第十八章 驱动桥

合集下载

驱动桥的类型、组成和功用

驱动桥的类型、组成和功用

双 级 主 减 速 器
轮边减速器
轮边减速器一般作二级减速 器,而结构一般为行星轮机构, 可以获得大传动比,而且结构紧 凑。齿圈6与半轴套管1固定在一 起,半轴2传来的动力经太阳轮3, 行星轮4,行星轮轴5及行星架7传 给轮毂。 其中太阳轮是主动件, 行星架是从动件,齿圈不动,故 其为减速机构。 但结构较复杂,制造成本高,所 以一般用于大型货车上。也有采 用一对内外齿啮合圆柱齿轮组成 轮边减速器的,一般用于大型客 车或越野车。
一、齿轮式差速器
行星轮 行星架
中心轮 齿圈
汽车上广泛采用对称式锥齿轮差速器,如下图
转矩传递路线: (1个输入端,2个输出端)
差速器壳→行星轮轴→行星轮→2个半轴齿轮



(主减速器从动齿轮)
(半轴)(半轴)
• 转速
n1 + n2 = 2 n0
—左、右半轴齿轮转速之和等于2倍差 速器壳转速。
差速器、半轴等传到驱动轮,实现降速赠矩; 2)通过主减速器圆锥齿轮副改变转矩的传动方向; 3)通过差速器实现两侧车轮差速作用,保证内、外
侧车轮以不同转速转向。 驱动桥的类型有断开式驱动桥和非断开式驱动桥。
• 类型:非断开式、断开式
断开式驱动桥
减振器 弹性元件
半轴
主减速器
非断开式车桥示意图
➢单速式
按传动比的档数分
➢双速式
按齿轮形式分
➢圆柱齿轮式 ➢圆锥齿轮式 ➢准双曲面齿轮式
a、行星齿轮减速器;b、定轴齿轮减速器
主减速器
采用准双曲面齿轮结构紧凑,啮合平稳, 噪声小。润滑靠飞溅取油,再通过油道 输送到各润滑部位。
主减速器的调整装置
为了减少主减速器内齿轮的冲击噪声,并 使轮齿沿其长度方向的磨损比较均匀,需要 保证主动和从动齿轮之间正确位置关系,为 此在主减速器内设有啮合调整装置,还要使 这些齿轮有足够的支承刚度,以保持在传动 过程中不至于发生较大变形而影响正常啮合 轴承预紧度的调整目的:提高支承刚度 装置:调整垫片、波形套(主动锥齿轮)

减速增扭

减速增扭
双 速 主 速 器 结 构 示 意 图
圆锥齿轮式(螺旋齿) 圆锥齿轮式(螺旋齿)
4、齿轮付结构形式分 、
准双曲面齿轮式 圆柱齿轮式(斜齿) 圆柱齿轮式(斜齿)
主速器对汽车使用性能影响较大的两个参数: 主速器对汽车使用性能影响较大的两个参数: 主减速比——影响汽车的动力性 影响汽车的动力性 主减速比 最小离地间隙——影响汽车的通过性 影响汽车的通过性 最小离地间隙
某些 4×2 × 重 型 货车
a
b
单速式
i 1=
6
保持架 行星齿轮 外接合齿圈 桥壳
Z7 Z6
7
接合套
保持架接合齿圈 内接合齿圈 从动齿轮齿圈
Z7 Z1 i2= i1× i行= (1+ ) Z6 Z2
六、贯通式主减速器
主要用于多轴驱动的越野车上。 主要用于多轴驱动的越野车上。 前面(或后面)两驱动桥的传动轴是串联的, 前面(或后面)两驱动桥的传动轴是串联的, 传动轴从距 分动器较近的驱动桥中穿过,通往另一驱动桥。 分动器较近的驱动桥中穿过,通往另一驱动桥。这种布置称 贯通式驱动桥。 为贯通式驱动桥。
型汽车(圆柱齿轮— 锥齿轮式)(越野车) )(越野车 延安 SX2150 型汽车(圆柱齿轮 锥齿轮式)(越野车)
第一级: 第一级:斜齿园柱齿轮传动 i1=1.19 第二级: 第二级:准双曲面齿轮传动 i2= 5.429
i总= i1 ×i2 = 6
第二节 差速器
汽车转弯行驶时,两侧车轮在同一时间内驶过的距离等, 汽车转弯行驶时,两侧车轮在同一时间内驶过的距离等,外侧车轮驶 过的距离较内侧车轮长。若两侧车轮用一根轴刚性连接的话, 过的距离较内侧车轮长。若两侧车轮用一根轴刚性连接的话,即两轮只 能以同一转速转动,所以当两轮转弯时, 能以同一转速转动,所以当两轮转弯时, 外侧车轮边滚动,边滑移。 外侧车轮边滚动,边滑移。 内侧车轮边滚动,边滑转。 内侧车轮边滚动,边滑转。 滑动会使轮胎磨损加剧,转向困难,消耗发动机动力。所以在正常行使下, 滑动会使轮胎磨损加剧,转向困难,消耗发动机动力。所以在正常行使下, 应尽量避免车轮滑动。为消除车轮转弯行驶时的滑动现象,在车轮间设置轮 应尽量避免车轮滑动。为消除车轮转弯行驶时的滑动现象, 间差速器。 间差速器。

