册)
圆柱和圆锥应用题练习(六年级下册)(1)一个圆柱形蓄水池,直径10米,深2米。
这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?(2)做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?(3)压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?(4)大厅里有10根圆柱,圆柱底面直径1米,高8米。
在这些圆柱的表面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?(5)一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?(6)把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?(8)一个蓄水池是圆柱形的,底面面积为31.4平方分米,高2.8分米,这个水池最多能容多少升水?(9)一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?(保留整数)(10)一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶的装满了水,求水面高是多少分米?(11)一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少(12)把一根长1.5米的圆柱形钢材截成三段后,如图,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?(13) 把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?(15)砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?(16)一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重1.5吨,这堆沙重多少吨?(17)一个无盖的圆柱形水桶,底面直径20厘米,高30厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)(18)大厅内有8根同样的圆柱形木柱,每根高5米,底面周长是3.2米,如果每千克油漆可漆4.5平方米,漆这些木柱需油漆多少千克?(19)一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04厘米厚,可以铺多少米长?(20)一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱表面积与圆柱圆锥体积实际应用练习题精选
一、深化练习
1、一个圆柱的体积是94.2立方cm,底面直径是4cm,它的高是多少?
2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?
3、用铁皮制10节同样大小的通风管,每节长5dm,底面直径1.2dm,至少需要多少平方dm铁皮?
4、一种压路机的滚筒是圆柱形的筒宽1.5米,直径是0.8米。
这种压路机每分钟向前滚动5周。
这种压路机1分钟压路多少平方米?
5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米, (1)要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?
(2)这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨) 6、做一个底面直径是4dm,高是5dm的圆柱形铁皮油桶, (1)做这个铁皮油桶,至少要用铁皮多少平方dm?( 得数用
进一法保留整平方dm)
(2)这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)
7、一根长4米,底面直径4cm的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方cm?
8、只列式不计算:用一块边长是9.42dm的正方形铁皮配上一个地面,做成一个圆柱形铁皮水桶。
(1)这个水桶的底面半径是多少?
(2)这个水桶的侧面积是多少?
(3)这个水桶最多能容纳多少升水?
9、一个水杯从里面量底面直径10cm,高15cm,杯里的水面离杯口5cm,这个杯子有水多少升?
10、有两个等底的圆柱,第一个圆柱的高是第二个圆柱高的4 /5,第一个圆柱的体积是3.2立方cm,第二个圆柱比第一个圆柱多多少立方cm?
11、一个零件,底面直径5cm,高10cm,沿着它的一条底面直径往下切,切成相同大小的两份,(1)总面积比原来增加了多少平方cm?
(2)每半个零件的表面积是多少?体积是多少?
12、一个圆柱,表面积是345.4平方cm,底半径是5cm,求
它的高。
13、把一个高为5cm的圆柱从直径处沿高剖成两半圆柱,这两个半圆柱的表面积比原来增加80平方cm,求原来圆柱的表面积。
14、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个
近似长方体,这个长方体的长是6.28cm,高是5cm,求它的体积。
15、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的宽是4cm,高是5cm,求它的体积。
16、把一个圆柱底面平均分成若干个扇形,沿高切开拼成一个近似长方体,这个长方体的底周长是41.4cm,高是5cm,求它的体积。
17、一个圆柱的侧面积是125.6平方cm,半径是8cm,求它的体积。
18、用一张长8cm,宽6cm的长方形,旋转形成圆柱,求形成的圆柱的体积。
19、用一张长12.56cm,宽6.28cm的长方形卷形成圆柱,求卷成的圆柱的体积。
20、一个长方体木块,长10cm宽8cm高4cm,把它削成一个圆柱,求削成圆柱体积最大是多少?
21、把一个长2米的圆柱木料戴成4段,表面积增加了56.52平方cm,求原来木料的体积
22、一个圆柱高为15cm,把它的高增加2cm后表面积增加25.12平方cm,求原来圆柱的体积。
23、一个圆柱高20cm,如果把高减少3cm,它的表面积就减少31.68平方cm,求原来圆柱的体积。
24、把一个底半径为5cm的圆柱铁块放入一个底半径10cm,
高14cm的容器里,水面上升了3cm,求这个圆柱铁块的体积。
25、把一个底半径为5cm的圆柱铁块放入一个底半径10cm,高14cm的容器里,水面上升了3cm,求这个圆柱铁块的高。
26、甲乙两个圆柱,底半径比是3:2,相等,它们的体积比是多少?