驱动桥的构造与维修

驱动桥的构造与维修

驱动桥的构造与维修驱动桥的认知一、驱动桥功用、组成和分类1.驱动桥功用驱动桥的位置如图5-1所示,其功用是将由万向传动装置传来的发动机转矩传给驱动车轮,并经降速增矩、改变动力传动方向,使汽车行驶,而且允许左右驱动车轮以不同的转速旋转。

图5-1 驱动桥在汽车上的安装位置及组成2.驱动桥的组成驱动桥是一般由主减速器、差速器、半轴和桥壳等组成,如图5-2所示。

驱动桥的主要零部件都在装在驱动桥的桥壳中。

图5-2 驱动桥的组成●3.驱动桥的分类●按照悬架结构的不同,驱动桥可以分为整体式驱动桥和断开式驱动桥,整体式驱动桥又称为非断开式驱动桥。

●整体式驱动桥与非独立悬架配用。

其驱动桥壳为一刚性的整体,驱动桥两端通过悬架与车架或车身连接,左右半轴始终在一条直线上,即左右驱动轮不能相互独立地跳动。

当某一侧车轮通过地面的凸出物或凹坑升高或下降时,整个驱动桥及车身都要随之发生倾斜,车身波动大。

●断开式驱动桥与独立悬架配用。

其主减速器固定在车架或车身上,驱动桥壳制成分段并用铰链连接,半轴也分段并用万向节连接。

驱动桥两端分别用悬架与车架或车身连接。

这样,两侧驱动车轮及桥壳可以彼此独立地相对于车架或车身上下跳动。

●二、驱动桥主要部件的构造●1.主减速器●(1)主减速器的功用。

主减速器的功用是:将发动机转矩传给差速器;在动力的传动过程中要将转矩增大并相应降低转速;对于纵置发动机,还要将转矩的旋转方向改变90°。

●(2)主减速器的类型。

按参加传动的齿轮副数目,可分为单级式主减速器和双级式主减速器。

有些重型汽车又将双级式主减速器的第二级圆柱齿轮传动设置在两侧驱动车轮附近,称为轮边减速器。

●按主减速器传动比个数,可分为单速式和双速式主减速器。

单速式的传动比是固定的,而双速式则有两个传动比供驾驶人选择。

●按齿轮副结构形式,可分为圆柱齿轮式(又可分为定轴轮系和行星轮系)主减速器和圆锥齿轮式(又可分为螺旋锥齿轮式和准双曲面锥齿轮式)主减速器。

驱动桥的工作原理

驱动桥的工作原理

驱动桥的工作原理驱动桥处于动力传动系的末端,其基本功能有如下三个方面:1、增大由传动轴或变速器传来的转矩,并将动力传到驱动轮,产生牵引力。

2、通过差速器将动力合理的分配给左、右驱动轮,使左右驱动轮有合理的转速差,使汽车在不同路况下行驶。

3、承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。

驱动桥的组成:驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。

1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴;6-主减速器从动齿轮;7-主减速器主动锥齿轮对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。

通常称为双级减速器。

双级减速器有两组减速齿轮,实现两次减速增扭。

A、在主减速器内完成双级减速为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。

二级齿轮副是斜齿圆柱齿轮。

主动圆锥齿轮旋转,带动从动圆银齿轮旋转,从而完成一级减速。

第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。

因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动B、轮边减速:将二级减速器设计在轮毂中,其结构是半轴的末端是小直径的外齿轮,周围有一组行星齿轮(一般5个),轮毂内有齿包围这组行星齿轮,以达到减速驱动的目的。

优点:a、由于半轴在轮边减速器之前,所承受扭矩减小,减速性能更好(驱动力加大);b、半轴、差速器等尺寸减小,车辆通过性能提高。

缺点:a、结构庞大,本钱增加。

b、载质量大、平顺性小(故只用于重型车)。

差速器差速器用以毗连左右半轴,可以使两侧车轮以不同角速度旋转同时传递扭矩。

保证车轮的正常转动。

目前国产轿车及别的类汽车基本都采用了对称式锥齿轮普通差速器。

对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成。

项目5 驱动桥构造

项目5 驱动桥构造



吉 利 大 学 汽 车 学 院 汽 车教 研 室



汽车构造CAI课件
螺旋锥齿轮、等 高齿锥齿轮
双曲面锥齿轮



吉 利 大 学 汽 车 学 院 汽 车教 研 室



汽车构造CAI课件
主减速器的调整
(一)轴承预紧度的调整(先)
(二)锥齿轮啮合的调整(后)



吉 利 大 学 汽 车 学 院 汽 车教 研 室



汽车构造CAI课件
桑塔纳轿车的主减速器
从动锥齿轮
半轴齿轮
主动锥齿轮 行星齿轮 差速器壳 行星齿轮轴
圆锥轴承



吉 利 大 学 汽 车 学 院 汽 车教 研 室



汽车构造CAI课件

分类:螺旋锥齿轮、等高齿锥齿轮、双曲 面锥齿轮 准双曲面齿轮 特点: 主从动锥齿轮轴线不相交,主动锥齿 轮轴线低于或高于从动锥齿轮。 优点: 同时啮合齿数多,传动平稳,强度大。 缺点: 啮合齿面的相对滑动速度大, 齿面压 力大,齿面油膜易被破坏。应采用专用含 防刮伤添加剂的双曲面齿轮油。
2.组成:
桥 壳—是主减速器、差速器等传动装臵的安装基础。 主减速器—降低转速、增加扭矩、改变扭矩的传递方向。 差 速 器—使两侧车轮不等速旋转,适应转向和不同路
面。


轴—将扭矩从差速器传给车轮。
吉 利 大 学 汽 车 学 院 汽 车教 研 室





汽车构造CAI课件
3.结构类型
1)整体式驱动桥: (非断开式)

汽车构造(下)复习重点

汽车构造(下)复习重点

汽车构造(下)目录第十三章汽车传动系统概述第十四章离合器第十五章变速器与分动器第十七章万向传动装置第十八章驱动桥第十九章汽车行驶系统概述第二十章车架和承载式车身第二十一章车轮和车桥第二十二章悬架第二十三章汽车转向系统第二十四章汽车制动系统汽车构造(下)复习重点第十三篇.传动系传动系功能1.实现汽车增矩减速——主减速器2.实现汽车变速——变速器3.实现汽车倒车4.实现汽车差速——差速器5.必要时中断传动系统的动力传递——离合器传动系组成传动系(由离合器、变速器、传动轴和万向节组成的万向传动装置,以及安装在驱动桥壳中的主减速器、差速器和半轴组成。