27、甲乙两个圆柱,底面积相等,高是比是4:5,它们的体积比是多少?
28、甲乙两个圆柱,底半径比是2:3,高的比是4:5,它们的体积比是多少?
29、甲乙两个圆柱,体积比是16:25,底半径比是4:5,体积比是多少?
30、甲乙两个圆柱体积是5:6,高的比是2:3,求它们的底面积比。
六年级圆柱表面积和体积提高练习
一、表面积变化
1、一个圆柱的高减少2cm侧面积就减少50.24平方cm,它的体积减少多少立方cm?
2、一个圆柱的高增加3dm,侧面积就增加56.52平方dm,它的体积增加多少立方dm?
3、一个圆柱的侧面展开是一个正方形。
如果高增加2cm,表面积增加12.56平方cm。
原来这个圆柱的侧面积是多少平方cm?
4、一个圆柱的侧面展开是一个正方形。
如果高减少3dm,表面积减少94.2平方dm。
原来这个圆柱的体积是多少立方dm?
二、拼、切圆柱
1、把一个高是6dm的圆柱,沿着底面直径竖直切开,平均分成两半,表面积增加48平方dm。
原来这个圆柱的体积是多少立方dm?
2、把两个完全一样的半个圆柱合并成一个圆柱,底面半径是3cm,表面积减少72平方cm。
现在这个圆柱的侧面积是多少平方cm?
3、把一个长3dm的圆柱,平均分成两段圆柱,表面积增加6.28平方dm。
原来这个圆柱体积是多少立方dm?
4、把3完全一样的圆柱,连接成一个大圆柱,长9cm,表面积减少12.56平方dm。
原来每个圆柱的体积是多少立方cm?
三、加工圆柱
1、一个正方体棱长是4dm,把它削成一个最大的圆柱,削去的体积是多少?
2、一个正方体棱长20cm,把它削成一个最大的圆柱,这个圆柱的表面积是多少平方cm?
3、一个长方体,长8dm,宽8dm,高12dm。
把它削成一个最大的圆柱,这个圆柱的体积为多少立方dm?
4、一个长方体,长8cm,宽6cm,高8cm。
把它削成一个最大的圆柱,这个圆柱体积是多少立方cm?
四、旋转圆锥
1、一个直角三角形,两条直角边分别是6cm和9cm,沿一条直角边旋转一周后,得到一个圆锥体,求圆锥体的体积是多少?
2、一个直角三角形,两条直角边分别是6cm和10cm,沿斜边旋转一周后,得到一个旋转体,求旋转体的体积是多少?
五、综合练习:
1、在一只底面半径为10cm的圆柱形玻璃容器中,水深8cm,要在容器中放入长和宽都是8cm,高15cm的一块铁块。
(1)如果把铁块横放在水中水面上升多少cm?
(2)如果把铁块竖放在水中,水面上升多少cm?
2、一个圆柱体的高和底面周长相等。
如果高缩短2cm,表面积就减少12.56平方cm,求这个圆柱的表面积。
3、一个长方形的长是5cm,宽是2cm,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱体积最大是多少立方cm?
4、一根圆柱形木材长2米,把它截成相等的4段后,表面积增加了18.84平方cm。
截成后每段圆木的体积是多少立方cm?
5、底面直径是20cm的圆钢,将其截成两段同样的圆钢,两段表面积的和为7536平方cm,原来圆钢的体积是多少立方cm?
6、把一根圆柱形木材沿底面直径切开成两个半圆柱体,已知一个剖面的面积是960平方cm,半圆柱的体积是3014.4立方cm,求原来圆柱形木材的体积和侧面积。
7、一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方cm。
如果圆锥体的底面半径是2cm,这个圆锥体的高是多少cm?
8、一个菱形的两条对角线分别为4cm和6cm,以菱形的对角线为轴旋转,转成的立体图形的体积是()立方cm
或()立方cm。
9、一个圆柱体和一个圆锥体的体积相等,它们底面积的比是3:5,圆柱的高8cm,圆锥的高是()cm。