)★汽车传动系主要是由离合器或液力变矩器、变速器、万向传动装置和驱动桥等装置组成。

传动系布置方案1.前置后轮驱动(FR)2.前置前轮驱动(FF)3.后置后轮驱动(RR)4.中置后轮驱动(MR)5.全轮驱动(nWD)★传动系类型(按传动元件的特征)①机械式②液力式③电力式第十四章(摩擦)离合器第一节摩擦离合器功用摩擦离合器功用①保证平稳起步②保证换挡时工作平顺③防止传动系过载摩擦离合器组成★摩擦离合器基本上是由主动部分、从动部分、压紧机构和操纵机构等四个部分构成的。

摩擦离合器基本类型按从动盘数目:按压紧弹簧结构形式:单盘离合器双盘离合器膜片弹簧离合器螺旋弹簧离合器推式膜片弹簧离合器拉式膜片弹簧离合器周布弹簧离合器中央弹簧离合器离合器的主、从动部分常处于接合状态。

摩擦离合器所能传递的最大转矩取决于摩擦面之间的最大静摩擦力矩。

在设计离合器时,除需保证传递发动机最大转矩外,还应满足_分离彻底、结合柔和及从动部分的转动惯量尽可能小.散热良好等性能要求。

1.离合器的主、从动部分常处于分离状态。

()改正:离合器的主、从动部分常处于接合状态2.离合器的摩擦衬片上粘有油污后,可得到润滑。

()改正:离合器的摩擦衬片上粘有油污后,会使离合器打滑而使其传动性能下降选择题(有一项或多项正确)1.离合器的主动部分包括(ABC )。

第十八章驱动桥分解

在重型载货车、越野汽车或大型客车上,当要求传动系的传动比值较大, 离地间隙较大时,往往在两侧驱动轮附近再增加一级减速传动,称为轮边减 速器,轮边减速也可以看作是主减速器的第二级传动。
• 特点:半轴传递的转矩小;主减速器尺寸小,离地间隙大或质心低;
结构复杂成本高。 • 用于:重型汽车、越野车、大型客车。 • 类型:行星齿轮式 、圆柱齿轮式。
第二篇 汽车传动系
第二篇 汽车传动系
2)断开式驱动桥
当驱动轮采用独立悬架时,两侧的驱 动轮分别通过弹性悬架与车架相连,两车 轮可彼此独立地相对于车架上下跳动。与
断开式驱动桥
减振器 弹性元件 半轴 主减速器
此相对应,主减速器壳固定在车架上,半
轴与传动轴通过万向节铰接,传动轴又通 过万向节与驱动轮铰接,这种驱动桥称为 断开式驱动桥。
车轮 摆臂
摆臂轴
第二篇 汽车传动系
第二篇
汽车传动系
第一节 主减速器(Final Drive)
• 作用:
减速增矩;改变运动方向。 将主减速器置于尽量靠近驱动轮处,以减小传动件的转矩载荷。
• 分类:
按传动级数分为: 单级式 、双级式 ; 按传动比的数量分为: 单速式、双速式; 按齿轮形式分为: 圆柱齿轮式, 圆锥齿轮式, 准双曲面式;
第二篇
汽车传动系
第二节 普通圆锥齿轮差速器(Differential)
作用:
向两侧驱动轮传递转矩。 使两侧驱动轮以不同转速转动,以满足转向等情况下内外驱动轮要以 不同转速转动的需要。 基本工作原理:
第二篇
汽车传动系
轮间差速器:轮间差速,向同一车桥上两侧的驱动轮输出动力。当汽车
转弯行驶或在不平路面上行驶时,使左右驱动轮以不同的转速滚动,以 保证两侧驱动车轮作纯滚动运动。 轴间差速器:桥间差速,向两个驱动桥输出动力。

汽车驱动桥PPT课件


主减速器为何不采用直齿圆锥齿轮传动?
第一节 主减速器
一、单级主减速器
主减速器采用螺旋锥齿轮传动的优点
在同样传动比下,采用螺旋 锥齿轮传动的主减速器结构较采 用直齿传动的主减速器的结构紧 凑,且运转平稳,噪声较小。
主减速器采用准双曲面齿轮传动的优点
第一节 主减速器
一、单级主减速器
主减速器采用准双曲面齿轮传动的优点
= p1
p2
第二节 差速器
四、工作原理
(1)当汽车行驶在平 直路面上时,两侧车轮 所受阻力相同时,行星 齿轮只随行星架绕差速 器旋转轴线公转。
r4 AC
r
差速器壳
行星齿轮
B
半轴齿轮
ω0 ×r
通常采用飞溅润滑。
第一节 主减速器
二、双级主减速器
主传动 比较大的 主减速器 通常采用 两对齿轮 传动,以 提高刚度、 增大汽车 最小离地 间隙。
第一节 主减速器
二、双级主减速器
第一节 主减速器
二、双级主减速器
第一节 主减速器
二、双级主减速器
双级主减速器的调整装置
பைடு நூலகம் 第一节 主减速器
二、双级主减速器 双级主减速器的调整装置
单级主减速器通常由一对螺旋 锥齿轮或一对准双曲面齿轮组成, 其主减速比在3.5~6.5之间,结构 简单,重量轻、体积小、传动效率 高,在轿车和中、轻型货车上应用 最多。如BJ2020、EQ1090E采用的 都是单级主减速器。
第一节 主减速器
一、单级主减速器
从动齿轮
主动齿轮 壳体
第一节 主减速器
一、单级主减速器
工作平稳性好,齿轮的弯曲 强度和接触强度高。具有主动齿 轮的轴线可相对从动齿轮轴线偏 移的特点,从而可以降低车身重 心高度,提高汽车行驶稳定性。

汽车构造第章驱动桥


解放CA1091型汽车驱动桥即为双级主减 速器,其构造如图18-11所示。
16
2024/9/29
17
主动锥齿轮与轴制成一体,采 用悬臂式支承。一般双级主减 速器中,主动锥齿轮轴多用悬 臂式支承旳原因有两点:一是 第一级齿轮传动比较小,相应 旳从动锥齿轮直径较小,因而 在主动锥齿轮旳外端要在加一 种支承,布置上很困难;二是 因传动比较小,主动锥齿轮即 轴颈尺寸有可能作旳较大,同 步尽量将两轴承旳距离加大, 一样可得到足够旳支承刚度。
28
一、齿轮式差速器
▪ 齿轮式差速器有 圆锥齿轮式(图 18-24a,b)和 圆柱齿轮式(图 18-24c)两种。 按两侧旳输出转 矩是否相等,齿 轮差速器有对称 式(等转矩式) 和不对称式(不 等转矩式)两类。
2024/9/29
29
2024/9/29
目前,汽车上广泛应用旳是对称式锥齿轮差速器,其构造如图1825所示。对称式锥齿轮轮间差速器由圆锥行星齿轮,行星齿轮轴(十字 轴),圆锥半轴齿轮和差速器壳等构成。
《汽车构造》电子教案
第十八章 驱动桥
2024/9/29
1
第十八章 驱动桥
2024/9/29
▪ 驱动桥由主减速器、差速器、半轴和驱动桥壳等构成。其功用是:①将 万向传动装置传来旳发动机转矩经过主减速器,差速器,半轴等传到驱 动车轮,实现降速、增大转矩;②经过主减速器圆锥齿轮副变化转矩旳 传递方向;③经过差速器实现两侧车轮差速作用,确保内外侧车轮以不 同转速转向。
24
2024/9/29
图18-21为延安SX2150型6 6越野汽车旳贯穿式双级主减速器。第
一级是斜齿圆柱齿轮传动(齿轮8和1),传动比为1.19。第二级是准双曲面 传动(齿轮15和13),传动比为5.429。

《汽车构造》底盘部分复习题

《汽车构造》底盘部分复习题第十三章汽车传动系统概述一、简答题1.简要说明传动系的作用。

减速增扭;变速变扭;实现倒车;必要时中断动力传递;必要时使驱动轮差速。

第十四章离合器一、单项选择题2.<3.离合器分离轴承与分离杠杆之间的间隙是为了(D)4.A.实现离合器踏板的自由行程B.减轻从动盘磨损5.C.防止热膨胀失效D.保证摩擦片正常磨损后离合器不失效6.离合器的从动部分包括(A)A.从动盘B.离合器盖C.压盘 D.压紧弹簧7.离合器从动部分转动惯量尽可能小的目的是(B )A.增大输出转矩B.减轻换挡冲击C.降低工作温度`D.防止传动系过载8.摩擦离合器所能传递的最大转矩取决于(B )9.A.摩擦面的数目B.摩擦面间的最大静摩擦力矩10.C.摩擦面的尺寸D.压紧力11.离合器的主动部分包括(C )A.从动盘B.扭转减震器C.离合器盖D.压紧弹簧12.东风EQ1090E型汽车离合器的分离杠杆支点采用浮动销的主要目的是( C )A.提高强度B.利于拆装(C.避免运动干涉 D.节省材料二、填空题13.为避免共振,缓和传动系所受的冲击载荷,多数汽车在离合器上装有扭转减震器。

14.一般汽车变速器第一轴的前端与离合器的从动盘毂相连。

15.弹簧压紧的摩擦离合器按压紧弹簧形式的不同可分为螺旋弹簧离合器和磨片弹簧离合器。

16.离合器踏板的自由行程过小会造成离合器的传力性能下降。

三、名词解释17.离合器踏板的工作行程与离合器摩擦面之间的分离间隙相对应的离合器踏板行程。

18.;19.离合器自由间隙离合器处于正常接合状态时,分离杠杆内端与分离轴承之间的间隙。

20.离合器踏板的自由行程为保证离合器在从动盘正常磨损后仍可处于完全接合状态,在分离轴承和分离杠杆处留有一个间隙,为了消除这个间隙所需的离合器踏板行程称为自由行程。

四、简答题21.为什么离合器的从动盘钢片要开有径向切槽并做成波浪状的开槽的目的:便于散热;避免从动盘钢片受热后发生拱曲变形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八章驱动桥
一、驱动桥的组成、功用及结构类型
1.驱动桥的组成
驱动桥由主减速器、差速器、半轴、万向节、驱动桥壳(或变速器壳体)和驱动车轮等零部件组成。

2.驱动桥的功用
1)通过主减速器齿轮的传动,降低转速,增大转矩;
2)主减速器采用锥齿轮传动,改变转矩的传递方向;
3)通过差速器可以使内外侧车轮以不同转速转动,适应汽车的转向要求;
4)通过桥壳和车轮,实现承载及传力作用。

3.结构类型
1)非断开式驱动桥
当车轮采用非独立悬架时,驱动桥采用非断开式。

其特点是半轴套管与主减速器壳刚性连成一体,整个驱动桥通过弹性悬架与车架相连,两侧车轮和半轴不能在横向平面内做相对运动。

非断开式驱动桥也称整体式驱动桥。

2)断开式驱动桥
当驱动轮采用独立悬架时,两侧的驱动轮分别通过弹性悬架与车架相连,两车轮可彼此独立地相对于车架上下跳动。

与此相对应,主减速器壳固定在车架上,半轴与传动轴通过万向节铰接,传动轴又通过万向节与驱动轮铰接,这种驱动桥称为断开式驱动桥。

第一节主减速器
一、主减速器的功用、结构型式和常用齿轮型式
1.主减速器的功用
1)降低转速,增大转矩;
2)改变转矩旋转方向;
2.结构型式
1)按参加减速传动的齿轮副数目分,有单级主减速器和双级主减速器;
2)按主减速器传动比档数分,有单速式和双速式;
3)按齿轮副结构形式分,有圆柱齿轮式、圆锥齿轮式和准双曲面齿轮式。

3.常用的齿轮型式
1)斜齿圆柱齿轮特点是主从动齿轮轴线平行。

2)曲线齿锥齿轮特点是主从动锥齿轮轴线垂直且相交。

3)准双曲面锥齿轮特点是主从动锥齿轮轴线垂直但不相交,有轴线偏移。

4.准双曲面锥齿轮的螺旋方向与轴线偏移
1)齿轮旋转方向的判断
从齿轮小端向大端看,齿面向左旋为左旋齿轮,右旋为右旋齿轮,一对准双曲面锥齿轮互为左右旋。

2)上下偏移的判断
将小齿轮置于大齿轮右侧,小齿轮轴线在大齿轮轴线下方为下偏移,反之,为上偏移。

3)轴线偏移的作用
在驱动桥离地间隙h不变的情况下,可以降低主动锥齿轮的轴线位置,从而使整车车身及重心降低。

二、单级主减速器
单级主减速器是指主减速传动是由一对齿轮传动完成的。

三、双级主减速器
要求主减速器有较大传动比时,由一对锥齿轮传动将会导致尺寸过大,不能保证最小离地间隙的要求,这时多采用两对齿轮传动,即双级主减速器。

四、主减速器的调整
1.主减速器的特点
主减速器传递的转矩较大,受力复杂,具有以下特点。

1)主从动锥齿轮要有正确的相对位置,可以通过改变齿轮轴的轴向位置进行调整,以啮合印迹和齿侧间隙来检查;
2) 要求有较高的支承刚度,以确保传递转矩的过程中主从动锥齿轮正确的相对位置不发生改变;
3) 要用圆锥滚子轴承支承,以承受锥齿轮传动的轴向力;
4) 圆锥滚子轴承的预紧度可调。

2.主减速器的调整
主减速器的调整分为原始调整和使用调整。

原始调整是指一对新齿轮的调整,包括新车使用的新齿轮和旧车成对更换的一对新齿轮,要求保证合适的齿侧间隙和正确的啮合印迹;
使用调整是指齿轮和轴承磨损,齿轮相互位置发生变化时所进行的调整,只要求保证正确的啮合印迹。

当齿侧间隙过大时,就要成对更换主从动锥齿轮。

3.调整的内容
1)小齿轮轴承预紧度;
2)大齿轮轴承预紧度;
3)小齿轮位置;
4)大齿轮位置;
调整的部位和方法依车不同而不同。

点击放大
点击放大
五、轮边减速
在重型载货车、越野汽车或大型客车上,当要求传动系的传动比值较大,离地间隙较大时,往往在两侧驱动轮附近再增加一级减速传动,称为轮边减速器,轮边减速也可以看作是主减速器的第二级传动。

六、双速主减速器
为了充分提高汽车的动力性和经济性,有些汽车装用了两档的主减速器,此时,主减速器还兼起了副变速器的作用。

点击放大
七、贯通式主减速器
多轴驱动汽车的各驱动桥的布置有非贯通式和贯通式两种。

采用贯通式驱动桥可以减少分动器的动力输出轴数量,简化了结构。

第二节普通圆锥齿轮差速器
差速器的功用是既能向两侧驱动轮传递转矩,又能使两侧驱动轮以不同转速转动,以满足转向等情况下内外驱动轮要以不同转速转动的需要。

差速器的基本工作原理如下图所示。

从汽车转向时驱动轮的运动示意图可以看出,转向时外侧车轮滚过的路程长,内侧车轮滚过的路程短,要求外侧车轮转速快于内侧车轮,即希望内外侧车轮转速不同。

一、齿轮式差速器
组成:差速器壳体、行星齿轮、半轴齿轮、行星齿轮轴等。

通过运动学分析可以掌握差速器的差速原理;通过动力学分析可以掌握其转矩分配特性。

内摩擦力矩很小的对称式锥齿轮差速器的运动学和动力学特性可以概括为“差速但不差转矩”,即可以使两侧驱动轮以不同转速转动,但不能改变传给两侧驱动轮的转矩。

二、强制锁止式差速器
差速器的动力学特性不利于汽车的通过性,可以采用强制锁止式差速器克服其缺点。

斯堪尼亚LT110型汽车强制锁止式差速器的特点:外接合器与半轴通过花键相连,内接合器与差速器
壳体通过花键相连。

后面加上下面一段文字:当内外接合器相互接合时,将半轴齿轮与差速器壳体连为一体,差速器失去差速功能,传给两侧驱动轮的转矩可以不同。

第三节防滑差速器
一、防滑差速器的分类
防滑差速器按其工作原理可分为转矩敏感式防滑差速器、转速敏感式限滑差速器和主控制式防滑差速器。

二、转矩式防滑差速器
按其结构可以分为锥盘式、轮齿式和摩擦片式3种。

点击放大
三、转速敏感式限滑差速器
利用液体的粘性摩擦特性,即硅油的粘性摩擦特性感知速度差,实现差速器限滑作用。

点击放大
四、主动控制式限滑差速器
五、托森差速器
利用蜗轮蜗杆传动的不可逆性原理和齿面高摩擦条件,使差速器根据其内部内摩擦力矩大小而自动锁死或松开。

托森差速器常被用于全轮驱动轿车的中央轴间差速器,后驱动桥的轮间差速器,但通常不用于转向驱动桥的轮间差速器。

点击放大
点击放大
点击放大
第四节变速驱动桥
驱动桥按其功能特点可以分为独立式驱动桥和变速驱动桥。

独立驱动桥的特点是主减速器、差速器、半轴等都安装在独立的驱动桥壳内。

变速驱动桥的特点是变速器与驱动桥两个动力总成布置在同一壳体内。

点击放大
点击放大
第五节驱动车轮的传动装置与桥壳
一、驱动车轮的传动装置
1.半轴
半轴的内侧通过花键与半轴齿轮相连,外侧用凸缘与驱动轮的轮毂相连。

根据半轴外端受力状况的不同,半轴有半浮式、3/4浮式和全浮式3种。

1)半浮式半轴
特点是半轴外端通过轴承支承在桥壳上,作用在车轮的力都直接传给半轴,再通过轴承传给驱动桥壳体。

半轴既受转矩,又受弯矩。

常用于轿车、微型客车和微型货车。

下图是一汽车半浮式半轴的结构与安装,其结构特点是外端以圆锥面及键与轮毂相固定支承在一个圆锥滚子轴承上,向外的轴向力由圆锥滚子轴承承受,向内的轴向力通过滑块传给另一侧半轴的圆锥滚子轴承。

下图所示半浮式半轴的结构特点是半轴用可承受轴向力的向心推力球轴承支承。

2)全浮式半轴
全浮式半轴的特点是半轴外端与轮毂相连接,轮毂通过圆锥滚子轴承支承在桥壳的半轴套管上,作用在车轮上的力通过半轴传给轮毂,轮毂又通过轴承将力传给驱动桥壳,半轴只受转矩,不受弯矩。

用于轻型、中型、重型货车、越野汽车和客车上。

下图的特点是半轴外端的凸缘直接与轮毂连接。

下图的特点是采用一对球轴承支承轮毂。

下图的特点是半轴外端通过花键与凸缘盘相连,凸缘盘再与轮毂连接。

2.驱动车轮传动装置的万向节
转向驱动桥和断开式驱动桥驱动车轮的传动装置中必须采用万向节传动,以便使转向车轮能够转向,断开式驱动桥的摆动半轴能够摆动。

二、桥壳
1)整体式桥壳
点击放大
2)分段式驱动桥壳
分段式驱动桥壳的特点是宜于铸造,加工简便,但装车后不便于驱动桥的维修。

相关文档
最新文档